
Supplemental Material:
The Spectrum of the Fisher Information Matrix

of a Single-Hidden-Layer Neural Network

1 Hermite expansion

Any function with finite Gaussian moments can be expanded in a basis of Hermite polynomials.
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we can write,
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for some constants fn. Owing the orthogonality of the Hermite polynomials, this representation is
useful for evaluating Gaussian integrals. In particular, the condition that f be centered is equivalent
the vanishing of f0,
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The constants η, η′, and ζ are also easily expressed in terms of the coefficients,
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where,
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From this representation it is easy to see that 0 ≤ ζ ≤ η ≤ η′. The first and second moments of the
Fisher are then given by,
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Viewed as a function of ζ, r1, and r2, the ratio m2/m
2
1 has three critical points over the positive real

numbers,
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2 =4ζ ,
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(c) r2
1= 12ζ , r2 = 0 ,

m2
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. (S9)

Solution (c) is the minimum. Note that r2 = 0 implies fk = 0 for k ≥ 3. Without loss of generality
we can set η = 1, in which case,

fopt(x) =
1√
13

(
x+
√

6(x2 − 1)
)
. (S10)
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2 Variational Calculus

It is not easy to systematically generalize the calculations in the previous section for arbitrary
constraints on f . For example, placing lower bounds on f , requiring that f is monotone, placing
bounds on the derivative of f , and any other such conditions that are typically seen for activation
functions are all valid additional constraints to compute a good conditioned f . Variational calculus
is more suited for such a generalization. However, unlike the above explicit solution, the output is
a PDE with boundary conditions. For example, adding constraints on the first derivatives beyond
the above, only adds non-holonomic constraints to the problem [16]. Below, we outline the same
calculation leading to the PDE necessarily satisfied by any extremal f .

Without loss of generality, let η + η′ = 1, then the optimization problem becomes

f∗ = arg minf
1

2

(
1− 2ηη′ + 4ζ2

)
, s.t. η + η′ = 1. (S11)

Writing the ζ2 term as
∫
F (x1, x2, x3, x4)d~x, where
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4∏

i=1

f(xi)
e−x

2
i /2

√
2π

. (S12)

Here κ is a function of xis that is sharply concentrated around the line x1 = x2 = x3 = x4. The
sharper the concentration of κ around the line, the closer the solution is to the optimum value.

We have effectively reduced the polynomial objective function in x to a multi-dimensional linear
integral function in xis:

min
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)
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where each xi follows a isoperimetric constraint of the form:

∫
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Moreover, we have the (isoperimetric) “centering" constraint:
∫

R
f(x)

e−x
2/2

√
2π

dx = 0. (S15)

Eqns. (S13), (S14) and (S15) lead to a standard Euler-Lagrange PDE, which can be simplified from
symmetry considerations into an ODE, in the case above. See for example, Chapter 2 in [16]. The
solution of that PDE gives the necessary condition, which is also usually sufficient, for the optimal
activation function f .

3 Moments

Our main technical result will be stated in terms of generating functions arising from certain com-
binatorial settings, which are variants of certain standard problems and interesting by themselves.
We introduce the following notation. Given a generating function c(t) =

∑
k ckt

k, we denote
[c(t)]i := ci and for c(t1, t2) =

∑
k1,k2

ck1,k2t
k1
1 t

k2
2 , we denote [c(t1, t2)]i,j := ci,j .

Lemma 1. The Stieltjes transform G(z) of the spectral density of the Fisher information matrix
of a single-hidden-layer neural network with squared loss, activation function f , weight matrices
W (1),W (2) ∈ Rn×n with i.i.d. entries W (l)

ij ∼ N (0, 1
n ), no biases, and i.i.d. inputs X ∼ N (0, In)

is given by the following integral as n→∞:

G(z) =
1

z
P (

1

z
), (S16)
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where the function P (t) is given by the following series:

P (t) =
P (t; η, ζ)

2
+
P (t; , η′, ζ)

2
+

1

2
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tn+2(d−1),

(S17)

The generating functions H , with formal variables λ1 and λ2, is defined as follows:

H(d, λ1, λ2) =
2λ1λ2 − λ2

1λ2 − λ1λ
2
2

(−1 + λ1)d+1(−1 + λ2)d+1
. (S18)

The generating functions P1(d, t) and P2(d, t) can be characterized in terms of the generating
function P (t; ·, ·) obtained in the paper [13]:

P1(d, t) := ζd−1
d−1∑
i=0

( d−i−1
d+i−1 (d+i−1

i ))
(1−P (t;η′,ζ))d−i−1 (S19)
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d+i−1 (d+i−1

i ))
(1−P (t;η,ζ))d−i−1 , (S20)

where the generating function P (t; θ1, θ2) with parameters θ1 and θ2 is given by the quadratic
recurrence:

P (t; θ1, θ2) = 1 + P (t; θ1, θ2)(θ1 − θ2)t+
P (t; θ1, θ2)θ2t

1− P (t; θ1, θ2)θ2t
. (S21)

Remark 4. The significance of P (t) in [13] is that it completely characterizes the (Stieltjes transform
of) the singular values of the resolvent of the matrix f(WX) i.e., the output obtained from a single-
hidden-layer neural network.
Lemma 2. The coefficients of the series P1 and P2 can be obtained by the following 1D integrals.
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ζ
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ζ
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(S22)

The proof follows by simply plugging-in the fractional binomial expansion inside each of the integrals
and verifying that the corresponding two equations for P1 and P2 are indeed equal. The sums over n,
n1, and n2 are now trivial,
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∞∑
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Simplifying this expression and utilizing eqn. (S16) yields the expression in eqn. (20).

4 Proof outline for general case

4.1 General Case

In this supplementary subsection, we remove the assumption that f is required to be linear. In
the linear case, in eq. (16), we could directly compute the traces by applying the “mixed-product
property" of Kronecker products to the expressions in eq. (15). Moreover, summing the resulting
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series to obtain the Stieltjes transform was possible because the individual traces corresponded to
Catalan numbers for which a generating function is known. In general, there is no analogous mixed
product property to simplify the trace calculations, and we believe that the resulting series does
not support a characterization with a single dimensional elliptic integral. With that caveat, we now
proceed with the general case.

Our first task is to (asymptotically) evaluate traces of the form:

∑

i1,...,i2k∈{0,1}
i1+...+i2k=k

tr
[
M (1)i1M (2)i2 ...M (1)i2k−1

M (2)i2k
]
, (S24)

where M (1) = J (1)T J (1) and M (2) = J (2)T J (2).

Suppose that there are m examples1, with each example i indexed by µi. For a given value of k, any
trace as in eq. (S24), eventually consists of a sum over a product of per-example Jacobian matrices
J

(1)
µi and J (2)

µi . Observe that,

trH(0)k = tr 1
mk

∑
~µ

[ (
[J

(1)
µ1 J

(2)
µ1 ][J

(1)
µ1 J

(2)
µ1 ]T

)

×
(

[J
(1)
µ2 J

(2)
µ2 ][J

(1)
µ2 J

(2)
µ2 ]T

)

...
(

[J
(1)
µk J

(2)
µk ][J

(1)
µk J

(2)
µk ]T

) ]
, (S25)

where µ1 = µk (by definition of the trace). For n,m → ∞, where we take the limit over m first
and then over n,2 observe that the µis are all pairwise unequal, except that µ1 = µk as required. Of
course, n and m are equal, by assumption.

Focusing on each term in the previous sum and expanding the “2× 2" (block) matrices in the Js, we
get traces over terms of the form:

tr

d∏

i=1

J (bi)
µi J (bi)

T

µi , (S26)

where bi ∈ {1, 2} and µis are unequal. By the cyclicity of the trace, we can rotate the last Jacobian
to the front to re-pair terms and rewrite the above trace as:

tr
d∏

i=1

J (bi+1)T

µi+1
J (bi)
µi , (S27)

where addition in the µi subscripts is such that d+ 1 7→ 1. Finally, expanding the Jacobians into their
constituent entries, using equations:

J
(1)
ab,iµ = W

(2)
ia f

′(∑

k

W
(1)
ak xkµ

)
xbµ (S28)

J
(2)
cd,jν = δcjf

(∑

l

W
(1)
dl xlν

)
. (S29)

we can write down each trace as in eq. (S27) as a polynomial in terms of the weights in W , the
data points in X and f . The set of subindices occuring within the polynomial have some cyclic
symmetries (follows from the cyclic arrangement of the Jacobians, as above). For example, in the
trace calculations below:

1In fact, we will assume n = m i.e., we assume the width of the network and the number of examples both
go to infinity at exactly the same rate. This way all our matrices are square, and our calculations are simplified.

2 This is indeed the case when computing the limiting spectrum for the Fisher.
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tr
[
M (1)M (1)M (1)

]
=

∑

abiµ

[
W

(2)
i1a1

W
(2)
i2a1

W
(2)
i2a2

W
(2)
i3a2

W
(2)
i3a3

W
(2)
i1a3

×f ′
(
za3µ3

)
f ′
(
za3µ1

)
f ′
(
za1µ1

)
f ′
(
za1µ2

)
f ′
(
za2µ2

)
f ′
(
za2µ3

)

×xb1µ1
xb1µ2

xb2µ2
xb2µ3

xb3µ3
xb3µ1

]

tr
[
M (2)M (2)M (2)

]
=

∑

iµd

[
δi1i1f(zd1µ1

)f(zd1µ2
)f(zd2µ2

)f(zd2µ3
)f(zd3µ3

)f(zd3µ1
)
]

tr
[
M (1)M (2)

]
=

∑

abdiµ

[
W

(2)
i1a1

W
(2)
i1a1

f ′
(
za1µ1

)
f ′
(
za1µ2

)
xb1µ1

xb1µ2
f(zd1µ2

)f(zd1µ1
)
]

tr
[
M (1)M (2)M (1)M (2)

]
=

∑

abdi

[
W

(2)
i1a1

W
(2)
i2a1

W
(2)
i2a2

W
(2)
i1a2

f ′
(
za1µ1

)
f ′
(
za1µ2

)
f ′
(
za2µ3

)
f ′
(
za2µ4

)

×xb1µ1
xb1µ2

xb2µ3
xb2µ4

f(zd1µ2
)f(zd1µ3

)f(zd2µ4
)f(zd2µ1

)
]
, (S30)

note that the subscript indices in i, a, b and µ have some cyclic symmetry.

Note that the polynomial is not necessarily multilinear because there may be identifications between
various indices.3 Similarly, the polynomial is not completely symmetric because of restrictions on
the indices induced by matrix multiplication and chain rule for taking derivatives. So, the cyclic
symmetries are not completely trivial. Still, the structure induced among the indices is key to
evaluating the trace. We map this structure to certain outer-planar graphs (as in [13]) and follow their
machinery in evaluating the asymptotic expression for the trace. The latter effectively means that
certain analytic details, like computing the saddle point asymptotic approximations can be hidden
under the carpet.

Recall that the normalized trace, that we need to evaluate for the moment method, is of the form:

E
1

n1
trMk, (S31)

where the matrix M := f(WX), f applied point-wise, and the weights W and input X are Gaussian
distributed i.i.d. variables. The crux of the argument that we need from Section 4 of [13], is that the
normalized trace, can be written as the integral:

∫ [
f
(∑

lWi1lXlµ1

)
f
(∑

lWi2lXlµ1

)
· · · f

(∑
lWiklXlµk

)

×f
(∑

lWi1lXlµk

)]
DWDX. (S32)

After introducing auxiliary matrix valued variables Z and Λ, evaluating the X and W integrals, they
are able to simplify the last integral to:

∫ [
exp

[
−n2 log det |1 + 1

nΛΛT | − i tr ΛZ
]

×f(Zi1µ1)...f(Zi1µk)
]
DλDz , (S33)

where Dλ =
∏
λαβ∈Λ

dλαβ
2π and Dz =

∏
zαβ∈Z dzαβ . Finally, using saddle point approximations

near the origin (the Gaussians are all mean zero), allows them to evaluate the last integral, and
therefore the normalized trace, asymptotically as a polynomial in terms of η, ζ (the same η and ζ in
our main result). And, they also compute the Stieltjes transform of M .

However, unlike [13], we have two matrices M1 and M2 and in order to evaluate traces of the form:
∑

i1,...,i2k∈{0,1}
i1+...+i2k=k

tr
[
M (1)i1M (2)i2 ...M (1)i2k−1

M (2)i2k
]
, (S34)

3Except in the case of µs as mentioned above.
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M1

M2

M2

M1

Figure S1: The configuration of a and d indices for tr(M1M2M1M2) is shown. In general, each
green and blue arc corresponds to a admissible graph [13], connected by a single edge, corresponding
to the indices of the common variable.

the resulting integrals as in eq. S32 are replaced by those of the form (cf. eq. S30):
∑

abdi

∫
W

(2)
i1a1

W
(2)
i2a1

W
(2)
i2a2

W
(2)
i1a2

f ′
(
Za1µ1

)
f ′
(
Za1µ2

)
f ′
(
Za2µ3

)
f ′
(
Za2µ4

)

× Xb1µ1
Xb1µ2

Xb2µ3
Xb2µ4

f(Zd1µ2
)f(Zd1µ3

)f(zd2µ4
)f(Zd2µ1

)DWDX , (S35)

where the matrix Z = WX . A slightly more complicated scenario. On the other hand, we assume
that all our matrices, weights as well as inputs are square i.e., dimension n× n, and we assume unit
variance throughout, which helps simplify the situation a little.

The crux of the question, when trying to evaluate an integral of the form S35 is what is the relative
contribution of terms where certain sets of subscript indices, and therefore coefficients, are identified?
What kind of terms dominate the expression when calculating the asymptotic value of the trace?
What kind of identifications lead to sub-leading terms?

For example, the following lemma shows that when evaluating trMk
1 for k ≥ 3, all b indices must be

equal or else the trace is asymptotically zero. The reason being that the underlying covariances of
Xbµ and Xb′µ′ are zero when b 6= b′.

Lemma 3. Given an expansion of trMk
1 in terms of the entries of W and X , the left indices of

the X terms i.e., the bis in
∏
iXbiµi , are either all equal, or the contribution to the trace is zero.

Furthermore, the statement also holds for each run of M1s in eq. S34.

The above is a structural result for the b indices. Similarly, consider the a and the d indices in eq. S30.
We can arrange them as vertices of a cyclic graph to obtain a two-colored cycle corresponding to the
a and d indices in tr(M1M2M1M2).

The green arcs correspond to the a indices (coming from the W s in M1) and the blue arcs correspond
to the d indices (coming from the Z terms in M2s). Note that for a given term, some of the a indices
may be equal, in which case those vertices within the green arcs would be identified, and similarly
for the vertices / indices in the blue arcs. This identification of vertices results in a complicated graph
structure for the blue and green graphs, as opposed to a simple path structure.4

The next question can now be framed as follows: Every term arising from the trace corresponds to a
graph, so which type of graphs lead to dominant terms i.e., terms that are asymptotically significant?

In [13], it was shown that only terms corresponding to the “admissible graphs", which are graphs con-
sisting of edge disjoint cyclic blocks such that their planar dual forms a tree, contribute asymptotically
to the trace in eq. S31.

The asymptotically dominant terms in the trace, corresponding to blue or green graphs still correspond
to the admissible graphs defined in [13] i.e., the dominant terms will correspond to graphs that can
be partitioned into edge-disjoint cyclic blocks, whose planar duals are trees. However, in our case
the planar duals of the blue and green graphs, taken separately, may be disconnected (if there are
no vertex identifications across arcs), and may therefore form forests. Despite this, the techniques

4 So the figure of a circle with arcs is deceptively simple!
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of [13] are all still applicable and such “admissible graphs" form the leading terms of the trace in
eq. S24. We skip the lengthy proof since the idea is the same as that in [13].

Now, keeping the above in mind, consider the evaluation of traces of the form
tr
[
M (1)i1M (2)i2 ...M (1)i2k−1

M (2)i2k
]
. In particular, consider the trace in eq. S30 and the cor-

responding integral in eq. S35 as a concrete example. Suppose that there are 2d alternations between
M1 and M2 runs5, that the total degree of M1 is n1, and that of M2 is n2. Therefore, d = 2, n1 = 2
and n2 = 2 in our concrete example. We then define the following quantities:

• Let [H(d, λ1, λ2)]n1,n2 denote the number of such monomials terms i.e., those having d
alternations, and total degrees n1 and n2 in M1 and M2, respectively.

• Let P1(d, t) denote the contribution of the M1 terms to the trace. Equivalently, the expected
value of the integral corresponding to the trace when any variables with “d" indices i.e.,
those that belong to the “blue" graph, are dropped.

• Let P2(d, t) denote the contribution of the M2 terms to the trace. Equivalently, the expected
value of the integral corresponding to the trace when any variables with “a" indices, those
that belong to the “green" graph, are dropped.

The following three lemmas can then be shown using only elementary methods. The proof idea is
similar to that of the proofs in [13].

Proof sketch for the first two lemmas: one assumes that the sequence of blue and green arcs
(admissible graphs) on the “circle", comprising of total n1 and n2 vertices is fixed. The proof
follows by separating out i (say) out of d “arcs" and holding them to be disconnected i.e., no vertex
identifications in-between those arcs. The remaining arcs are assumed to be connected via non-
crossing vertex identifications between those arcs. Recall that each arc corresponds to an admissible
graph. This eventually leads to the d−i−1

d+i−1

(
d+i−1
i

)
factor in Lemma 4.

So for the proof one needs to count the contribution for each such configuration i.e., i disconnected
and d − i connected, of admissible graphs. For each fixed i, one effectively has i + 1 admissible
graphs, and “bubbles" corresponding to contributions of ζ terms at their boundaries. This corresponds
to the 1

(1−P (t;η′,ζ))d−i−1 term in Lemma 4.

Essentially, the proof of Lemma 4 is just a direct extension of the proof in [13], where the calculation
is for a configuration consisting of one admissible graph, as opposed to d disjoint admissible graphs.

Note that counting the number of ways of selecting the i connected graphs is similar to (but not the
same as) counting the number of non-crossing dissections of a (i+ 2)-gon. The latter, however, has a
bijection to a standard Young’s tableaux (cf. [17]); while in our case, vertex identifications do not
formally lead to lines but to “cyclic blocks" (cf. [13]), and that leads to a subtle, but asymptotically
significant, difference in the final calculated value. This comprises the essential outline of the proofs
of the two lemmas below.
Lemma 4.

P1(d, t) = ζd−1
d−1∑

i=0

(
d−i−1
d+i−1

(
d+i−1
i

))

(1− P (t; η′, ζ))d−i−1
(S36)

Similarly, we have the lemma below.
Lemma 5.

P2(d, t) = ζd−1
d−1∑

i=0

(
d−i−1
d+i−1

(
d+i−1
i

))

(1− P (t; η, ζ))d−i−1
(S37)

Finally, in the third lemma, one counts the number of configurations of blue and green arcs, given the
total degree n. The proof of which is elementary combinatorics. It consists of simply counting the
number of ways of interlacing d blue and d green “arcs", with blue arcs covering n1 points and green
arcs covering n2 points on a circle with n points. Therefore, the corresponding generating function
H in [H(d, λ1, λ2)]n1,n2 is given by the following lemma.

5 Assume that the terms M (1)i1M (2)i2 ...M (1)
i2k−1

M (2)i2k are laid out in a circle.
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Lemma 6.
H(d, λ1, λ2) =

2λ1λ2 − λ2
1λ2 − λ1λ

2
2

(−1 + λ1)d+1(−1 + λ2)d+1
. (S38)

Recall that, one only needs to ensure that each color (blue and green) graph is a disjoint union of
admissible graphs. Also recall that, evaluating the expectation integral over an admissible graph, can
be expressed only in terms of the number of cyclic blocks in the block structure of the admissible
graph. Therefore, given the number of alternations d, and the number of vertices in the blue and
green graphs, the generating function P (t) can be written as a sum over the multiplication of the
three generating functions as in Eqn. S17! The above sketches the proof of Lemma 1.
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