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Abstract

This is the supplementary material for the paper entitled “Structure-Aware Con-
volutional Neural Networks". In this material, Section 1 presents the the proof of
Theorem 1. Section 2 clarifies the descriptions related with the experiments, in-
cluding the gradients in training, experimental datasets, and network architectures.

1 Proof of Theorem 1

Theorem 1. Under the Chebyshev polynomial basis, the structure-aware convolution is equivalent to

yi = vTPixi, i ∈ {1, 2, · · · , n},
where v ∈ Rt is the coefficients of the polynomials, Pi ∈ Rt×m is a matrix determined by the local
structure representationRi and the polynomials, and xi ∈ Rm is the local input at the i-th vertex.

Proof. For clarity, we denote x ∈ Rm andRi = {rji|eji ∈ E} as the local input and local structure
representations at the i-th vertex, and f(·) is an functional filter. In the structure-aware convolution,
the output at the i-th location (vertex) is formulated as

yi =

m∑
j=1

f(rji) · xj =
m∑
j=1

(
t∑

k=1

vk · hk(rji)
)
· xj . (1)

By representing the Chebyshev polynomial basis with {1, x1, x2, · · · , xt−1}, we have
h1(x)
h2(x)
h3(x)

...
ht(x)

 = T


1
x1

x2

...
xt−1

 , (2)

where T is purely determined by the Chebyshev polynomial basis.

Then, we have

t∑
k=1

vk · hk(rji) = [v1, v2, v3, · · · , vt]


h1(rji)
h2(rji)
h3(rji)

...
ht−1(rji)

 = vTT


1
r1ji
r2ji
...

rt−1ji

 . (3)
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According to Eq. (2) and Eq. (3), we have

yi = vTT


1 1 1 · · · 1
r11i r12i r13i · · · r1mi

r21i r22i r23i · · · r2mi
...

...
...

. . .
...

rt−11i rt−12i rt−13i · · · rt−1mi




x1
x2
x3
...
xm

 ,
= vTTGixi,

= vTPixi,

(4)

where T and Gi are determined by the basis and the local structure representationRi, respectively.

The proof is completed.

2 Experiments

2.1 Training SACNNs with back-propagation

During training, we need to compute the gradients with respect to the parameters in the structure-
aware convolution, i.e., v and M. For clarity, we formulate the gradients in a structure-aware
convolutional layer with the multi-channel input x ∈ Rn×c and the single-channel output y ∈ Rn.
During the forward propagation phase, y can be computed as

yi =

c∑
u=1

∑
eji∈E

fu(rji) · xju =

c∑
u=1

∑
eji∈E

(
t∑

k=1

vku · hk(rji)
)
· xju, i ∈ {1, 2, · · · , n}. (5)

During the backward propagation phase, the gradients can be computed as

∂yi
∂vku

=
∑
eji∈E

xju · hk(rji),

∂yi
∂Mpq

=

c∑
u=1

∑
eji∈E

xju ·
t∑

k=1

(
vku ·

∂hk
∂rji

·
(
1− r2ji

)
· xjp · xiq

)
.

(6)

Thus, the operations in structure-aware convolution are differentiable, enabling the end-to-end training
of the established SACNNs with the standard back-propagation, without additional modification.

2.2 Datasets

We perform extensive experiments on six Euclidean and five non-Euclidean structured datasets. The
details of datasets are listed in Table 1. In each experiment, specifically, the whole samples are
normalized by subtracting the mean values in each dimension. Note that the data augmentation
technique is omitted in the ablation studies to reduce the impacts of additional factors.

The Euclidean structured datasets include six image datasets, namely Mnist [13], Cifar-10 [11],
Cifar-100 [11], STL-10 [4], Image10 [2], and ImageDog [2]. In the image classification tasks, Mnist,
Cifar-10, Cifar-100, and STL-10 are utilized to test the capability of classification of SACNNs. In
the image clustering tasks, DAC [2] modeled with our SACNNs is validated on the Image10 [2] and
ImageDog [2] datasets, which are sampled from ImageNet [6].

For the non-Euclidean structured datasets, five datasets are employed, namely the text categorization
datasets 20NEWS and Reuters [12], the action recognition dataset NTU [14], the molecular activity
dataset DPP4 [10], and the taxi flow dataset TF-198. The 20News and Reuters datasets are collected
from 16, 381 and 9, 160 text documents associated with 20 classes. In experiments, the bag-of-words
model 1 is employed to encode each document as a graph. For each sample in the NTU dataset,
each vertex represents a part of body, edges indicate the correlations between vertices [5]. In DPP4,
the target is to calculate activities of molecules based on the molecule structures, which can be

1https://pypi.python.org/pypi/bagofwords
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Table 1: Descriptions of experimental datasets. For clarity, “classifi.", “cluster.", “regress.", “mse",
“corr." are the abbreviations of classification, clustering, regression, mean square error, and correlation
respectively. Note that “#samples (Tr)" and “#samples (Te)" denote the numbers of training and
testing samples respectively, “#edges" means the average number of edges of each samples in datasets,
+∞ signifies that the outputs are continuous.

Euclidean structured datasets

Datasets Mnist Cifar-10 Cifar-100 STL-10 Image10 ImageDog

#problem classifi. classifi. classifi. classifi. cluster. cluster.
#classes 10 10 100 10 10 15
#samples (Tr) 60,000 50,000 50,000 8,000 13,000 19,500
#samples (Te) 10,000 10,000 10,000 5,000 13,000 19,500
#features 28× 28 —– 32× 32× 3 —– ————— 96× 96× 3 —————
#losses —————————— categorical cross entropy ——————————
#evaluation ————————– classification/clustering accuracy ————————–

non-Euclidean structured datasets

Datasets Mnist 20News Reuters NTU DPP4 TF-198

#problem classifi. classifi. classifi. classifi. regress. regress.
#classes 10 20 20 60 +∞ +∞
#samples (Tr) 60,000 10,904 6,577 33,628 6,148 20,000
#samples (Te) 10,000 5,477 2,583 11,209 2,045 9,981
#nodes 784 19,381 1,500 25 2,153 198
#edges 5940 73,732 13,862 45 17,767 1,586
#losses ———– categorical cross entropy ———— mse mse
#evaluation ————– classification accuracy ————– squared corr. root mse

considered a regression problem on the non-Euclidean domain. The TF-198 dataset [16] is collected
from the GPS trajectory data of 29, 950 taxis in a city from November 2015 to May 2016 at 198
traffic intersections. For each sample, six history observations (120 minutes) and the taxis flow of
next time interval (20 minutes) are acted as inputs and outputs, respectively.

2.3 Networks modeling

Our code relies on Keras [3] with the Tensorflow [1] backend. Basically, the max pooling and the
Graclus method [7] are employed as the pooling operations to coarsen the feature maps in SACNNs
when managing Euclidean and non-Euclidean structured data respectively, the ReLU function [8] is
used as the activation function, batch normalization [9] is employed to normalize the inputs of all
layers, parameters are randomly initialized with a uniform distribution U(−0.1, 0.1), the small filters
with 3× 3 size are always utilized in the convolutional layers because of their capability of nonlinear
fitting, as verified in [15]. In the experiments, the architectures are fixed, only the convolution units
are different. For each experimental dataset, the devised networks are listed in Table 2. In the table,
we abbreviate units in networks for clarity. Specifically, the convolutional layers with BN and ReLU
are denoted as “[kernel size] conv. [number of channels] BN ReLU”, the fully connected layers with
BN and ReLU are expressed as “[output dimension] fc BN ReLU”, the max pooling layers with BN
are presented as “[pooling size] max-pooling BN”, and the global averaging pooling layers with BN
are signified as “[global averaging pooling size] global averaging BN”.

2.4 Experimental results

We report the high-definition large figures of the results in the paper. Specifically, the results of
invariance properties in Section 5.2 are illustrated in Figure 1, the results in Section 5.4 are shown in
Figure 2, and the learned filters are presented in Figure 3.

Filters visualization To validate whether SACNNs can learn interpretable filters, we model a new
network for STL-10 by replacing the first three convolutional layers in the network (in Table 2) for
STL-10 with a convolutional layer in which the filer size is 11× 11 pixels. In Figure 3, the learned
filters (11× 11 pixels) in the first convolutional layer are intuitively presented, which shows that both
SACNNs and ClaCNNs tend to learn a variety of frequency and orientation selective filters.
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Table 2: The architectures of the modeled networks on the experimental datasets (shown in columns).

Euclidean structured datasets
Dataset Mnist Cifar-10 Cifar-100

Network

3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
2× 2 max-pooling BN
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
2× 2 max-pooling BN

3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
2× 2 max-pooling BN
3× 3 conv. 10 BN ReLU
7× 7 global averaging BN

10 softmax

3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
2× 2 max-pooling BN
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
2× 2 max-pooling BN

3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
2× 2 max-pooling BN

fc 1024 BN ReLU
fc 512 BN ReLU

10 softmax

3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
2× 2 max-pooling BN
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
2× 2 max-pooling BN

3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
2× 2 max-pooling BN

fc 1024 BN ReLU
fc 512 BN ReLU

100 softmax

Dataset STL-10 Image10‡ ImageDog‡

Network

3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
2× 2 max-pooling BN
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
2× 2 max-pooling BN
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
2× 2 max-pooling BN
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
3× 3 conv. 32 BN ReLU
2× 2 max-pooling BN

fc 1024 BN ReLU
fc 1024 BN ReLU

10 softmax

3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
2× 2 max-pooling BN

3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
2× 2 max-pooling BN

3× 3 conv. 256 BN ReLU
3× 3 conv. 256 BN ReLU
3× 3 conv. 256 BN ReLU
2× 2 max-pooling BN
1× 1 conv. 10 BN ReLU
6× 6 global averaging BN

10 fc BN ReLU
10 fc BN ReLU
restraint layer

3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
3× 3 conv. 64 BN ReLU
2× 2 max-pooling BN

3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
3× 3 conv. 128 BN ReLU
2× 2 max-pooling BN

3× 3 conv. 256 BN ReLU
3× 3 conv. 256 BN ReLU
3× 3 conv. 256 BN ReLU
2× 2 max-pooling BN
1× 1 conv. 15 BN ReLU
6× 6 global averaging BN

15 fc BN ReLU
15 fc BN ReLU
restraint layer

non-Euclidean structured datasets
Dataset 20News Reuters NTU

Network

conv. 16 BN ReLU
conv. 32 BN ReLU
fc 512 BN ReLU

20 softmax

conv. 16 BN ReLU
conv. 32 BN ReLU
fc 512 BN ReLU

20 softmax

conv. 32 BN ReLU
conv. 32 BN ReLU
conv. 32 BN ReLU
fc 1024 BN ReLU

60 softmax
Dataset DPP4 TF-198

Network

conv. 8 BN ReLU
conv. 16 BN ReLU
conv. 32 BN ReLU
fc 512 BN ReLU

1 ReLU

conv. 32 BN ReLU
conv. 32 BN ReLU
conv. 32 BN ReLU

conv. 1 ReLU
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Figure 1: Invariance properties of various CNNs. (a) Gaussion noises with mean 0 and variance δ.
(b) Rotation. (c) Shift. (d) Scale. (e) Normalized total variations at the initial stage. (f) Normalized
total variations at the final stage.
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Figure 2: Ablation studies on various datasets. (a) Impact of polynomial order. (b) Influence of
channels. (c) Transfer learning from Reuters to 20News. (d) Impact of training samples. (e) Influence
of basis functions. (f) Integration with recent networks. (g) Sensitivity to initialization. (h) Parameters
distribution.
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(a) (b)

(c)

Figure 3: Visualization of learned filters (11 × 11 × 32) on the STL-10 dataset. (a) The learned
classical filters. (b) The discrete filters generated from the learned functional filters. (c) The learned
functional filters. The red, green and blue curves respectively correspond to the red, green and blue
channels of samples in STL-10.
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