
Appendix
The appendix in constructed as follows:

• We first present in Section A a new result for stochastic gradient recursions which generalizes
the work of [18] and [13] to more general norms. This result could be used in other contexts.

• The proof technique for Theorem 1 is presented in Section B.

• In Section C we give a proof of the various lemmas needed in the first part of the proof of
Theorem 1 (deviation between SGD and batch gradient descent).

• In Section D we provide new results for the analysis of batch gradient descent, which are
adapted to our new (A3), and instrumental in proving Theorem 1 in Section B.

• Finally, in Section E we present experiments for different sampling techniques.

A A general result for the SGD variance term

Independently of the problem studied in this paper, we consider i.i.d. observations (zt, ⇠t) 2 H ⇥H

a Hilbert space, and the recursion started from µ0 = 0.

µt = (I � �zt ⌦ zt)µt�1 + �⇠t (1)

(this will applied with zt = �(xi(t))). This corresponds to the variance term of SGD. We denote by
µ̄t the averaged iterate µ̄t =

1
t

Pt
i=1 µi.

The goal of the proposition below is to provide a bound on E
h��Hu/2µ̄t

��2
i

for u 2 [0, 1
↵ +1], where

H = E [zt ⌦ zt] is such that trH1/↵ is finite. Existing results only cover the case u = 1.

Proposition 1 (A general result for the SGD variance term). Let us consider the recursion in
Eq. (1) started at µ0 = 0. Denote E [zt ⌦ zt] = H , assume that trH1/↵ is finite, E [⇠t] = 0,
E
⇥
(zt ⌦ zt)2

⇤
4 R2H , E [⇠t ⌦ ⇠t] 4 �2H and �R2 6 1/4, then for u 2 [0, 1

↵ + 1]:

E
���Hu/2µ̄t

���
2
�
6 4�2�1�u �1/↵trH1/↵

tu�1/↵
. (2)

A.1 Proof principle

We follow closely the proof technique of [18], and prove Proposition 1 by showing it first for a
“semi-stochastic” recursion, where zt ⌦ zt is replaced by its expectation (see Lemma 1). We will then
compare our general recursion to the semi-stochastic one.

A.2 Semi-stochastic recursion

Lemma 1 (Semi-stochastic SGD). Let us consider the following recursion µt = (I � �H)µt�1+�⇠t
started at µ0 = 0. Assume that trH1/↵ is finite, E [⇠t] = 0, E [⇠t ⌦ ⇠t] 4 �2H and �H 4 I , then
for u 2 [0, 1

↵ + 1]:

E
���Hu/2µ̄t

���
2
�
6 �2�1�u �1/↵trH1/↵t1/↵�u. (3)
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Proof. For t > 1 and u 2 [0, 1
↵ + 1], using an explicit formula for µt and µ̄t (see [18] for details),

we get:

µt = (I � �H)µt�1 + �⇠t = (I � �H)t µ0 + �
tX

k=1

(I � �H)t�k ⇠k

µ̄t =
1

t

tX

u=1

µu =
�

t

tX

u=1

uX

k=1

(I � �H)u�k ⇠k =
1

t

tX

k=1

H�1
⇣
I � (I � �H)t�k+1

⌘
⇠k

E
���Hu/2µ̄t

���
2
�
=

1

t2
E

tX

k=1

tr

⇣
I � (I � �H)t�k+1

⌘2
Hu�2⇠k ⌦ ⇠k

�

6 �2

t2

tX

k=1

tr

⇣
I � (I � �H)k

⌘2
Hu�1

�
using E [⇠t ⌦ ⇠t] 4 �2H.

Now, let (�i)i2N⇤ be the non-increasing sequence of eigenvalues of the operator H . We obtain:

E
���Hu/2µ̄t

���
2
�
6 �2

t2

tX

k=1

1X

i=1

⇣
I � (I � ��i)

k
⌘2

�u�1
i .

We can now use a simple result2 that for any ⇢ 2 [0, 1], k > 1 and u 2 [0, 1
↵ + 1], we have :

(1� (1� ⇢)k)2 6 (k⇢)1�u+1/↵, applied to ⇢ = ��i. We get, by comparing sums to integrals:

E
���Hu/2µ̄t

���
2
�
6 �2

t2

tX

k=1

1X

i=1

⇣
I � (I � ��i)

k
⌘2

�u�1
i

6 �2

t2

tX

k=1

1X

i=1

(k��i)
1�u+1/↵�u�1

i

6 �2

t2
�1�u+1/↵trH1/↵

tX

k=1

k1�u+1/↵

6 �2

t2
�1�u+1/↵trH1/↵

Z t

1
y1�u+1/↵dy

6 �2

t2
�1�u �1/↵trH1/↵ t2�u+1/↵

2� u+ 1/↵

6 �2�1�u �1/↵trH1/↵t1/↵�u,

which shows the desired result.

A.3 Relating the semi-stochastic recursion to the main recursion

Then, to relate the semi-stochastic recursion with the true one, we use an expansion in the powers of
� using recursively the perturbation idea from [38].

For r > 0, we define the sequence (µr
t )t2N, for t > 1,

µr
t = (I � �H)µr

t�1 + �⌅r
t , with ⌅r

t =

⇢
(H � zt ⌦ zt)µ

r�1
t�1 if r > 1

⌅0
t = ⇠t

. (4)

We will show that µt '
P1

i=0 µ
i
t. To do so, notice that for r > 0, µt�

Pr
i=0 µ

i
t follows the recursion:

µt �
rX

i=0

µi
t = (I � zt ⌦ zt)

 
µt�1 �

rX

i=0

µi
t�1

!
+ �⌅r+1

t , (5)

so that by bounding the covariance operator we can apply a classical SGD result. This is the purpose
of the following lemma.

2Indeed, adapting a similar result from [18], on the one hand, 1� (1� ⇢)k 6 1 implying that (1� (1�
⇢)k)1�1/↵+u 6 1. On the other hand, 1 � (1 � �x)k 6 �kx implying that (1 � (1 � ⇢)k)1+1/↵�u 6
(k⇢)1+1/↵�u. Thus by multiplying the two we get (1� (1� ⇢)k)2 6 (k⇢)1�u+1/↵.
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Lemma 2 (Bound on covariance operator). For any r > 0, we have the following inequalities:

E [⌅r
t ⌦ ⌅r

t ] 4 �rR2r�2H and E [µr
t ⌦ µr

t ] 4 �r+1R2r�2I. (6)

Proof. We propose a proof by induction on r. For r = 0, and t > 0, E
⇥
⌅0
t ⌦ ⌅0

t

⇤
= E [⇠t ⌦ ⇠t] 4

�2H by assumption. Moreover,

E
⇥
µ0
t ⌦ µ0

t

⇤
= �2

t�1X

k=1

(I � �H)t�kE
⇥
⌅0
t ⌦ ⌅0

t

⇤
(I � �H)t�k 4 �2�2

t�1X

k=1

(I � �H)2(t�k)H 4 ��2I.

Then, for r > 1,

E
⇥
⌅r+1
t ⌦ ⌅r+1

t

⇤
4 E[(H � zt ⌦ zt)µ

r
t�1 ⌦ µr

t�1(H � zt ⌦ zt)]

= E[(H � zt ⌦ zt)E[µr
t�1 ⌦ µr

t�1](H � zt ⌦ zt)]

4 �r+1R2r�2E[(H � zt ⌦ zt)
2]

4 �r+1R2r+2�2H.

And,

E
⇥
µr+1
t ⌦ µr+1

t

⇤
= �2

t�1X

k=1

(I � �H)t�kE
⇥
⌅r+1
t ⌦ ⌅r+1

t

⇤
(I � �H)t�k

4 �r+3R2r+2�2
t�1X

k=1

(I � �H)2(t�k)H 4 �r+2R2r+2�2I,

which thus shows the lemma by induction.

To bound µt �
Pr

i=0 µ
i
t, we prove a very loose result for the average iterate, that will be sufficient

for our purpose.
Lemma 3 (Bounding SGD recursion). Let us consider the following recursion µt =
(I � �zt ⌦ zt)µt�1 + �⇠t starting at µ0 = 0. Assume that E[zt ⌦ zt] = H , E [⇠t] = 0, kxtk2 6 R2,
E [⇠t ⌦ ⇠t] 4 �2H and �R2 < I , then for u 2 [0, 1

↵ + 1]:

E
���Hu/2µ̄t

���
2
�
6 �2�2RutrH t. (7)

Proof. Let us define the operators for j 6 i : M i
j = (I � �zi(i) ⌦ zi(i)) · · · (I � �zi(j) ⌦ zi(j)) and

M i
i+1 = I . Since µ0 = 0, note that we have we have, µi = �

Pi
k=1 M

i
k+1⇠k. Hence, for i > 1,

E
���Hu/2µi

���
2
= �2E

X

k,j

hM i
j+1⇠j , H

uM i
k+1⇠ki

= �2E
iX

k=1

hM i
k+1⇠k, H

uM i
k+1⇠ki

= �2tr

 
E
"

iX

k=1

M i
k+1

⇤
HuM i

k+1⇠k ⌦ ⇠k

#!
6 �2�2E

"
iX

k=1

tr
⇣
M i

k+1
⇤
HuM i

k+1H
⌘#

6 �2�2Rui trH,

because tr
�
M i

k+1
⇤
HuM i

k+1H
�
6 RutrH . Then,

E
���Hu/2µ̄t

���
2
=

1

t2

X

i,j

hHu/2µi, H
u/2µji

6 1

t2
E
 

tX

i=1

���Hu/2µi

���

!2

6 1

t

tX

i=1

E
���Hu/2µi

���
2
6 �2�2RutrH t,

which finishes the proof of Lemma 3.
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A.4 Final steps of the proof

We have now all the material to conclude. Indeed by the triangular inequality:

✓
E
���Hu/2µ̄t

���
2
◆1/2

6
rX

i=1

0

BB@E
���Hu/2µ̄i

t

���
2

| {z }
Lemma 1

1

CCA

1/2

+

0

BBBB@
E
�����H

u/2

 
µ̄t �

rX

i=1

µ̄i
t

!�����

2

| {z }
Lemma 3

1

CCCCA

1/2

.

With Lemma 2, we have all the bounds on the covariance of the noise, so that:
✓
E
���Hu/2µ̄t

���
2
◆1/2

6
rX

i=1

⇣
�iR2i�2�1�u �1/↵trH1/↵t1/↵�u

⌘1/2
+
�
�r+2R2r+utrH t

�1/2

6 (�2�1�u �1/↵trH1/↵t1/↵�u)1/2
rX

i=1

�
�R2

�i/2
+
�
�r+2R2r+utrH t

�1/2
.

Now we make r go to infinity and we obtain:
✓
E
���Hu/2µ̄t

���
2
◆1/2

6 (�2�1�u �1/↵trH1/↵t1/↵�u)1/2
1

1�
p
�R2

+
�
�r+2R2r+utrH t

�1/2
| {z }

�!
r!1

0

Hence with �R2 6 1/4,

E
���Hu/2µ̄t

���
2
6 4�2�1�u �1/↵trH1/↵t1/↵�u,

which finishes to prove Proposition 1.

B Proof sketch for Theorem 1

We consider the batch gradient descent recursion, started from ⌘0 = 0, with the same step-size:

⌘t = ⌘t�1 +
�

n

nX

i=1

�
yi � h⌘t�1,�(xi)iH

�
�(xi),

as well as its averaged version ⌘̄t = 1
t

Pt
i=0 ⌘i. We obtain a recursion for ✓t � ⌘t, with the

initialization ✓0 � ⌘0 = 0, as follows:

✓t � ⌘t =
⇥
I � �(xi(u))⌦H �(xi(u))

⇤
(✓t�1 � ⌘t�1) + �⇠1t + �⇠2t ,

with ⇠1t = yi(u)�(xi(u))� 1
n

Pn
i=1 yi�(xi) and ⇠2t =

⇥
�(xi(u))⌦H �(xi(u))� 1

n

Pn
i=1 �(xi)⌦H

�(xi)
⇤
⌘t�1. We decompose the performance F (✓t) in two parts, one analyzing the performance of

batch gradient descent, one analyzing the deviation ✓t � ⌘t, using

EF (✓̄t)� F (✓⇤) 6 2E
⇥
k⌃1/2(✓t � ⌘t)k2H

⇤
+ 2
⇥
EF (⌘̄t)� F (✓⇤)

⇤
.

We denote by ⌃̂n = 1
n

Pn
i=1 �(xi)⌦ �(xi) the empirical second-order moment.

Deviation ✓t � ⌘t. Denoting by G the �-field generated by the data and by Ft the �-field generated
by i(1), . . . , i(t), then, we have E(⇠1t |G,Ft�1) = E(⇠2t |G,Ft�1) = 0, thus we can apply results for
averaged SGD (see Proposition 1 of the Appendix) to get the following lemma.

Lemma 4. For any t > 1, if E
⇥
(⇠1t + ⇠2t ) ⌦H (⇠1t + ⇠2t )|G

⇤
4 ⌧2⌃̂n, and 4�R2 = 1, under

Assumptions (A1), (A2), (A4),

E
⇥
k⌃̂1/2

n (✓̄t � ⌘̄t)k2H|G
⇤
6 8⌧2�1/↵tr ⌃̂1/↵

n

t1�1/↵
. (8)
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In order to obtain the bound, we need to bound ⌧2 (which is dependent on G) and go from a bound
with the empirical covariance matrix ⌃̂n to bounds with the population covariance matrix ⌃.

We have
E
⇥
⇠1t ⌦H ⇠1t |G

⇤
4H E

⇥
y2i(u)�(xi(u))⌦H�(xi(u))|G

⇤
4H kyk21⌃̂n 4H (�+sup

x2X

h✓⇤,�(x)iH)2⌃̂n

E
⇥
⇠2t⌦⇠2t |G

⇤
4H E

⇥
h⌘t�1,�(xi(u))i2�(xi(u))⌦H�(xi(u))|G

⇤
4H sup

t2{0,...,T�1}
sup
x2X

h⌘t,�(x)iH)2⌃̂n

Therefore ⌧2 = 2M2 + 2 supt2{0,...,T�1} supx2X
h⌘t,�(x)i2H or using Assumption (A3) ⌧2 =

2M2 + 2 supt2{0,...,T�1} R
2µ2

µk⌃1/2�µ/2⌘tk2H.

In the proof, we rely on an event (that depend on G) where ⌃̂n is close to ⌃. This leads to the the
following Lemma that bounds the deviation ✓̄t � ⌘̄t.
Lemma 5. For any t > 1, 4�R2 = 1, under Assumptions (A1), (A2), (A4),

E
⇥
k⌃1/2(✓̄t � ⌘̄t)k2H

⇤
6 16⌧21

"
R�2/↵tr ⌃1/↵t1/↵

 
1

t
+

✓
4

µ

log n

n

◆1/µ
!

+ 1

#
. (9)

We make the following remark on the bound.
Remark 1. Note that as defined in the proof ⌧1 may diverge in some cases as

⌧21 =

8
<

:

O(1) when µ 6 2r,
O(nµ�2r) when 2r 6 µ 6 2r + 1/↵,
O(n1�2r/µ) when µ > 2r + 1/↵,

with O(·) are defined explicitly in the proof.

Convergence of batch gradient descent. The main result is summed up in the following lemma,
with t = O(n1/µ) and t > n.
Lemma 6. Let t > 1, under Assumptions (A1), (A2), (A3), (A4), (A5), (A6), when, with 4�R2 = 1,

t =

(
⇥(n↵/(2r↵+1)) 2r↵+ 1 > µ↵

⇥(n1/µ (log n)
1
µ ) 2r↵+ 1 6 µ↵.

(10)

then,

EF (⌘̄t)� F (✓⇤) 6
⇢
O(n�2r↵/(2r↵+1)) 2r↵+ 1 > µ↵
O(n�2r/µ) 2r↵+ 1 6 µ↵

(11)

with O(·) are defined explicitly in the proof.
Remark 2. In all cases, we can notice that the speed of convergence of Lemma 6 are slower that the
ones in Lemma 5, hence, the convergence of the gradient descent controls the rates of convergence of
the algorithm.

C Bounding the deviation between SGD and batch gradient descent

In this section, following the proof sketch from Section B, we provide a bound on the deviation
✓t � ⌘t. In all the following let us denote µt = ✓t � ⌘t that deviation between the stochastic gradient
descent recursion and the batch gradient descent recursion.

C.1 Proof of Lemma 5

We need to (a) go from ⌃̂n to ⌃ in the result of Lemma 4 and (b) to have a bound on ⌧ . To prove this
result we are going to need the two following lemmas:

Lemma 7. Let � > 0, � 2 (0, 1]. Under Assumption (A3), when n > 11(1 + 2
µR

2µ�µtµ) log 8R2

�� ,
the following holds with probability 1� �,

���(⌃+ �I)1/2(⌃̂n + �I)�1/2
���
2
6 2. (12)
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Proof. This Lemma is proven and stated lately in Lemma 14 in Section D.3. We recalled it here for
the sake of clarity.

Lemma 8. Let � > 0, � 2 (0, 1]. Under Assumption (A3), for t = O
�

1
n1/µ

�
then the following holds

with probability 1� �,

⌧2 6 ⌧21 and ⌧21 =

8
<

:

O(1), when µ 6 2r,
O
�
nµ�2r

�
, when 2r 6 µ 6 2r + 1/↵,

O
�
n1�2r/µ

�
when µ > 2r + 1/↵,

(13)

where the O(·)-notation depend only on the parameters of the problem (and is independent of n
and t).

Proof. This Lemma is a direct implication of Corollary 2 in Section D.3. We recalled it here for the
sake of clarity.

Note that we can take ��
n =

⇣
log n

�
n

⌘1/µ
so that Lemma 7 result holds. Now we are ready to prove

Lemma 5.

Proof of Lemma 5. Let A�a be the set for which inequality (12) holds and let B�b be the set for which
inequality (13) holds. Note that P(Ac

�a
) = �a and P(Bc

�b
) = �b. We use the following decomposition:

E
���⌃1/2µ̄t

���
2
6 E

���⌃1/2µ̄t

���
2
1A�a\B�b

�
+ E

���⌃1/2µ̄t

���
2
1Ac

�a

�
+ E

���⌃1/2µ̄t

���
2
1Bc

�b

�
.

First, let us bound roughly kµ̄tk2.

First, for i > 1, kµik2 6 �2
⇣Pt

i=1 k⇠1i k+ k⇠2i k
⌘2

6 16R2�2⌧2t2, so that kµ̄tk2 6
1
t

Pt
i=1 kµik2 6 16R2�2⌧2t2. We can bound similarly ⌧2 6 4M2�2R4t2, so that kµ̄tk2 6

64R2M2�4t4. Thus, for the second term:

E
���⌃1/2µ̄t

���
2
1Ac

�a

�
6 64R8M2�4t4E1Ac

�a
6 64R8M2�4t4�a,

and for the third term:

E
���⌃1/2µ̄t

���
2
1Bc

�b

�
6 64R8M2�4t4E1Bc

�b
6 64R8M2�4t4�b.

And on for the first term,

E
���⌃1/2µ̄t

���
2
1A�a\B�b

�
6 E

���⌃1/2(⌃+ ��
nI)

�1/2
���
2 ���(⌃+ ��

nI)
1/2(⌃̂n + ��

nI)
�1/2

���
2

���(⌃̂n + ��
nI)

1/2µ̄t

���
2
1A�a\B�b

| G
�

6 2E
���(⌃̂n + ��

nI)
1/2µ̄t

���
2
| G
�

= 2E
���⌃̂1/2

n µ̄t

���
2
| G
�
+ 2��

nE
h
kµ̄tk2 | G

i

6 16⌧21
�1/↵E

h
tr ⌃̂1/↵

n

i

t1�1/↵
+ 8��

n⌧
2
1 �1/↵E

h
tr ⌃̂1/↵

n

i
t1/↵,

using Proposition 1 twice with u = 1 for the left term and u = 1 for the right one.

As x ! x1/↵ is a concave function, we can apply Jensen’s inequality to have :

E
h
tr(⌃̂1/↵

n )
i
6 tr⌃1/↵,
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so that:

E
���⌃1/2µ̄t

���
2
1A�a\B�b

�
6 16⌧21

�1/↵tr ⌃1/↵

t1�1/↵
+ 8��

n⌧
2
1� �1/↵tr ⌃1/↵t1/↵

6 16⌧21�1/↵tr ⌃1/↵t1/↵
✓
1

t
+ ��

n

◆
.

Now, we take �a = �b =
⌧2
1

4M2R8�4t4 and this concludes the proof of Lemma 5, with the bound:

E
���⌃1/2µ̄t

���
2
6 16⌧21�1/↵tr ⌃1/↵t1/↵

✓
1

t
+
⇣2 + 2 logM + 4 log(�R2) + 4 log t

n

⌘1/µ◆
.

D Convergence of batch gradient descent

In this section we prove the convergence of averaged batch gradient descent to the target function.
In particular, since the proof technique is valid for the wider class of algorithms known as spectral
filters [15, 14], we will do the proof for a generic spectral filter (in Lemma 9, Sect. D.1 we prove that
averaged batch gradient descent is a spectral filter).

In Section D.1 we provide the required notation and additional definitions. In Section D.2, in particular
in Theorem D.2 we perform an analytical decomposition of the excess risk of the averaged batch
gradient descent, in terms of basic quantities that will be controlled in expectation (or probability) in
the next sections. In Section D.3 the various quantites obtained by the analytical decomposition are
controlled, in particular, Corollary 2 controls the L1 norm of the averaged batch gradient descent
algorithm. Finally in Section D.4, the main result, Theorem 3 controlling in expectation of the excess
risk of the averaged batch gradient descent estimator is provided. In Corollary 3, a version of the
result of Theorem 3 is given, with explicit rates for the regularization parameters and of the excess
risk.

D.1 Notations

In this subsection, we study the convergence of batch gradient descent. For the sake of clarity we
consider the RKHS framework (which includes the finite-dimensional case). We will thus consider
elements of H that are naturally embedded in L2(d⇢X) by the operator S from H to L2(d⇢X) and
such that: (Sg)(x) = hg,Kxi, where we have �(x) = Kx = K(·, x) where K : X ! X ! R is the
kernel. We recall the recursion for ⌘t in the case of an RKHS feature space with kernel K:

⌘t = ⌘t�1 +
�

n

nX

i=1

�
yi � h⌘t�1,KxiiH

�
Kxi ,

Let us begin with some notations. In the following we will often use the letter g to denote vectors
of H, hence, Sg will denote functions of L2(d⇢X). We also define the following operators (we may
also use their adjoints, denoted with a ⇤):

• The operator Ŝn from H to Rn, Ŝng = 1p
n
(g(x1), . . . g(xn)).

• The operators from H to H, ⌃ and ⌃̂n, defined respectively as ⌃ = E [Kx ⌦Kx] =R
X
Kx ⌦Kxd⇢X and ⌃̂n = 1

n

Pn
i=1 Kxi ⌦Kxi . Note that ⌃ is the covariance operator.

• The operator L : L2(d⇢X) ! L2(d⇢X) is defined by

(Lf)(x) =

Z

X

K(x, z)f(z)d⇢X(x), 8f 2 L2(d⇢X).

Moreover denote by N(�) the so called effective dimension of the learning problem, that is
defined as

N(�) = tr(L(L+ �I)�1),
for � > 0. Recall that by Assumption (A4), there exists ↵ > 1 and Q > 0 such that

N(�) 6 Q��1/↵, 8� > 0.

We can take Q = tr⌃1/↵.
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• P : L2(d⇢X) ! L2(d⇢X) projection operator on H for the L2(d⇢X) norm s.t. ranP =
ranS.

Denote by f⇢ the function so that f⇢(x) = E[y|x] 2 L2(d⇢X) the minimizer of the expected risk,
defined by F (f) =

R
X⇥R(f(x)� y)2d⇢(x, y).

Remark 3 (On Assumption (A5)). With the notation above, we express assumption (A5), more
formally, w.r.t. Hilbert spaces with infinite dimensions, as follows. There exists r 2 [0, 1] and
� 2 L2(d⇢X), such that

Pf⇢ = L
r�.

(A6) Let q 2 [1,1] be such that kf⇢ � Pf⇢kL2q(X,⇢X) < 1.

The assumption above is always true for q = 1, moreover when the kernel is universal it is true even
for q = 1. Moreover if r > 1/2 then it is true for q = 1. Note that we make the calculation in this
Appendix for a general q 2 [1,1], but we presented the results for q = 1 in the main paper. The
following proposition relates the excess risk to a certain norm.
Proposition 2. When bg 2 H,

F (bg)� inf
g2H

F (g) = kSbg � Pf⇢k2L2(d⇢X).

We introduce the following function g� 2 H that will be useful in the rest of the paper g� =
(⌃+ �I)�1S⇤f⇢.

We introduce the estimators of the form, for � > 0,
bg� = q�(⌃̂n)Ŝ

⇤
nŷ,

where q� : R+ ! R+ is a function called filter, that essentially approximates x�1 with the approxi-
mation controlled by �. Denote moreover with r� the function r�(x) = 1� xq�(x). The following
definition precises the form of the filters we want to analyze. We then prove in Lemma 9 that our
estimator corresponds to such a filter.
Definition 1 (Spectral filters). Let q� : R+ ! R+ be a function parametrized by � > 0. q� is called
a filter when there exists cq > 0 for which

�q�(x) 6 cq, r�(x)x
u 6 cq�

u, 8x > 0,� > 0, u 2 [0, 1].

We now justify that we study estimators of the form bg� = q�(⌃̂n)Ŝ⇤
nŷ with the following lemma.

Indeed, we show that the average of batch gradient descent can be represented as a filter estimator,
bg�, for � = 1/(�t).

Lemma 9. For t > 1, � = 1/(�t), ⌘̄t = bg�, with respect to the filter, q⌘(x) =
⇣
1� 1�(1��x)t

�tx

⌘
1
x .

Proof. Indeed, for t > 1,

⌘t = ⌘t�1 +
�

n

nX

i=1

�
yi � h⌘t�1,KxiiH

�
Kxi

= ⌘t�1 + �(Ŝ⇤
nŷ � ⌃̂n⌘t�1)

= (I � �⌃̂n)⌘t�1 + �Ŝ⇤
nŷ

= �
t�1X

k=0

(I � �⌃̂n)
kŜ⇤

nŷ =
h
I � (I � �⌃̂n)

t
i
⌃̂�1

n Ŝ⇤
nŷ,

leading to

⌘̄t =
1

t

tX

i=0

⌘i = q⌘
⇣
⌃̂n

⌘
Ŝ⇤
nŷ.

Now, we prove that q has the properties of a filter. First, for t > 1, 1
�tq

⌘(x) =
⇣
1� 1�(1��x)t

�tx

⌘
1

�tx

is a decreasing function so that 1
�tq

⌘(x) 6 1
�tq

⌘(0) 6 1. Second for u 2 [0, 1], xu(1� xq⌘(x)) =
1�(1��x)t

�tx xu. As used in Section A.2, 1� (1� �x)t 6 (�tx)1�u, so that, r⌘(x)xu 6 (�tx)1�u

�tx xu =
1

(�t)u , this concludes the proof that q⌘ is indeed a filter.
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D.2 Analytical decomposition

Lemma 10. Let � > 0 and s 2 (0, 1/2]. Under Assumption (A5) (see Rem. 3), the following holds

kL�sS(bg� � g�)kL2(d⇢X) 6 2��s�2cqk⌃�1/2
� (Ŝ⇤

nŷ � ⌃̂ng�)kH + 2�cqk�kL2(d⇢X)�
r�s,

where � := k⌃1/2
�
b⌃�1/2
n� k.

Proof. By Prop. 2, we can characterize the excess risk of bg� in terms of the L2(d⇢X) squared norm of
Sbg� � Pf⇢. In this paper, simplifying the analysis of [14], we perform the following decomposition

L
�sS(bg� � g�) = L

�sSbg� � L
�sSq�(⌃̂n)⌃̂ng�

+ L
�sSq�(⌃̂n)⌃̂ng� � L

�sSg�.

Upper bound for the first term. By using the definition of bg� and multiplying and dividing by ⌃1/2
� ,

we have that
L

�sSbg� � L
�sSq�(⌃̂n)⌃̂ng� = L

�sSq�(⌃̂n)(Ŝ
⇤
nŷ � ⌃̂ng�)

= L
�sSq�(⌃̂n)⌃

1/2
� ⌃�1/2

� (Ŝ⇤
nŷ � ⌃̂ng�),

from which
kL�sS(bg� � q�(⌃̂n)⌃̂ng�)kL2(d⇢X) 6 kL�sSq�(⌃̂n)⌃

1/2
� k k⌃�1/2

� (Ŝ⇤
nŷ � ⌃̂ng�)kH.

Upper bound for the second term. By definition of r�(x) = 1� xq�(x) and g� = ⌃�1
� S⇤f⇢,

L
�sSq�(⌃̂n)⌃̂ng� � L

�sSg� = L
�sS(q�(⌃̂n)⌃̂n � I)g�

= �L
�sSr�(⌃̂n) ⌃

�(1/2�r)
� ⌃�1/2�r

� S⇤
L

r �,

where in the last step we used the fact that S⇤f⇢ = S⇤Pf⇢ = S⇤
L

r�, by Asm. (A5) (see Rem. 3).
Then
kL�sS(q�(⌃̂n)⌃̂n � I)g�)kL2(d⇢X) 6 kL�sSr�(⌃̂n)kk⌃�(1/2�r)

� kk⌃�1/2�r
� S⇤

L
rkk�kL2(d⇢X)

6 ��(1/2�r)kL�sSr�(⌃̂n)kk�kL2(d⇢X),

where the last step is due to the fact that k⌃�(1/2�r)
� k 6 ��(1/2�r) and that S⇤

L
2rS =

S⇤(SS⇤)2rS = (S⇤S)2rS⇤S = ⌃1+2r from which

k⌃�1/2�r
� S⇤

L
rk2 = k⌃�1/2�r

� S⇤
L

2rS⌃�1/2�r
� k = k⌃�1/2�r

� ⌃1+2r⌃�1/2�r
� k 6 1. (14)

Additional decompositions. We further bound kL�sSr�(⌃̂n)k and kL�sSq�(⌃̂n)⌃
1/2
� k. For the

first, by the identity L
�sSr�(⌃̂n) = L

�sSb⌃�1/2
n�

b⌃1/2
n� r�(⌃̂n), we have

kL�sSr�(⌃̂n)k = kL�sSb⌃�1/2
n� kkb⌃1/2

n� r�(⌃̂n)k,
where

kb⌃1/2
n� r�(⌃̂n)k = sup

�2�(⌃̂n)

(� + �)1/2r�(�) 6 sup
�>0

(� + �)1/2r�(�) 6 2cq�
1/2.

Similarly, by using the identity

L
�sSq�(⌃̂n)⌃

1/2
� = L

�sSb⌃�1/2
n�

b⌃1/2
n� q�(⌃̂n)b⌃1/2

n�
b⌃�1/2
n� ⌃1/2

� ,

we have
kL�sSq�(⌃̂n)⌃

1/2
� k = kL�sSb⌃�1/2

n� k kb⌃1/2
n� q�(⌃̂n)b⌃1/2

n� k kb⌃�1/2
n� ⌃1/2

� k.
Finally note that

kL�sSb⌃�1/2
n� k 6 kL�sS⌃�1/2+s

� kk⌃�s
� kk⌃1/2

�
b⌃�1/2
n� k,

and kL�sS⌃�1/2+s
� k 6 1, k⌃�s

� k 6 ��s, and moreover

kb⌃1/2
n� q�(⌃̂n)b⌃1/2

n� k = sup
�2�(⌃̂n)

(� + �)q�(�) 6 sup
�>0

(� + �)q�(�) 6 2cq,

so, in conclusion

kL�sSr�(⌃̂n)k 6 2cq�
1/2�s�, kL�sSq�(⌃̂n)⌃

1/2
� k 6 2cq�

�s�2.

The final result is obtained by gathering the upper bounds for the three terms above and the additional
terms of this last section.
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Lemma 11. Let � > 0 and s 2 (0,min(r, 1/2)]. Under Assumption (A5) (see Rem. 3), the following
holds

kL�s(Sbg� � Pf⇢)kL2(d⇢X) 6 �r�sk�kL2(d⇢X).

Proof. Since S⌃�1
� S⇤ = LL

�1
� = I � �L�1

� , we have

L
�s(Sg� � Pf⇢) = L

�s(S⌃�1
� S⇤f⇢ � Pf⇢) = L

�s(S⌃�1
� S⇤Pf⇢ � Pf⇢)

= L
�s(S⌃�1

� S⇤ � I)Pf⇢ = L
�s(S⌃�1

� S⇤ � I)Lr �

= ��L�s
L

�1
� Lr� = ��r�s �1�r+s

L
�(1�r+s)
� L

�(r�s)
� L

r�s �,

from which

kL�s(Sg� � Pf⇢)kL2(d⇢X) 6 �r�sk�1�r+s
L

�(1�r+s)
� kkL�(r�s)

� L
r�sk k�kL2(d⇢X)

6 �r�sk�kL2(d⇢X).

Theorem 2. Let � > 0 and s 2 (0,min(r, 1/2)]. Under Assumption (A5) (see Rem. 3), the following
holds

kL�s(Sbg� � Pf⇢)kL2(d⇢X) 6 2��s�2cqk⌃�1/2
� (Ŝ⇤

nŷ � ⌃̂ng�)kH +
�
1 + �2cqk�kL2(d⇢X)

�
�r�s

where � := k⌃1/2
�
b⌃�1/2
n� k.

Proof. By Prop. 2, we can characterize the excess risk of bg� in terms of the L2(d⇢X) squared norm of
Sbg� � Pf⇢. In this paper, simplifying the analysis of [14], we perform the following decomposition

L
�s(Sbg� � Pf⇢) = L

�sSbg� � L
�sSg�

+ L
�s(Sg� � Pf⇢).

The first term is bounded by Lemma 10, the second is bounded by Lemma 11.

D.3 Probabilistic bounds

In this section denote by N1(�), the quantity

N1(�) = sup
x2S

k⌃�1/2
� Kxk2H,

where S ✓ X is the support of the probability measure ⇢X.
Lemma 12. Under Asm. (A3), we have that for any g 2 H

sup
x2supp(⇢X)

|g(x)| 6 µR
µk⌃1/2(1�µ)gkH = µR

µkL�µ/2SgkL2(d⇢X).

Proof. Note that, Asm. (A3) is equivalent to

k⌃�1/2(1�µ)Kxk 6 µR
µ,

for all x in the support of ⇢X. Then we have, for any x in the support of ⇢X,

|g(x)| = hg,KxiH =
D
⌃1/2(1�µ)g,⌃�1/2(1�µ)Kx

E

H

6 k⌃1/2(1�µ)gkHk⌃�1/2(1�µ)Kxk 6 µR
µk⌃1/2(1�µ)gkH.

Now note that, since ⌃1�µ = S⇤
L

�µS, we have

k⌃1/2(1�µ)gk2
H

=
⌦
g,⌃1�µg

↵
H

=
D
L

�µ/2Sg,L�µ/2Sg
E

L2(d⇢X)
.

Lemma 13. Under Assumption (A3), we have

N1(�) 6 2
µR

2µ��µ.
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Proof. First denote with f�,u 2 H the function ⌃�1/2
� u for any u 2 H and � > 0. Note that

kf�,ukH = k⌃�1/2
� ukH 6 k⌃�1/2

� kkukH 6 ��1/2kukH.

Moreover, since for any g 2 H the identity kgkL2(d⇢X) = kSgkH, we have

kf�,ukL2(d⇢X) = kS⌃�1/2
� ukH 6 kS⌃�1/2

� kkukH 6 kukH.

Now denote with B(H) the unit ball in H, by applying Asm. (A3) to f�,u we have that

N1(�) = sup
x2S

k⌃�1/2
� Kxk2 = sup

x2S,u2B(H)

D
u,⌃�1/2

� Kx

E2
H

= sup
x2S,u2B(H)

hf�,u,Kxi2H = sup
u2B(H)

sup
x2S

|f�,u(x)|2

6 2
µR

2µ sup
u2B(H)

kf�,uk2µH kf�,uk2�2µ
L2(d⇢X)

6 2
µR

2µ��µ sup
u2B(H)

kuk2
H

6 2
µR

2µ��µ.

Lemma 14. Let � > 0, � 2 (0, 1] and n 2 N. Under Assumption (A3), we have that, when

n > 11(1 + 2
µR

2µ��µ) log
8R2

��
,

then the following holds with probability 1� �,

k⌃1/2
�
b⌃�1/2
n� k2 6 2.

Proof. This result is a refinement of the one in [39] and is based on non-commutative Bernstein
inequalities for random matrices [40]. By Prop. 8 in [21], we have that

k⌃1/2
�
b⌃�1/2
n� k2 6 (1� t)�1, t := k⌃�1/2

� (⌃� ⌃̂n)⌃
�1/2
� k.

When 0 < � 6 k⌃k, by Prop. 6 of [21] (see also [41] Lemma 9 for more refined constants), we have
that the following holds with probability at least 1� �,

t 6 2⌘(1 +N1(�))

3n
+

r
2⌘N1(�)

n
,

with ⌘ = log 8R2

�� . Finally, by selecting n > 11(1 + 2
µR

2µ��µ)⌘, we have that t 6 1/2 and so
k⌃1/2

�
b⌃�1/2
n� k2 6 (1� t)�1 6 2, with probability 1� �.

To conclude note that when � > k⌃k, we have

k⌃1/2
�
b⌃�1/2
n� k2 6 k⌃+ �Ikk(⌃̂n + �I)�1k 6 k⌃k+ �

�
= 1 +

k⌃k
�

6 2.

Lemma 15. Under Assumption (A3), (A4), (A5) (see Rem. 3), (A6) we have

1. Let � > 0, n 2 N, the following holds

E[k⌃�1/2
� (Ŝ⇤

nŷ�⌃̂ng�)k2H] 6 k�k2L2(d⇢X)�
2r+

22
µR

2µ��(µ�2r)

n
+
42

µR
2µAQ�� q+µ↵

q↵+↵

n
,

where A := kf⇢ � Pf⇢k2�2/(q+1)
L2q(X,⇢X) .
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2. Let � 2 (0, 1], under the same assumptions, the following holds with probability at least
1� �

k⌃�1/2
� (Ŝ⇤

nŷ � ⌃̂ng�)kH 6 c0�
r +

4(c1��µ
2 + c2��r�µ) log 2

�

n

+

s
162

µR
2µ(��(µ�2r) + 2AQ�� q+µ↵

q↵+↵ ) log 2
�

n
,

with c0 = k�kL2(d⇢X), c1 = µRµM + 2
µR

2µ(2R)2r�µk�kL2(d⇢X), c2 =
2
µR

2µk�kL2(d⇢X)

Proof. First denote with ⇣i the random variable

⇣i = (yi � g�(xi))⌃
�1/2
� Kxi .

In particular note that, by using the definitions of Ŝn, ŷ and ⌃̂n, we have

⌃�1/2
� (Ŝ⇤

nŷ � ⌃̂ng�) = ⌃�1/2
� (

1

n

nX

i=1

Kxiyi �
1

n
(Kxi ⌦Kxi)g�) =

1

n

nX

i=1

⇣i.

I So, by noting that ⇣i are independent and identically distributed, we have

E[k⌃�1/2
� (Ŝ⇤

nŷ � ⌃̂ng�)k2H] = E[k 1
n

nX

i=1

⇣ik2H] =
1

n2

nX

i,j=1

E[h⇣i, ⇣jiH]

=
1

n
E[k⇣1k2H] +

n� 1

n
kE[⇣1]k2H.

Now note that

E[⇣1] = ⌃�1/2
� (E[Kx1y1]� E[Kx1 ⌦Kx1 ]g�) = ⌃�1/2

� (S⇤f⇢ � ⌃g�).

In particular, by the fact that S⇤f⇢ = Pf⇢, Pf⇢ = L
r� and ⌃g� = ⌃⌃�1

� S⇤f⇢ and ⌃⌃�1
� =

I � �⌃�1
� , we have

⌃�1/2
� (S⇤f⇢ � ⌃g�) = �⌃�3/2

� S⇤f⇢ = �r �1�r⌃�(1�r)
� ⌃�1/2�r

� S⇤
L

r �.

So, since k⌃�1/2�r
� S⇤

L
rk 6 1, as proven in Eq. 14, then

kE[⇣1]kH 6 �rk�1�r⌃�(1�r)
� k k⌃�1/2�r

� S⇤
L

rk k�kL2(d⇢X) 6 �rk�kL2(d⇢X) := Z.

Morever

E[k⇣1k2H] = E[k⌃�1/2
� Kx1k2H(y1 � g�(x1))

2] = Ex1Ey1|x1
[k⌃�1/2

� Kx1k2H(y1 � g�(x1))
2]

= Ex1 [k⌃
�1/2
� Kx1k2H(f⇢(x1)� g�(x1))

2].

Moreover we have

E[k⇣1k2H] = Ex[k⌃�1/2
� Kxk2H(f⇢(x)� g�(x))

2]

= Ex[k⌃�1/2
� Kxk2H((f⇢(x)� (Pf⇢)(x)) + ((Pf⇢)(x)� g�(x)))

2]

6 2Ex[k⌃�1/2
� Kxk2H(f⇢(x)� (Pf⇢)(x))

2] + 2Ex[k⌃�1/2
� Kxk2H((Pf⇢)(x)� g�(x))

2].

Now since E[AB] 6 (ess supA)E[B], for any two random variables A,B, we have

Ex[k⌃�1/2
� Kxk2H((Pf⇢)(x)� g�(x))

2] 6 N1(�)Ex[((Pf⇢)(x)� g�(x))
2]

= N1(�)kPf⇢ � Sg�k2L2(d⇢X)

6 2
µR

2µ��(µ�2r),

where in the last step we bounded N1(�) via Lemma 13 and kPf⇢ � Sg�k2L2(d⇢X), via Lemma. 11

applied with s = 0. Finally, denoting by a(x) = k⌃�1/2
� Kxk2H and b(x) = (f⇢(x) � (Pf⇢)(x))2
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and noting that by Markov inequality we have Ex[1{b(x)>t}] = ⇢X({b(x) > t}) = ⇢X({b(x)q >
tq}) 6 Ex[b(x)q]t�q , for any t > 0. Then for any t > 0 the following holds

Ex[a(x)b(x)] = Ex[a(x)b(x)1{b(x)6t}] + Ex[a(x)b(x)1{b(x)>t}]

6 tEx[a(x)] +N1(�)Ex[b(x)1{b(x)>t}]

6 tN(�) +N1(�)Ex[b(x)
q]t�q.

By minimizing the quantity above in t, we obtain

Ex[k⌃�1/2
� Kxk2H(f⇢(x)� (Pf⇢)(x))

2] 6 2kf⇢ � Pf⇢k
q

q+1

Lq(X,⇢X)N(�)
q

q+1N1(�)
1

q+1

6 22
µR

2µAQ�� q+µ↵
q↵+↵ .

So finally
E[k⇣1k2H] 6 22

µR
2µ��(µ�2r) + 42

µR
2µAQ�� q+µ↵

q↵+↵ := W 2.

To conclude the proof, let us obtain the bound in high probability. We need to bound the higher
moments of ⇣1. First note that

E[k⇣1 � E[⇣1]kpH] 6 E[k⇣1 � ⇣2kpH] 6 2p�1E[k⇣1|pH + k⇣2kpH] 6 2pE[k⇣1|pH].

Moreover, denoting by S ✓ X the support of ⇢X and recalling that y is bounded in [�M,M ], the
following bound holds almost surely

k⇣1k 6 sup
x2S

k⌃�1/2
� Kxk(M + |g�(x)|) 6 (sup

x2S
k⌃�1/2

� Kxk)(M + sup
x2S

|g�(x)|)

6 µR
µ��µ/2(M + µR

µk⌃1/2(1�µ)g�kH).

where in the last step we applied Lemma 13 and Lemma 12. In particular, by definition of g�, the fact
that S⇤f⇢ = S⇤Pf⇢, that Pf⇢ = L

r� and that k⌃�(1/2+r)
� S⇤

L
rk 6 1 as proven in Eq. 14, we have

k⌃1/2(1�µ)g�kH = k⌃1/2(1�µ)⌃�1
� S⇤

L
r�kH

6 k⌃1/2(1�µ)⌃�1/2(1�µ)kk⌃�(µ/2�r)
� kk⌃�(1/2+r)

� S⇤
L

rkk�kL2(d⇢X)

6 k⌃r�µ/2
� kk�kL2(d⇢X).

Finally note that if r 6 µ/2 then k⌃r�µ/2
� k 6 ��(µ/2�r), if r > µ/2 then

k⌃r�µ/2
� k = (kCk+ �)r�µ/2 6 (2kCk)r�µ/2 6 (2R)2r�µ.

So in particular
k⌃r�µ/2

� k 6 (2R)2r�µ + ��(µ/2�r).

Then the following holds almost surely

k⇣1k 6 (µR
µM + 2

µR
2µ(2R)2r�µk�kL2(d⇢X))�

�µ/2 + 2
µR

2µk�kL2(d⇢X)�
r�µ := V.

So finally

E[k⇣1 � E[⇣1]kpH] 6 2pE[k⇣1kpH] 6 p!

2
(2V )p�2(4W 2).

By applying Pinelis inequality, the following holds with probability 1� �

k 1
n

nX

i=1

(⇣i � E[⇣i])kH 6 4V log 2
�

n
+

s
8W log 2

�

n
.

So with the same probability

k 1
n

nX

i=1

⇣ikH 6 k 1
n

nX

i=1

(⇣i � E[⇣i])kH + kE[⇣1]kH 6 Z +
4V log 2

�

n
+

s
8W log 2

�

n
.
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Lemma 16. Let � > 0, n 2 N and s 2 (0, 1/2]. Let � 2 (0, 1]. Under Assumption (A3), (A4), (A5)
(see Rem. 3), (A6), when

n > 11(1 + 2
µR

2µ��µ) log
16R2

��
,

then the following holds with probability 1� �,

kL�sS(bg� � g�)kL2(d⇢X)  c0�
r�s +

(c1��µ
2 �s + c2�r�µ�s) log 4

�

n

+

s
(c3��(µ+2s�2r) + c4�

� q+µ↵
q↵+↵�2s) log 4

�

n
.

with c0 = 7cqk�kL2(d⇢X), c1 = 16cq(µRµM + 2
µR

2µ(2R)2r�µk�kL2(d⇢X)), c2 =
16cq2

µR
2µk�kL2(d⇢X), c3 = 642

µR
2µc2q , c4 = 1282

µR
2µAQc2q .

Proof. Let ⌧ = �/2, the result is obtained by combining Lemma 10, with Lemma 15 with probability
⌧ , and Lemma 14, with probability ⌧ and then taking the intersection bound of the two events.

Corollary 1. Let � > 0, n 2 N and s 2 (0, 1/2]. Let � 2 (0, 1]. Under the assumptions of Lemma 16,
when

n > 11(1 + 2
µR

2µ��µ) log
16R2

��
,

then the following holds with probability 1� �,

kL�sSbg�kL2(d⇢X)  R2r�2s + (1 + c0)�
r�s +

(c1��µ
2 �s + c2�r�µ�s) log 4

�

n

+

s
(c3��(µ+2s�2r) + c4�

� q+µ↵
q↵+↵�2s) log 4

�

n
+

with the same constants c0, . . . , c4 as in Lemma 16.

Proof. First note that
kL�sSbg�kL2(d⇢X) 6 kL�sS(bg� � g�)kL2(d⇢X) + kL�sSg�kL2(d⇢X).

The first term on the right hand side is controlled by Lemma 16, for the second, by using the definition
of g� and Asm. (A5) (see Rem. 3), we have

kL�sSg�kL2(d⇢X) 6 kL�sS⌃�1/2+s
� kk⌃�(s�r)

� kk⌃�1/2�r
� S⇤

L
rkk�kL2(d⇢X)

6 k⌃r�s
� kk�kL2(d⇢X),

where k⌃�1/2�r
� S⇤

L
rk 6 1 by Eq. 14 and analogously kL�sS⌃�1/2+s

� k 6 1. Note that if s > r
then k⌃r�s

� k 6 ��(s�r). If s < r, we have

k⌃r�s
� k = (k⌃k+ �)r�s 6 kCkr�s + �r�s 6 R2r�2s + �r�s.

So finally k⌃r�s
� k 6 R2r�2s + �r�s.

Corollary 2. Let � > 0, n 2 N and s 2 (0, 1/2]. Let � 2 (0, 1]. Under Assumption (A3), (A4), (A5)
(see Rem. 3), (A6), when

n > 11(1 + 2
µR

2µ��µ) log
16R2

��
,

then the following holds with probability 1� �,

sup
x2X

|bg�(x)|  µR
µR2r�2s + µR

µ(1 + c0)�
r�µ/2 + µR

µ (c1�
�µ + c2�r�3/2µ) log 4

�

n

+ µR
µ

s
(c3��(2µ�2r) + µRµc4�

� q+µ↵
q↵+↵�µ) log 4

�

n
.

with the same constants c0, . . . , c4 in Lemma 16.

Proof. The proof is obtained by applying Lemma 12 on bg� and then Corollary 1.
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D.4 Main Result

Theorem 3. Let � > 0, n 2 N and s 2 (0,min(r, 1/2)]. Under Assumption (A3), (A4), (A5) (see
Rem. 3), (A6), when

n > 11(1 + 2
µR

2µ��µ) log
c0

�3+4r�4s
,

then

E[kL�s(Sbg� � Pf⇢)k2L2(d⇢X)] 6 c1
��(µ+2s�2r)

n
+ c2

�� q+µ↵
q↵+↵�2s

n
+ c3�

2r�2s,

where m4 = M4, c0 = 32R4�4sm4 + 32R8�8r�8sk�k4L2(d⇢X), c1 = 16c2q
2
µR

2µ, c2 =

32c2q
2
µR

2µAQ, c3 = 3 + 8c2qk�k2L2(d⇢X).

Proof. Denote by R(bg�), the expected risk R(bg�) = E(bg�)� infg2H E(g). First, note that by Prop. 2,
we have

Rs(bg�) = kL�s(Sbg� � Pf⇢)k2L2(d⇢X).

Denote by E the event such that � as defined in Thm. 2, satisfies � 6 2. Then we have

E[Rs(bg�)] = E[Rs(bg�)1E ] + E[R(bg�)1Ec ].

For the first term, by Thm. 2 and Lemma 15, we have

E[Rs(bg�)1E ] 6 E[
⇣
2��2s�4c2qk⌃

�1/2
� (Ŝ⇤

nŷ � ⌃̂ng�)k2H

+ 2
⇣
1 + �22c2qk�k2L2(d⇢X)

⌘
�2r�2s

⌘
1E ]

6 8��2sc2qE[k⌃
�1/2
� (Ŝ⇤

nŷ � ⌃̂ng�)k2H] + 2
⇣
1 + 4c2qk�k2L2(d⇢X)

⌘
�2r�2s

6
16c2q

2
µR

2µ��µ+2r�2s

n
+

32c2q
2
µR

2µAQ�� q+µ↵
q↵+↵�2s

n
+
⇣
2 + 8c2qk�k2L2(d⇢X)

⌘
�2r�2s.

For the second term, since b⌃1/2
n� q�(⌃̂n)b⌃1/2

n� = b⌃n�q�(⌃̂n) 6 sup�>0(� + �)q�(�) 6 cq by
definition of filters, and that Pf⇢ = Lr�, we have

Rs(bg�)1/2 6 kL�sSbg�kL2(d⇢X) + kL�sPf⇢kL2(d⇢X)

6 kL�sSkkb⌃�1/2
n� kkb⌃1/2

n� q�(⌃̂n)b⌃1/2
n� kkb⌃�1/2

n� Ŝ⇤
nkkŷk+ kL�s

L
rkk�kL2(d⇢X)

6 R1/2�s��1/2kŷk+R2r�2sk�kL2(d⇢X)

6 ��1/2(R1/2�s(n�1
nX

i=1

yi) +R1+2r�2sk�kL2(d⇢X)),

where the last step is due to the fact that 1 6 ��1/2kLk1/2 since � satisfies 0 < � 6 k⌃k = kLk 6
R2. Denote with � the quantity � = �2+4r�4s/c0. Since E[1c

E ] corresponds to the probability
of the event Ec, and, by Lemma 14, we have that Ec holds with probability at most � since
n > 11(1 + 2

µR
2µ��µ) log 8R2

�� , then we have that

E[R(bg�)1Ec ] 6 E[kSbg�k2L2(d⇢X)1Ec ] 6
q

E[kSbg�k4L2(d⇢X)]
p

E[1Ec ]

6

s
4R2�4sn�2(

Pn
i,j=1 E[y2i y2j ]) + 4R4�8r�8sk�k4L2(d⇢X)

�2

p
�

6
p
�

�

q
4R2�4sm4 + 4R4�8r�8sk�k4L2(d⇢X)

=

p
�c0/(8R2)

�
6 �2r�2s.
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Corollary 3. Let � > 0 and n 2 N and s = 0. Under Assumption (A3), (A4), (A5) (see Rem. 3), (A6),
when

� = B1

(
n�↵/(2r↵+1+µ↵�1

q+1 ) 2r↵+ 1 + µ↵�1
q+1 > µ↵

n�1/µ (logB2n)
1
µ 2r↵+ 1 + µ↵�1

q+1 6 µ↵.
(15)

then,

E E(bg�)� inf
g2H

E(g) 6 B3

(
n�2r↵/(2r↵+1+µ↵�1

q+1 ) 2r↵+ 1 + µ↵�1
q+1 > µ↵

n�2r/µ 2r↵+ 1 + µ↵�1
q+1 6 µ↵

(16)

where B2 = 3 _ (32R6m4)
µ

3+4r B�µ
1 and B1 defined explicitly in the proof.

Proof. The proof of this corollary is a direct application of Thm. 3. In the rest of the proof
we find the constants to guarantee that the condition relating n,� in the theorem is always
satisfied. Indeed to guarantee the applicability of Thm. 3, we need to be sure that n >
11(1 + 2

µR
2µ��µ) log 32R6m4

�3+4r . This is satisfied when both the following conditions hold n >
22 log 32R6m4

�3+4r and n > 22
µR

2µ��µ log 32R6m4
�3+4r . To study the last two conditions, we recall that for

A,B, s, q > 0 we have that An�s log(Bnq) satisfy

An�s log(Bnq) =
qABs/q

s

logBs/qns

Bs/qns
6 qABs/q

es
,

for any n > 0, since logx
x 6 1

e for any x > 0. Now we define explicitly B1, let ⌧ =

↵/
⇣
2r↵+ 1 + µ↵�1

q+1

⌘
, we have

B1 =

✓
22(3 + 4r)

eµ
(32R6m4)

µ
3+4r

◆ 1
µ

_ (17)

_

8
><

>:

⇣
2M(3+4r)
e(1/⌧�µ) (32R

6m4)
1/⌧�µ
3+4r

⌘⌧
2r↵+ 1 + µ↵�1

q+1 > µ↵
⇣

2M(3+4r)
µ

⌘ 1
µ

2r↵+ 1 + µ↵�1
q+1 6 µ↵

. (18)

For the first condition, we use the fact that � is always larger than B1n�1/µ, so we have

22

n
log

32R6m4

�3+4r
6 22

n
log

32R6m4n(3+4r)/µ

B3+4r
1

6 22(3 + 4r)(32R6m4)µ/(3+4r)

eµBµ
1

6 1.

For the second inequality, when 2r↵+ 1 + µ↵�1
q+1 > µ↵, we have � = B1n�⌧ , so

22
µR

2µ

n
��µ log

32R6m4

�3+4r
6

22
µR

2µ

Bµ
1 n

1�µ⌧
log

32R6m4n(3+4r)⌧

B3+4r
1

6
22

µR
2µ(3 + 4r)⌧

e(1� µ⌧)

(32R6m4)
1/⌧�µ
3+4r

B1/⌧
1

6 1.

Finally, when 2r↵+1+ µ↵�1
q+1 > µ↵, we have � = B1n�1/µ(logB2n)1/µ. So since log(B2n) > 1,

we have

22
µR

2µ

n
log

32R6m4

�3+4r
6

22
µR

2µ

Bµ
1

log 32R6m4n
(3+4r)/µ

B3+4r
1

log(B2n)
=

22
µR

2µ(3 + 4r)

µBµ
1

log (32R6m4)
µ/(3+4r)n

Bµ
1

log(B2n)
6 1.

So by selecting � as in Eq. 15, we guarantee that the condition required by Thm. 3 is satisfied.

Finally the constant B3 is obtained by

B3 = c1 max(1, w)�(µ+2s�2r) + c2 max(1, w)�
q+µ↵
q↵+↵�2s + c3 max(1, w)2r�2s,

with w = B1 log(1 +B2) and c1, c2, c3 as in Thm. 3.
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E Experiments with different sampling

We present here the results for two different types of sampling, which seem to be more stable, perform
better and are widely used in practice :
Without replacement (Figure 4): for which we select randomly the data points but never use two
times over the same point in one epoch.
Cycles (Figure 5): for which we pick successively the data points in the same order.

Figure 4 – The sampling is performed by cycling over the data The four plots represent each a different
configuration on the (↵, r) plan represented in Figure 1, for r = 1/(2↵). Top left (↵ = 1.5) and right (↵ = 2)
are two easy problems (Top right is the limiting case where r = ↵�1

2↵ ) for which one pass over the data is
optimal. Bottom left (↵ = 2.5) and right (↵ = 3) are two hard problems for which an increasing number of
passes is recquired. The blue dotted line are the slopes predicted by the theoretical result in Theorem 1.
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Figure 5 – The sampling is performed without replacement. The four plots represent each a different
configuration on the (↵, r) plan represented in Figure 1, for r = 1/(2↵). Top left (↵ = 1.5) and right (↵ = 2)
are two easy problems (Top right is the limiting case where r = ↵�1

2↵ ) for which one pass over the data is
optimal. Bottom left (↵ = 2.5) and right (↵ = 3) are two hard problems for which an increasing number of
passes is recquired. The blue dotted line are the slopes predicted by the theoretical result in Theorem 1.
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