
Appendix 1: Preliminaries

Probabilistic Tail Bounds

Theorem 1 (Hoeffding’s Inequality (Theorem 2.8 of [1])). Let X1, . . . , Xn be independent random
variables such that Xi takes its values in [ai, bi] almost surely for all i ≤ n. Let

S =

n∑
i=1

(Xi − E [Xi]) ,

then for every t > 0,

Pr (S ≥ t) ≤ exp

(
− 2n2t2∑n

i=1(ai − bi)2

)
.

Theorem 2 (Cantelli’s Inequality (Equation 7 of [2])). The inequality states that

Pr(X − µ ≥ λ)

≤
σ2

σ2+λ2 if λ > 0,

≥ 1− σ2

σ2+λ2 if λ < 0.

where X is a real-valued random variable, Pr is the probability measure, µ is the expected value of
X , σ2 is the variance of X .

Basic Derivations for Multivariate Gaussian Mixtures

Lemma 1. For N vectors x1, ...,xN , xi ∈ Rm ∀i, N constants α1, ..., αN , αi > 0 ∀i,
∑N
i=1 αi =

1 and target vector y ∈ Rm,

N∑
i=1

αix
>
i y ≤

(
max
i
‖xi‖2

)
· ‖y‖2

Proof. For each vector xi, we know by the Cauchy-Schwarz Inequality that:

x>i y ≤ ‖xi‖2 · ‖y‖2 (1)

And:
‖xk‖2 ≤ max

i
‖xi‖2 ∀k (2)

Combining the above, we have:

N∑
i=1

αix
>
i y ≤

N∑
i=1

αi‖xi‖2 · ‖y‖2 ≤ (

N∑
i=1

αi)
(

max
i
‖xi‖2

)
· ‖y‖2 =

(
max
i
‖xi‖2

)
· ‖y‖2 (3)

Lemma 2. For N vectors x1, ...,xN , xi ∈ Rm ∀i, and target vector y ∈ Rm,

N∑
i=1

x>i y ≥ −N
(

max
i
‖xi‖2

)
· ‖y‖2

Proof. For each vector xi, we know by the Cauchy-Schwarz Inequality that:

−x>i y ≤ ‖−xi‖2 · ‖y‖2 (4)
= ‖xi‖2 · ‖y‖2 (5)

Multiplying the above equation by −1, we have:

x>i y ≥ −‖xi‖2 · ‖y‖2 (6)
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And:

‖xk‖2 ≤ max
i
‖xi‖2 ∀k (7)

Multiplying the above equation by −1, we have:

−‖xk‖2 ≥ −max
i
‖xi‖2 ∀k (8)

Combining the above, we have:
N∑
i=1

x>i y ≥ −
N∑
i=1

‖xi‖2 · ‖y‖2 ≥ −N
(

max
i
‖xi‖2

)
· ‖y‖2 (9)

Lemma 3. For an n-dimensional multivariate normal distribution X ∼ N (µ,Σ), we have:

E[‖X‖22] = tr(Σ) + ‖µ‖22

Proof.

E[‖X‖22] =

n∑
i=1

E[X2
i ] =

n∑
i=1

(
Var[Xi] + (E[Xi])

2
)

= tr(Σ) +

n∑
i=1

E[Xi]
2 = tr(Σ) + ‖µ‖22

(10)

Lemma 4. For a random variable X that is distributed by an n-dimensional mixture of m Gaussians,
that is X ∼

∑m
i=1 αiN (µi,Σi) for αi > 0 ∀i and

∑m
i=1 αi = 1:

E[‖X‖22] =

m∑
i=1

αi(tr(Σi) + ‖µi‖22)

Proof. By law of conditional expectation:

E[‖X‖22] =

m∑
i=1

E[E[‖X‖22|i]] =

m∑
i=1

αiE[‖X‖22|i] (11)

Since the conditional distribution given the mixture component i is n-dimensional Gaussian
N (µi,Σi), from Lemma 3, we have:

=

m∑
i=1

αi(tr(Σi) + ‖µi‖22) (12)

Classification Preliminaries

Consider the multi-class classification problem over m classes. The input domain is given by
X ⊂ RZ , with an accompanying probability metric px(·) defined over X . The training data is given
by N i.i.d. samples D = {x1, ...,xN} drawn from X . Each point x ∈ X has an associated label
ȳ(x) = [0, ..., 1, ...0] ∈ Rm. We learn a CNN such that for each point in X , the CNN induces a
conditional probability distribution over the m classes whose mode matches the label ȳ(x).

A CNN architecture consists of a series of convolutional and subsampling layers that culminate in an
activation Φ(·), which is fed to an m-way classifier with weights w = {w1, ...,wm} such that:

p(yi|x; w,Φ(·)) =
exp

(
w>i Φ(x)

)∑m
j=1 exp

(
w>j Φ(x)

) (13)
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The entropy of conditional probability distribution in Equation 13 is given by:

H[p(·|x;θ)] , −
m∑
i=1

p(yi|x;θ) log(p(yi|x;θ)) (14)

The expected entropy over the distribution is given by:

Ex∼px [H[p(·|x;θ)]] =

∫
x∼px

H[p(·|x;θ)]px(x)dx (15)

The empirical average of the conditional entropy over the training set D is:

Êx∼D[H[p(·|x;θ)]] =
1

N

N∑
i=1

H[p(·|xi;θ)] (16)

Diversity ν(Φ, px) of the features is given by:

ν(Φ, px) ,
n∑
i=1

λi = tr(Σ∗) =

m∑
i=1

αi
(
tr(Σi) + tr(µiµ

>
i )
)

=

m∑
i=1

αi
(
tr(Σi) + ‖µi‖22

)
(17)

Appendix 2: Theoretical Results

Lemma 5. For the above classification setup, where ‖w‖∞ = maxi (‖wi‖2) :

H[p(·|x; w)] ≥ log(C)− 2‖w‖∞‖Φ(x)‖2 (18)

Proof. For an input x, the conditional probability distribution over m classes for a statistical model
with feature map Φ(x) and weights w = (w1, ...,wC) can be given by:

p(yi|x; w) =
exp

(
w>i Φ(x)

)∑C
j=1 exp

(
w>j Φ(x)

) (19)

We can thus write the conditional entropy H[p(·|x; w)] for the above sample as:

H[p(·|x; w)] = −
C∑
i=1

p(yi|x; w) log (p(yi|x; w)) (20)

= −
C∑
i=1

 exp
(
w>i Φ(x)

)∑C
j=1 exp

(
w>j Φ(x)

) ·
w>i Φ(x)− log

 C∑
j=1

exp
(
w>j Φ(x)

)
(21)

= log

 C∑
j=1

exp
(
w>j Φ(x)

)− ∑C
i=1

(
exp

(
w>i Φ(x)

)
·w>i Φ(x)

)∑C
j=1 exp

(
w>j Φ(x)

) (22)

= log(m) + log

 1

C

C∑
j=1

exp
(
w>j Φ(x)

)− ∑C
i=1

(
exp

(
w>i Φ(x)

)
·w>i Φ(x)

)∑C
j=1 exp

(
w>j Φ(x)

)
(23)

Since log is a concave function:

≥ log(C) +
1

C

m∑
j=1

(
w>j Φ(x)

)
−
∑C
i=1

(
exp

(
w>i Φ(x)

)
·w>i Φ(x)

)∑C
j=1 exp

(
w>j Φ(x)

) (24)

By Lemma 1, we have:

≥ log(C) +
1

C

C∑
j=1

(
w>j Φ(x)

)
− ‖w‖∞‖Φ(x)‖2 (25)
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By Lemma 2, we have:

≥ log(C)− 2‖w‖∞‖Φ(x)‖2 (26)

Now we are ready to prove Theorem 1 from the main paper.

Theorem 3 (Theorem 1 from Text: Lower Bound on `2-norm of Classifier). The expected conditional
entropy follows:

‖w‖2 ≥
log(C)− Ex∼px [H[p(·|x;θ)]]

2
√

ν(Φ, px)

Proof. From Lemma 5, we have:

H[p(·|x; w)] ≥ log(C)− 2‖w‖∞‖Φ(x)‖2 (27)

Since ‖w‖2 =
√∑C

i=1‖wi‖22 ≥ ‖w‖∞, we have:

H[p(·|x; w)] ≥ log(C)− 2‖w‖2‖Φ(x)‖2 (28)

Taking expectation over px, we have:

Ex∼px [H[p(·|x; w)]] ≥ log(C)− 2‖w‖2Ex∼px [‖Φ(x)‖2] (29)

By Cauchy-Schwarz Inequality, Ex∼px [‖Φ(x)‖2] ≤
√

Ex∼px [‖Φ(x)‖22]. Using this:

≥ log(C)− 2‖w‖2
√
Ex∼px [‖Φ(x)‖22] (30)

By Lemma 4, we have:

= log(C)− 2‖w‖2

√√√√ m∑
i=1

αi(tr(Σi) + ‖µi‖22) (31)

Rearranging and using the definition of Diversity we have:

‖w‖2 ≥
log(C)− Ex∼px [H[p(·|x;θ)]]

2
√

ν(Φ, px)
(32)

Lemma 6. With probability at least 1− δ/2,

∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px [H[p(·|x;θ)]]
∣∣∣ ≤ ‖w‖∞

√
2Êx∼D[‖Φ(x)‖22]

N
log(

4

δ
)

Proof. Since D has i.i.d. samples of X , we have:

Ex∼px

[
ÊD [H [p(·|x; w)]]

]
=

1

N

N∑
i=1

Ex∼px [H [p(·|xi; w)]] = Ex∼px [H [p(·|x; w)]] (33)

From Lemma 5, we know that for sample x:

log(m)− 2‖w‖∞‖Φ(x)‖2 ≤ H [p(·|x; w)] ≤ log(m) (34)
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Thus, by applying Hoeffding’s Inequality we get:

Pr
(∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px

[
ÊD [H [p(·|x; w)]]

]∣∣∣ ≥ t) ≤ 2 exp
−2N2t2

4‖w‖2∞
∑N
i=1‖Φ(xi)‖2

(35)

Setting RHS as δ/2, we have with probability at least 1− δ/2:

∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px [H[p(·|x;θ)]]
∣∣∣ ≤ ‖w‖∞

√
2Êx∼D[‖Φ(x)‖22]

N
log(

4

δ
)

(36)

Lemma 7. With probability at least 1− δ/2, we have:

Êx∼D[‖Φ(x)‖22] ≤ ν(Φ, px) +

√
Varpx [‖Φ(x)‖22](2/δ − 1)

N
(37)

Proof. Since D has i.i.d. samples of X ,:

Varpx [Êx∼D[‖Φ(x)‖22]] =
1

N2

m∑
i=1

Varpx [‖Φ(xi)‖22] =
Varpx [‖Φ(x)‖22]

N
(38)

Now, by the Cantelli Inequality, we have for t > 0:

Pr
(
Êx∼D[‖Φ(x)‖22] < Ex∼px [‖Φ(x)‖22] + t

)
≥ 1−

(
1 +

t2

Varpx [Êx∼D[‖Φ(x)‖22]]

)−1

(39)

Setting RHS ast 1− δ/2, we have and solving for t, we have with probability at least 1− δ/2:

Êx∼D[‖Φ(x)‖22] ≤ Êx∼px [‖Φ(x)‖22] +

√
Varpx [‖Φ(x)‖22](2/δ − 1)

N
(40)

Using the result from Lemma 4 and the definition of Diversity, we have with probability at least
1− δ/2:

Êx∼D[‖Φ(x)‖22] ≤ ν(Φ, px) +

√
Varpx [‖Φ(x)‖22](2/δ − 1)

N
(41)

Theorem 4 (Theorem 2 from Main Text: Uniform Convergence of Entropy Estimate). With proba-
bility at least 1− δ,∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px [H[p(·|x;θ)]]

∣∣∣ ≤ ‖w‖∞(√ 2

N
ν(Φ, px) log(

4

δ
) + Θ

(
N−0.75

))
Proof. From Lemma 6, we have with probability at least 1− δ/2:

∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px [H[p(·|x;θ)]]
∣∣∣ ≤ ‖w‖∞

√
2Êx∼D[‖Φ(x)‖22]

N
log(

4

δ
) (42)

From Lemma 7, we also have with probability at least 1− δ/2:

Êx∼D[‖Φ(x)‖22] ≤ ν(Φ, px) +

√
Varpx [‖Φ(x)‖22](2/δ − 1)

N
(43)
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Combining the above two statements using the Union Bound, we have with probability at least 1− δ:

∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px [H[p(·|x;θ)]]
∣∣∣ ≤ ‖w‖∞

√
2

N
(ν(Φ, px) +

√
Varpx [‖Φ(x)‖22](2/δ − 1)

N
) log(

4

δ
)

(44)∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px [H[p(·|x;θ)]]
∣∣∣ ≤ ‖w‖∞(√ 2

N
(ν(Φ, px) log(

4

δ
) +

(
4Varpx [‖Φ(x)‖22](2/δ − 1)

N3

)1/4

log(
4

δ
)

)
(45)∣∣∣ÊD[H[p(·|x;θ)]]− Ex∼px [H[p(·|x;θ)]]

∣∣∣ ≤ ‖w‖∞(√ 2

N
ν(Φ, px) log(

4

δ
) + Θ

(
N−0.75

))
(46)

Lemma 8. With probability at least 1− δ/2,

ÊD[H[p(·|x;θ)]] ≤ Ex∼px [H[p(·|x;θ)]] + ‖w‖2

√
2Êx∼D[‖Φ(x)‖22]

N
log(

2

δ
)

Proof. Since D has i.i.d. samples of X , we have:

Ex∼px

[
ÊD [H [p(·|x; w)]]

]
=

1

N

N∑
i=1

Ex∼px [H [p(·|xi; w)]] = Ex∼px [H [p(·|x; w)]] (47)

From Lemma 5, we know that for sample x:

log(m)− 2‖w‖2‖Φ(x)‖2 ≤ H [p(·|x; w)] ≤ log(m) (48)

Thus, by applying one-sided Hoeffding’s Inequality we get:

Pr
(
ÊD[H[p(·|x;θ)]]− Ex∼px

[
ÊD [H [p(·|x; w)]]

]
≥ t
)
≤ exp

−2N2t2

4‖w‖22
∑N
i=1‖Φ(xi)‖2

(49)

Setting RHS as δ/2, we have with probability at least 1− δ/2:

ÊD[H[p(·|x;θ)]] ≤ Ex∼px [H[p(·|x;θ)]] + ‖w‖2

√
2Êx∼D[‖Φ(x)‖22]

N
log(

2

δ
) (50)

Corollary 1 (Corollary 1 from the Main Text: Theorem 1 in terms of Variance of Norm). With
probability at least 1− δ,

‖w‖2 ≥
log(C)− Êx∼D[H[p(·|x;θ)]](

2−
√

2
N log( 2

δ )
)√

ν(Φ, px)−Θ
(
N−0.75

)
Proof. From Lemma 8, we have with probability at least 1− δ/2:

ÊD[H[p(·|x;θ)]] ≤ Ex∼px [H[p(·|x;θ)]] + ‖w‖2

√
2Êx∼D[‖Φ(x)‖22]

N
log(

2

δ
) (51)

From Lemma 7, we also have with probability at least 1− δ/2:

Êx∼D[‖Φ(x)‖22] ≤ ν(Φ, px) +

√
Varpx [‖Φ(x)‖22](2/δ − 1)

N
(52)
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Combining the above two statements using the Union Bound, we have with probability at least 1− δ:

ÊD[H[p(·|x;θ)]] ≤ Ex∼px [H[p(·|x;θ)]] + ‖w‖2

√
2

N
(ν(Φ, px) +

√
Varpx [‖Φ(x)‖22](2/δ − 1)

N
) log(

2

δ
)

(53)

From Theorem ??, we know:

‖w‖2 ≥
log(C)− Ex∼px [H[p(·|x;θ)]]

2
√

ν(Φ, px)
(54)

Combining this with the previous statement, we have with probability at least 1− δ:

‖w‖2 ≥
log(C)− Êx∼D[H[p(·|x;θ)]]√

ν(Φ, px)−
√

2
N (ν(Φ, px) +

√
Varpx [‖Φ(x)‖22](2/δ−1)

N ) log( 2
δ )

(55)

‖w‖2 ≥
log(C)− Êx∼D[H[p(·|x;θ)]](

2−
√

2
N log( 2

δ )
)√

ν(Φ, px)−Θ
(
N−0.75

) (56)

Appendix 3: Training Details on FGVC

ResNet-50: Training is done for 40k iterations with batch-size 8 with an initial learning rate of 0.005.
Optimal γ for each dataset is given in Table 1.

Dataset γ
CUB2011 0.9
NABirds 0.7
Stanford Dogs 0.7
Cars 0.8
Aircraft 1

Table 1: Regularization parameter γ for ResNet-50 experiments.

Bilinear and Compact Bilinear CNN: We follow the training routine given by the authors1. Optimal
γ for each dataset is given in Table 2.

Dataset γ
CUB2011 1
NABirds 1
Stanford Dogs 1
Cars 1
Aircraft 1

Table 2: Regularization parameter γ for Bilinear CNN experiments.

DenseNet-161: Training is done for 40k iterations with batch-size 32 with an initial learning rate of
0.005. Optimal γ for each dataset is given in Table3.

GoogLeNet: Training is done for 300k iterations with batch-size 32, with a step size of 30000,
decreasing it by a ratio of 0.96 every epoch. Optimal hyperparameters are given in Table 4.

VGGNet-16: Training is done for 40k iterations with batch-size 32, with a linear decay of the
learning rate from an initial value of 0.1. Optimal γ is given in Table 5.

1https://github.com/gy20073/compact_bilinear_pooling/tree/master/caffe-20160312/
examples/compact_bilinear
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Dataset γ
CUB2011 0.8
NABirds 1
Stanford Dogs 0.8
Cars 1
Aircraft 0.8

Table 3: Regularization parameter γ for DenseNet-161 experiments.

Dataset γ
CUB-200-2011 10
NABirds 1
Stanford Dogs 1
Cars 1
Aircraft 1

Table 4: Regularization parameter γ for GoogLeNet experiments.

Dataset γ
CUB2011 1
NABirds 1
Stanford Dogs 1
Cars 1
Aircraft 1

Table 5: Regularization parameter γ for VGGNet-16 experiments.
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Figure 1: We get consistent improvement in validation accuracy as the amount of training data is
increased. Curves plotted for various values of γ on CIFAR10 with model ResNet20.
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