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In the Supplementary material we will start by proving consistency of the MiFM theorem, then we
will show several important results related to FFMα: how exchangeability is achieved using uniform
permutation prior on the order in which variables enter the process, how it leads to a Gibbs sampler
using distribution of the index of the variable entering FFMα last and how to obtain distribution of
the interaction depths MD and compute its expectation. Lastly we will present a Gibbs sampling
algorithm for the MiFM under the FFMα prior on interactions structure Z.1

1 Proof of the Consistency Theorem

First let us remind the reader of the problem setup. Suppose that the data pairs (xn, yn)Nn=1 ∈ RD×R
are i.i.d. samples from the joint distribution P ∗(X,Y ), according to which marginal distribution
for X and the conditional distribution of Y given X admit density functions f∗(x) and f∗(y|x),
respectively, with respect to Lebesgue measure. In particular, f∗(y|x) is defined by

Y = yn|X = xn,Θ
∗ ∼ N (y(xn,Θ

∗), σ), where Θ∗ = {β∗1 , . . . , β∗J , Z∗1 , . . . , Z∗J},

y(x,Θ∗) :=

J∑
j=1

β∗j
∏
i∈Z∗

j

xi, and xn ∈ RD, yn ∈ R, β∗j ∈ R, Z∗j ⊂ {1, . . . , D},

for n = 1, . . . , N, j = 1, . . . , J.

(1)

In the above Θ∗ represents the true parameter for the conditional density f∗(y|x) that generates data
sample yn given xn, for n = 1, . . . , N . On the other hand, the statistical modeler has access only to
the MiFM:

Z ∼ FFMα(γ1, γ2), vik|µk, λk ∼ N (µk,
1

λk
) for i = 1, . . . , D; k = 1, . . . ,K,

yn|Θ ∼ N (y(xn,Θ), σ), where y(x,Θ) :=

J∑
j=1

K∑
k=1

∏
i∈Zj

xivik,

for n = 1, . . . , N, and Θ = (Z, V ).

(2)

We omitted linear terms in the MiFM since they can naturally be parts of the interaction structure Z
and discarded hyperpriors for the ease of representation. Now we show that under some conditions
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posterior distribution Π will place most of its mass on the true conditional density f∗(y|x) as
N →∞.

Theorem 1. Given any true conditional density f∗(y|x) given by (1), and assuming that the support
of f∗(x) is bounded, there is a constant K0 < J such that by setting K ≥ K0, the following
statement holds: for any weak neighborhood U of f∗(y|x), under the MiFM model (2), the posterior
probability Π(U |(Xn, Yn)Nn=1)→ 1 with P ∗-probability one, as N →∞.

A key part in the proof of this theorem is to clarify the role of parameter K, and the fact that
under model (2), the regression coefficient βj associated with interaction j is parameterized by
βj :=

∑K
k=1

∏
i∈Zj

vik, for j = 1, . . . , J , which for some suitable choice of Θ = (Z, V ) can
represent exactly the true parameters β∗1 , . . . , β

∗
J , provided that K is sufficiently large. The following

basic lemma is informative.

Lemma 1. Let m ∈ [1, J ] be a natural number, βj ∈ R \ {0} for j = 1, . . . ,m. Suppose that the m
subsets Zj ⊂ {1, . . . , D} for j = 1, . . .m have non-empty intersection, then as long as K ≥ m, the
system of polynomial equations

K∑
k=1

∏
i∈Zj

vik = βj , j = 1, . . . ,m (3)

has at least one solution in terms of v11, . . . , vDK such that the following collection of K vectors
in Rm, namely, {(

∏
i∈Z1

vik, . . . ,
∏
i∈Zm

vik), k = 1, . . . ,K} contains m linearly independent
vectors.

Proof. Let i0 be an element of the intersection of all Zj , for j = 1, . . . ,m. We consider sys-
tem (3) as linear with respect to {vi01, . . . , vi0K}, where corresponding coefficients are given
by
∏
i∈Zj\{i0} vi,k, which we can pick to form a matrix of nonzero determinant. Hence by

Rouché–Capelli theorem the system has at least one solution if K ≥ m and, since βj 6= 0 for
∀j, the resulting {(

∏
i∈Z1

vik, . . . ,
∏
i∈Zm

vik), k = 1, . . . ,K} contains at least m linearly indepen-
dent vectors.

Lemma 2. (This is Lemma 1 of the main text) Given natural number J ≥ 1, βj ∈ R \ {0} and
Zj ⊂ {1, . . . , D} for j = 1, . . . J , exists K0 < J : ∀K ≥ K0 system of polynomial equations (3)
has at least one solution in terms of v11, . . . , vDK .

Proof. The proof proceeds by performing an elimination process on the collection of variables vik
according to an ordering that we now define. Let Ji = card({Zj |i ∈ Zj}) for i = 1, . . . , D. Define
J0 = min

i
Ji and i0 = argmin

i
Ji. If K ≥ J0 by Lemma 1 we can find a solution of the reduced

system of equations
K∑
k=1

∏
i∈Zj

vi,k = βj , j ∈ {j|i0 ∈ Zj},

while maintaining the linear independence needed to apply Lemma 1 again further. Now we know
that we can find a solution for equations indexed by {j|i0 ∈ Zj}. We remove them from system
(3) and recompute J1 = min

i 6=i0
Ji and i1 = argmin

i 6=i0
Ji to apply Lemma 1 again. Iteratively we will

remove all the equations, meaning that there is at least one solution. Note that Ji are decreasing since
whenever we remove equations, number of Zjs containing certain i can only decrease. Therefore, we
will need K ≥ K0 := max(J0, J1, . . . , 0) in order to apply Lemma 1 on every elimination step.

From the proof of Lemma 2, it can be observed thatK0 = max(J0, J1, . . .)� J when we anticipate
only few interactions per variable, whereas the upper bound K0 = J − 1 is attained when there are
only (D − 1)-way interactions. Now we are ready to present a proof of the main theorem.

Proof. (of main theorem). By Lemma 2 and the fact that the probability of a finite number of
independent continuous random vectors being linearly dependent is 0 it follows that under the MiFM
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prior on V as in (2) and ∀β1, . . . , βJ ∈ R \ {0}, distinct Z1, . . . , ZJ and ε > 0

Π

 J∑
j=1

(βj −
∑
k

∏
i∈Zj

vik)2 < ε |Z1, . . . , ZJ

 > 0. (4)

From Eq. (8) it follows that for any Z1, . . . , ZJ , the prior probability of the corresponding incidence
matrix is bounded away from 0. Combining this with (4), we now establish that the probability of the
true model parameters to be arbitrary close to the MiFM parameters under the MiFM prior as in (2):

Π

(

J∑
j=1

βj −
J∑
j=1

∑
k

∏
i∈Zj

vik)2 < ε

 > 0, ∀ε > 0. (5)

We shall appeal to Schwartz’s theorem (cf. Ghosal et al. (1999)), which asserts that the desired
posterior consistency holds as soon as we can establish that the true joint distribution P ∗(X,Y ) lies
in the Kullback-Leibler support of the prior Π on the joint distribution P (X,Y ). That is,

Π (KL(P ∗||P ) < ε) > 0, for ∀ε > 0. (6)
Since the KL divergence of the two Gaussian distributions is proportional to the mean difference, we
have (E∗X denotes expectation with respect to the true marginal distribution of X)

KL(P ∗||P ) ∝ E∗X
1

2
(y(X,Θ)− y(X,Θ∗))2 ∝

E∗X(

J∑
j=1

βj
∏
i∈Zj

xi −
J∑
j=1

∑
k

∏
i∈Zj

vikxi)
2 . (

J∑
j=1

βj −
J∑
j=1

∑
k

∏
i∈Zj

vik)2.
(7)

Due to (5) this quantity can be made arbitrarily close to 0 with positive probability. Therefore (6) and
then Schwartz theorem hold, which concludes the proof.

2 Analyzing FFMα

2.1 Model definition and exchangeability

Here we remind the reader the construction of FFMα — the distribution over finite collection of
binary random variables that we used to model interactions. Let D be the number of variables in the
data and Z ∈ {0, 1}D is j-th interaction (subscript j is dropped to simplify notation). Let σ(·) be
a random uniform permutation of {1, . . . , D} and let σ1 = σ−1(1), . . . , σD = σ−1(D). Note that
σ1, . . . , σD are discrete random variables and P(σk = i) = 1/D for any i, k = 1, . . . , D. Next we
define FFMα:

P(Zσi
= 1|Zσ1

, . . . , Zσi−1
) = αMi−1+(1−α)(i−1−Mi−1)+γ1

i−1+γ1+γ2
,

P(Zσi
= 0|Zσ1

, . . . , Zσi−1
) = (1−α)Mi−1+α(i−1−Mi−1)+γ2

i−1+γ1+γ2
, (8)

where γ1 > 0, γ2 > 0, α ∈ [0, 1] are given parameters and Mi = Zσ1
+ . . . + Zσi

. Due to the
random permutation of indices, distribution of Z1, . . . , ZD is exchangeable because any ordering of
variables entering the process has same probability. Next, we need to integrate the permutation part
out to obtain a tractable full conditional representation.

2.2 Gibbs sampling for FFMα and distribution of interaction depths MD

To construct a Gibbs sampler for the the FFMα we will use an additional latent variable - index of the
variable entering the process last, σD. Additionally observe that when permutation is integrated out
P(Z1, . . . , ZD) = P(MD = Z1 + . . .+ ZD) since P(MD = m) is precisely the summation over all
possible orderings of Z1, . . . , ZD such that Z1 + . . .+ ZD = m.

P(σD = i|Z1, . . . , ZD) ∝

ZiP(σD = i|ZσD
= 1, Z)P(ZσD

= 1|MD−1 =

D∑
k=1

Zk − 1)P(MD−1 =

D∑
k=1

Zk − 1)+

+ (1− Zi)P(σD = i|ZσD
= 0, Z)P(ZσD

= 0|MD−1 =

D∑
k=1

Zk)P(MD−1 =

D∑
k=1

Zk),

(9)
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then if Zi = 1 and
∑D
k=1 Zk = m we obtain

P(σD = i|Z−i, Zi = 1) = P(σD = i|MD = m,Zi = 1) =

=
P(MD−1 = m− 1)P(ZσD

= 1|MD−1 = m− 1)

mP(MD = m)
,

(10)

where P(ZσD
= 1|MD−1 = m − 1) and P(ZσD

= 0|MD−1 = m) can be computed as in Eq. 8.
Our next step is to analyze probability P(MD = m). Indeed it is easy to obtain this distribution
recursively:

P(MD = m) = P(MD−1 = m)P(ZσD
= 0|MD−1 = m)+

+ P(MD−1 = m− 1)P(ZσD
= 1|MD−1 = m− 1).

(11)

The base of recursion is given by the following identities:

P(M0 = 0) = 1,

P(Mi = 0) =

i−1∏
k=0

α(i− 1− k) + γ2

k + γ1 + γ2
=

i−1∏
k=0

αk + γ2

k + γ1 + γ2
,

P(Mi = i) =

i−1∏
k=0

αk + γ1

k + γ1 + γ2
.

(12)

The above formulation allows us compute P(Mi = k), D ≥ i ≥ k dynamically (computations are
very fast since we only need to perform (D+1)(D+2)

2 −1 calculations) before running MiFM inference
and utilize the table of probabilities during it. The last step of the Gibbs sampler is clearly the update
of the Zi|σD = i, Z−i which is done simply using the FFMα definition 8. Recall Figure 1 (a) of the
main text which illustrates the behavior of∑

i:Z
(k)
i =0

P(Z
(k+1)
i = 1, σD = i|Z(k)) = P(ZσD

= 0|Z)P(Zi = 1|σD = i, Z−i),

and since we choose index of a variable to update based on the probability of it being last, the
expression above reads as the probability that we choose to update a variable not present in the
interaction and then add it to the interaction, therefore increasing the depth of the interaction.

2.3 Mean Behavior of the FFMα

From Eq. (11) it follows that

EMD =

D∑
m=0

mP(MD = m) =

=
1

D − 1 + γ1 + γ2

{
(1− 2α)EM2

D−1 + (α(D − 1) + γ2)EMD−1+

+ (2α− 1)E(MD−1 + 1)2 + ((1− α)D − α+ γ1)E(MD−1 + 1)

}
=

1

D − 1 + γ1 + γ2

{
EMD−1(D + 2α+ γ1 + γ2 − 2) +D(1− α) + α+ γ1 − 1

}
.

(13)

For α = 0, this relation is simplified to be

(D − 1 + γ1 + γ2)EMD = EMD−1(D + γ1 + γ2 − 2) + (D + γ1 − 1) =

= (D + γ1 − 1) + . . .+ γ1 =
1

2
D(D + 2γ1 − 1).

(14)

3 Gibbs Sampler for the MiFM

Our Gibbs sampling algorithm consists of two parts — updating factorization coefficients V (based
on the results from Freudenthaler et al. (2011)) and then updating interactions Z based on the analysis
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of Section 2.2. Recall the MiFM model construction. First we have a layer of hyperpriors:

σ ∼ Γ(
α1

2
,
β1

2
), λ ∼ Γ(

α0

2
,
β0

2
), µ ∼ N (µ0,

1

γ0
),

λk ∼ Γ(
α0

2
,
β0

2
), µk ∼ N (µ0,

1

γ0
) for k = 1, . . . ,K,

Then interactions and their weights:

wi|µ, λ ∼ N (µ,
1

λ
) for i = 0, . . . , D, Z ∼ FFMα(γ1, γ2),

vik|µk, λk ∼ N (µk,
1

λk
) for i = 1, . . . , D; k = 1, . . . ,K,

And finally the model’s likelihood:

yn|Θ ∼ N (y(xn,Θ),
1

σ
), where

y(x,Θ) := w0 +

D∑
i=1

wixi +

J∑
j=1

K∑
k=1

∏
i∈Zj

xivik,

for n = 1, . . . , N, and Θ = {Z, V, σ, w0,...,D}.

(15)

Inference in the context of Bayesian modeling is often related to learning the posterior distribution
P(Θ|X,Y ). Then, if one wants point estimates, certain statistics of the posterior can be used, i.e.
mean or median. In most situations (including MiFM) analytical form of the posterior is intractable,
but with the help of Bayes rule it is often possible to compute it up to a proportionality constant:

P(Θ, µ, γ, µ1, . . . µK , λ1, . . . , λK |Y ) ∝
N∏
n=1

P(yn|Z, V, σ, w0,...,D)·

· P(Z)P(V |µ1, . . . , µK , λ1, . . . , λK)P(σ, µ, γ, µ1, . . . µK , λ1, . . . , λK).

(16)

One can maximize this quantity to obtain MAP estimate, but this is very complicated due to the
combinatorial complexity of interactions in Z and, additionally, often leads to overfitting. We use
Gibbs sampling procedure for learning the posterior of our model. Due to normal-normal conjugacy
and a priori independence of Z and other latent variables, we can derive closed form full conditional
(i.e. variable given all the rest and the data) distributions for each of the latent variables in the model.

Updating hyperprior parameters

σ ∼ Γ
(
α1+N

2 ;
∑N

n=1(yn−y(xn,Θ))2+β1)

2

)
, (17)

λ ∼ Γ
(
α0+D+1

2 ;
∑D

i=0(wi−µ)2+β0

2

)
, (18)

µ ∼ N
(∑D

i=0 wi+γ0µ0

D+1+γ0
; 1
λ(D+1+γ0)

)
, (19)

λk ∼ Γ
(
α0+D

2 ;
∑D

i=1(vik−µk)2+β0

2

)
, (20)

µk ∼ N
(∑D

i=1 vik+γ0µ0

D+γ0
; 1
λk(D+γ0)

)
, (21)

for k = 1, . . . ,K.

Updating factorization coefficients V For updating coefficients of the model we can utilize the
multi-linear property also used for the Factorization Machines MCMC updates (Freudenthaler et al.,
2011). Note that for any θ ∈ {w0, . . . , wD, v11, . . . , vDK} we can write y(x,Θ) = lθ(x) + θmθ(x),
where lθ(·) are all the terms independent of θ and mθ(·) are the terms multiplied by θ. For example,
if θ = w0, then mθ(x) = 1 and lθ(x) =

∑D
i=1 wixi +

∑J
j=1

∑K
k=1

∏
i∈Zj

xivik. Next we give

5



updating distribution that can be used for any θ ∈ {w0, . . . , wD, v11, . . . , vDK}.

θ ∼ N (µ∗θ, σ
2
θ),where σ2

θ =

(
σ

N∑
n=1

mθ(xn)2 + λθ

)−1

,

µ∗θ = σ2
θ

(
σ

N∑
n=1

(yn − lθ(xn))mθ(xn) + µθλθ

)
,

(22)

and µθ, λθ are the corresponding hyperprior parameters.

Updating interactions Z Posterior updates of Z can be decomposed into prior times the likelihood:

P(Zi|Z−i, V, Y ) ∝ P(Zi|Z−i)P(Y |V,Z), (23)
where second part is the Gaussian likelihood as in Eq. (15). To sample Zi|Z−i we use the construction
from Section 2, where we first sample the value of ZσD

for fixed j:

P(ZσD
= 1|Z) = P(σD = i|MD = m,Zi = 1) =

=
P(MD−1 = m− 1)P(ZσD

= 1|MD−1 = m− 1)

P(MD = m)
,

(24)

and then uniformly choose and index i to update among {i : Zi = ZσD
}. Next Zi can simply be

updated using the process construction 8 assuming it to be last. Recall that P(MD = m) should be
computed beforehand using Eq. (11).
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