
Natural Value Approximators:
Learning when to Trust Past Estimates

Zhongwen Xu
DeepMind

zhongwen@google.com

Joseph Modayil
DeepMind

modayil@google.com

Hado van Hasselt
DeepMind

hado@google.com

Andre Barreto
DeepMind

andrebarreto@google.com

David Silver
DeepMind

davidsilver@google.com

Tom Schaul
DeepMind

schaul@google.com

Abstract

Neural networks have a smooth initial inductive bias, such that small changes in
input do not lead to large changes in output. However, in reinforcement learning
domains with sparse rewards, value functions have non-smooth structure with
a characteristic asymmetric discontinuity whenever rewards arrive. We propose
a mechanism that learns an interpolation between a direct value estimate and a
projected value estimate computed from the encountered reward and the previous
estimate. This reduces the need to learn about discontinuities, and thus improves
the value function approximation. Furthermore, as the interpolation is learned
and state-dependent, our method can deal with heterogeneous observability. We
demonstrate that this one change leads to significant improvements on multiple
Atari games, when applied to the state-of-the-art A3C algorithm.

1 Motivation

The central problem of reinforcement learning is value function approximation: how to accurately
estimate the total future reward from a given state. Recent successes have used deep neural networks
to approximate the value function, resulting in state-of-the-art performance in a variety of challenging
domains [9]. Neural networks are most effective when the desired target function is smooth. However,
value functions are, by their very nature, discontinuous functions with sharp variations over time. In
this paper we introduce a representation of value that matches the natural temporal structure of value
functions.

A value function represents the expected sum of future discounted rewards. If non-zero rewards occur
infrequently but reliably, then an accurate prediction of the cumulative discounted reward rises as
such rewarding moments approach and drops immediately after. This is depicted schematically with
the dashed black line in Figure 1. The true value function is quite smooth, except immediately after
receiving a reward when there is a sharp drop. This is a pervasive scenario because many domains
associate positive or negative reinforcements to salient events (like picking up an object, hitting a
wall, or reaching a goal position). The problem is that the agent’s observations tend to be smooth
in time, so learning an accurate value estimate near those sharp drops puts strain on the function
approximator – especially when employing differentiable function approximators such as neural
networks that naturally make smooth maps from observations to outputs.

To address this problem, we incorporate the temporal structure of cumulative discounted rewards into
the value function itself. The main idea is that, by default, the value function can respect the reward
sequence. If no reward is observed, then the next value smoothly matches the previous value, but

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Figure 1: After the same amount of training, our proposed method (red) produces much more accurate
estimates of the true value function (dashed black), compared to the baseline (blue). The main plot
shows discounted future returns as a function of the step in a sequence of states; the inset plot shows
the RMSE when training on this data, as a function of network updates. See section 4 for details.

becomes a little larger due to the discount. If a reward is observed, it should be subtracted out from
the previous value: in other words a reward that was expected has now been consumed. The natural
value approximator (NVA) combines the previous value with the observed rewards and discounts,
which makes this sequence of values easy to represent by a smooth function approximator such as a
neural network.

Natural value approximators may also be helpful in partially observed environments. Consider a
situation in which an agent stands on a hill top. The goal is to predict, at each step, how many steps it
will take until the agent has crossed a valley to another hill top in the distance. There is fog in the
valley, which means that if the agent’s state is a single observation from the valley it will not be able
to accurately predict how many steps remain. In contrast, the value estimate from the initial hill top
may be much better, because the observation is richer. This case is depicted schematically in Figure 2.
Natural value approximators may be effective in these situations, since they represent the current
value in terms of previous value estimates.

2 Problem definition

We consider the typical scenario studied in reinforcement learning, in which an agent interacts with
an environment at discrete time intervals: at each time step t the agent selects an action as a function
of the current state, which results in a transition to the next state and a reward. The goal of the agent
is to maximize the discounted sum of rewards collected in the long run from a set of initial states [12].

The interaction between the agent and the environment is modelled as a Markov Decision Process
(MDP). An MDP is a tuple (S,A, R, γ, P) where S is a state space, A is an action space, R :
S×A×S → D(R) is a reward function that defines a distribution over the reals for each combination
of state, action, and subsequent state, P : S × A → D(S) defines a distribution over subsequent
states for each state and action, and γt ∈ [0, 1] is a scalar, possibly time-dependent, discount factor.

One common goal is to make accurate predictions under a behaviour policy π : S → D(A) of the
value

vπ(s) ≡ E [R1 + γ1R2 + γ1γ2R3 + . . . | S0 = s] . (1)

The expectation is over the random variables At ∼ π(St), St+1 ∼ P (St, At), and Rt+1 ∼
R(St, At, St+1), ∀t ∈ N+. For instance, the agent can repeatedly use these predictions to improve
its policy. The values satisfy the recursive Bellman equation [2]

vπ(s) = E [Rt+1 + γt+1vπ(St+1) | St = s] .

We consider the common setting where the MDP is not known, and so the predictions must be
learned from samples. The predictions made by an approximate value function v(s;θ), where θ are
parameters that are learned. The approximation of the true value function can be formed by temporal

2

difference (TD) learning [10], where the estimate at time t is updated towards

Z1
t ≡ Rt+1 + γt+1v(St+1;θ) or Znt ≡

n∑
i=1

(Πi−1
k=1γt+k)Rt+i + (Πn

k=1γt+k)v(St+n;θ) ,(2)

where Znt is the n-step bootstrap target, and the TD-error is δnt ≡ Znt − v(St;θ).

3 Proposed solution: Natural value approximators

The conventional approach to value function approximation produces a value estimate from features
associated with the current state. In states where the value approximation is poor, it can be better to
rely more on a combination of the observed sequence of rewards and older but more reliable value
estimates that are projected forward in time. Combining these estimates can potentially be more
accurate than using one alone.

These ideas lead to an algorithm that produces three estimates of the value at time t. The first estimate,
Vt ≡ v(St;θ), is a conventional value function estimate at time t. The second estimate,

Gpt ≡
Gβt−1 −Rt

γt
if γt > 0 and t > 0 , (3)

is a projected value estimate computed from the previous value estimate, the observed reward, and
the observed discount for time t. The third estimate,

Gβt ≡ βtG
p
t + (1− βt)Vt = (1− βt)Vt + βt

Gβt−1 −Rt
γt

, (4)

is a convex combination of the first two estimates1 formed by a time-dependent blending coefficient
βt. This coefficient is a learned function of state β(·;θ) : S → [0, 1], over the same parameters θ,
and we denote βt ≡ β(St;θ). We call Gβt the natural value estimate at time t and we call the overall
approach natural value approximators (NVA). Ideally, the natural value estimate will become more
accurate than either of its constituents from training.

The value is learned by minimizing the sum of two losses. The first loss captures the difference
between the conventional value estimate Vt and the target Zt, weighted by how much it is used in the
natural value estimate,

JV ≡ E
[
[[1− βt]]([[Zt]]− Vt)2

]
, (5)

where we introduce the stop-gradient identity function [[x]] = x that is defined to have a zero gradient
everywhere, that is, gradients are not back-propagated through this function. The second loss captures
the difference between the natural value estimate and the target, but it provides gradients only through
the coefficient βt,

Jβ ≡ E
[
([[Zt]]− (βt [[Gpt]] + (1− βt)[[Vt]]))2

]
. (6)

These two losses are summed into a joint loss,
J = JV + cβJβ , (7)

where cβ is a scalar trade-off parameter. When conventional stochastic gradient descent is applied
to minimize this loss, the parameters of Vt are adapted with the first loss and parameters of βt are
adapted with the second loss.

When bootstrapping on future values, the most accurate value estimate is best, so using Gβt instead of
Vt leads to refined prediction targets

Zβ,1t ≡ Rt+1 + γt+1G
β
t+1 or Zβ,nt ≡

n∑
i=1

(Πi−1
k=1γt+k)Rt+i + (Πn

k=1γt+k)Gβt+n . (8)

4 Illustrative Examples

We now provide some examples of situations where natural value approximations are useful. In both
examples, the value function is difficult to estimate well uniformly in all states we might care about,
and the accuracy can be improved by using the natural value estimate Gβt instead of the direct value
estimate Vt.

1Note the mixed recursion in the definition, Gp depends on Gβ , and vice-versa.

3

Sparse rewards Figure 1 shows an example of value function approximation. To separate concerns,
this is a supervised learning setup (regression) with the true value targets provided (dashed black
line). Each point 0 ≤ t ≤ 100 on the horizontal axis corresponds to one state St in a single sequence.
The shape of the target values stems from a handful of reward events, and discounting with γ = 0.9.
We mimic observations that smoothly vary across time by 4 equally spaced radial basis functions,
so St ∈ R4. The approximators v(s) and β(s) are two small neural networks with one hidden layer
of 32 ReLU units each, and a single linear or sigmoid output unit, respectively. The input to β is
augmented with the last k = 16 rewards. For the baseline experiment, we fix βt = 0. The networks
are trained for 5000 steps using Adam [5] with minibatch size 32. Because of the small capacity of
the v-network, the baseline struggles to make accurate predictions and instead it makes systematic
errors that smooth over the characteristic peaks and drops in the value function. The natural value
estimation obtains ten times lower root mean squared error (RMSE), and it also closely matches the
qualitative shape of the target function.

Heterogeneous observability Our approach is not limited to the sparse-reward setting. Imagine
an agent that stands on the top of a hill. By looking in the distance, the agent may be able to predict
how many steps should be taken to take it to the next hill top. When the agent starts descending the
hill, it walks into fog in the valley between the hills. There, it can no longer see where it is. However,
it could still determine how many steps until the next hill by using the estimate from the first hill and
then simply counting steps. This is exactly what the natural value estimate Gβt will give us, assuming
βt = 1 on all steps in the fog. Figure 2 illustrates this example, where we assumed each step has
a reward of −1 and the discount is one. The best observation-dependent value v(St) is shown in
dashed blue. In the fog, the agent can then do no better than to estimate the average number of steps
from a foggy state until the next hill top. In contrast, the true value, shown in red, can be achieved
exactly with natural value estimates. Note that in contrast to Figure 1, rewards are dense rather than
sparse.

In both examples, we can sometimes trust past value functions more than current estimations, either
because of function approximation error, as in the first example, or partial observability.

0 50 100

step

100

50

0

v
a
lu

e

fog

Figure 2: The value is the negative number of steps until reaching the destination at t = 100. In some
parts of the state space, all states are aliased (in the fog). For these aliased states, the best estimate
based only on immediate observations is a constant value (dashed blue line). Instead, if the agent
relies on the value just before the fog and then decrements it by encountered rewards, while ignoring
observations, then the agent can match the true value (solid red line).

5 Deep RL experiments

In this section, we integrate our method within A3C (Asynchronous advantage actor-critic [9]), a
widely used deep RL agent architecture that uses a shared deep neural network to both estimate the
policy π (actor) and a baseline value estimate v (critic). We modify it to use Gβt estimates instead
of the regular value baseline Vt. In the simplest, feed-forward variant, the network architecture
is composed of three layers of convolutions, followed by a fully connected layer with output h,
which feeds into the two separate heads (π with an additional softmax, and a scalar v, see the black
components in the diagram below). The updates are done online with a buffer of the past 20-state
transitions. The value targets are n-step targets Znt (equation 2) where each n is chosen such that it
bootstraps on the state at the end of the 20-state buffer. In addition, there is a loss contribution from
the actor’s policy gradient update on π. We refer the reader to [9] for details.

4

Table 1: Mean and median human-normalized scores on 57 Atari games, for the A3C baselines and
our method, using both evaluation metrics. N75 indicates the number of games that achieve at least
75% human performance.

human starts no-op starts
Agent N75 median mean N75 median mean
A3C baseline 28/57 68.5% 310.4% 31/57 91.6% 334.0%
A3C + NVA 30/57 93.5% 373.3% 32/57 117.0% 408.4%

πvβ

h

Gβt

Rt-k:t

Rt γt

St

Gβt-1Our method differs from the baseline A3C setup in the form of the
value estimator in the critic (Gβt instead of Vt), the bootstrap targets
(Zβ,nt instead of Znt) and the value loss (J instead of JV) as discussed
in section 3. The diagram on the right shows those new components in
green; thick arrows denote functions with learnable parameters, thin
ones without. In terms of the network architecture, we parametrize the
blending coefficient β as a linear function of the hidden representation
h concatenated with a window of past rewards Rt−k:t followed by a
sigmoid:

β(St;θ) ≡ γt

1 + exp
(
θ>β [h(St);Rt−k:t]

) , (9)

where θβ are the parameters of the β head of the network, and we set k to 50. The extra factor of
γt handles the otherwise undefined beginnings of episode (when γ0 = 0), and it ensures that the
time-scale across which estimates can be projected forward cannot exceed the time-scale induced by
the discounting2.

We investigate the performance of natural value estimates on a collection of 57 video games games
from the Atari Learning Environment [1], which has become a standard benchmark for Deep RL
methods because of the rich diversity of challenges present in the various games. We train agents for
80 Million agent steps (320 Million Atari game frames) on a single machine with 16 cores, which
corresponds to the number of frames denoted as ‘1 day on CPU’ in the original A3C paper. All agents
are run with one seed and a single, fixed set of hyper-parameters. Following [8], the performance of
the final policy is evaluated under two modes, with a random number of no-ops at the start of each
episode, and from randomized starting points taken from human trajectories.

5.1 Results

Table 1 summarizes the aggregate performance results across all 57 games, normalized by human
performance. The evaluation results are presented under two different conditions, the human starts
condition evaluates generalization to a different starting state distribution than the one used in training,
and the no-op starts condition evaluates performance on the same starting state distribution that was
used in training. We summarize normalized performance improvements in Figure 3. In the appendix,
we provide full results for each game in Table 2 and Table 3. Across the board, we find that adding
NVA improves the performance on a number of games, and improves the median normalized score
by 25% or 25.4% for the respective evaluation metrics.

The second measure of interest is the change in value error when using natural value estimates; this is
shown in Figure 4. The summary across all games is that the the natural value estimates are more
accurate, sometimes substantially so. Figure 4 also shows detailed plots from a few representative
games, showing that large accuracy gaps between Vt and Gβ lead to the learning of larger blending
proportions β.

The fact that more accurate value estimates improve final performance on only some games should
not be surprising, as they only directly affect the critic and they affect the actor indirectly. It is also

2This design choice may not be ideal in all circumstances, sometimes projecting old estimates further can
perform better—our variant however has the useful side-effect that the weight for the Vt update (Equation 5) is
now greater than zero independently of β. This prevents one type of vicious cycle, where an initially inaccurate
Vt leads to a large β, which in turn reduces the learning of Vt, and leads to an unrecoverable situation.

5

 -
1
2
%
 a
ss
a
u
lt

 -
1
2
%
 m

s_
p
a
cm

a
n

 -
1
0
%
 c
h
o
p
p
e
r_
co

m
m
a
n
d

-8
%
 t
u
ta
n
kh

a
m

-5
%
 b
a
tt
le
_z
o
n
e

-5
%
 c
e
n
ti
p
e
d
e

-4
%
 i
ce

_h
o
ck

e
y

-3
%
 s
ta
r_
g
u
n
n
e
r

-2
%
 a
lie

n

-1
%
 b
o
x
in
g

-1
%
 g
ra
v
it
a
r

-0
%
 b
a
n
k_

h
e
is
t

-0
%
 p
o
n
g

-0
%
 p
it
fa
ll

-0
%
 s
o
la
ri
s

-0
%
 b
e
a
m
_r
id
e
r

-0
%
 m

o
n
te
zu

m
a
_r
e
v
e
n
g
e

e
n
d
u
ro

0
%

fr
e
e
w
a
y

0
%

v
e
n
tu
re

0
%

p
ri
v
a
te
_e

y
e

0
%

se
a
q
u
e
st

0
%

fr
o
st
b
it
e

1
%

sk
iin

g

1
%

b
o
w
lin

g

1
%

y
a
rs
_r
e
v
e
n
g
e

1
%

ro
b
o
ta
n
k

 1
%

d
o
u
b
le
_d

u
n
k

 1
%

ri
v
e
rr
a
id

2
%

ku
n
g
_f
u
_m

a
st
e
r

 2
%

fi
sh

in
g
_d

e
rb

y

2
%

ka
n
g
a
ro
o

2
%

za
x
x
o
n

3
%

ro
a
d
_r
u
n
n
e
r

 4
%

ja
m
e
sb

o
n
d

4
%

su
rr
o
u
n
d

5
%

g
o
p
h
e
r

 5
%

a
m
id
a
r

 7
%

h
e
ro

8
%

kr
u
ll

 9
%

d
e
fe
n
d
e
r

 9
%

q
b
e
rt

 1
0
%

cr
a
zy

_c
lim

b
e
r

1
1
%

ti
m
e
_p

ilo
t

1
1
%

w
iz
a
rd

_o
f_
w
o
r

1
8
%

a
st
e
ri
x

 2
0
%

p
h
o
e
n
ix

 2
4
%

te
n
n
is

 2
5
%

a
tl
a
n
ti
s

2
5
%

d
e
m
o
n
_a

tt
a
ck

 2
5
%

n
a
m
e
_t
h
is
_g

a
m
e

 2
5
%

b
re
a
ko

u
t

3
1
%

b
e
rz
e
rk

 3
6
%

u
p
_n

_d
o
w
n

 3
8
%

a
st
e
ro
id
s

5
0
%

sp
a
ce

_i
n
v
a
d
e
rs

 7
0
%

v
id
e
o
_p

in
b
a
ll
 4
5
3
%

Figure 3: The performance gains of the proposed architecture over the baseline system, with
the performance normalized for each game with the formula proposed−baseline

max(human,baseline)−random used
previously in the literature [15].

unclear for how many games the bottleneck is value accuracy instead of exploration, memory, local
optima, or sample efficiency.

6 Variants

We explored a number of related variants on the subset of tuning games, with mostly negative results,
and report our findings here, with the aim of adding some additional insight into what makes NVA
work—and to prevent follow-up efforts from blindly repeating our mistakes.

β-capacity We experimented with adding additional capacity to the β-network in Equation 9,
namely inserting a hidden ReLU layer with nh ∈ {16, 32, 64}; this neither helped nor hurt perfor-
mance, so opted for the simplest architecture (no hidden layer). We hypothesize that learning a binary
gate is much easier than learning the value estimate, so no additional capacity is required.

Weighted v-updates We also validated the design choice of weighting the update to v by its
usage (1− β) (see Equation 5). On the 6 tuning games, weighting by usage obtains slightly higher
performance than an unweighted loss on v. One hypothesis is that the weighting permits the direct
estimates to be more accurate in some states than in others, freeing up function approximation
capacity for where it is most needed.

Semantic versus aggregate losses Our proposed method separates the semantically different
updates on β and v, but of course a simpler alternative would be to directly regress the natural
value estimate Gβt toward its target, and back-propagate the aggregate loss into both β and v jointly.
This alternative performs substantially worse, empirically. We hypothesize one reason for this: in
a state where Gpt structurally over-estimates the target value, an aggregate loss will encourage v to
compensate by under-estimating it. In contrast, the semantic losses encourage v to simply be more
accurate and then reduce β.

Training by back-propagation through time The recursive form of Equation 4 lends itself to
an implementation as a specific form of recurrent neural network, where the recurrent connection
transmits a single scalar Gβt . In this form, the system can be trained by back-propagation through
time (BPTT [17]). This is semantically subtly different from our proposed method, as the gates β
no longer make a local choice between Vt and Gpt , but instead the entire sequence of βt−k to βt is

6

0%

-25%

-50%

R
e
la
ti
v
e
 c
h
a
n
g
e
 i
n
 v
a
lu
e
 l
o
ss

ce
n
ti
p
e
d
e

e
n
d
u
ro

v
e
n
tu
re

se
a
q
u
e
st

a
tl
a
n
ti
s

su
rr
o
u
n
d

p
o
n
g

u
p
_n
_d
o
w
n

ja
m
e
sb
o
n
d

ti
m
e
_p
ilo
t

h
e
ro

b
e
a
m
_r
id
e
r

b
a
n
k_
h
e
is
t

a
st
e
ri
x

fr
o
st
b
it
e

te
n
n
is

d
e
m
o
n
_a
tt
a
ck

sp
a
ce
_i
n
v
a
d
e
rs

w
iz
a
rd
_o
f_
w
o
r

d
e
fe
n
d
e
r

n
a
m
e
_t
h
is
_g
a
m
e

b
re
a
ko

u
t

b
a
tt
le
_z
o
n
e

fi
sh
in
g
_d
e
rb
y

fr
e
e
w
a
y

a
m
id
a
r

q
b
e
rt

ro
a
d
_r
u
n
n
e
r

ri
v
e
rr
a
id

za
x
x
o
n

cr
a
zy
_c
lim

b
e
r

ro
b
o
ta
n
k

d
o
u
b
le
_d
u
n
k

a
lie
n

a
st
e
ro
id
s

so
la
ri
s

tu
ta
n
kh

a
m

a
ss
a
u
lt

v
id
e
o
_p
in
b
a
ll

b
e
rz
e
rk

p
h
o
e
n
ix

ku
n
g
_f
u
_m

a
st
e
r

y
a
rs
_r
e
v
e
n
g
e

kr
u
ll

ic
e
_h
o
ck
e
y

m
o
n
te
zu
m
a
_r
e
v
e
n
g
e

g
o
p
h
e
r

st
a
r_
g
u
n
n
e
r

m
s_
p
a
cm

a
n

g
ra
v
it
a
r

ch
o
p
p
e
r_
co
m
m
a
n
d

p
ri
v
a
te
_e
y
e

b
o
w
lin

g
b
o
x
in
g

sk
iin

g
p
it
fa
ll

ka
n
g
a
ro
o

0

20

40

60

80

100

a
v
e
ra
g
e
 s
q
u
a
re
d
 T
D
 e
rr
o
r

error on v

error on Gβ

0

10

20

30

40

50

60

70

80
a
v
e
ra
g
e
 s
q
u
a
re
d
 T
D
 e
rr
o
r

error on v

error on Gβ

0

1000

2000

3000

4000

5000

6000

a
v
e
ra
g
e
 s
q
u
a
re
d
 T
D
 e
rr
o
r

error on v

error on Gβ

0

10

20

30

40

a
v
e
ra
g
e
 s
q
u
a
re
d
 T
D
 e
rr
o
r

error on v

error on Gβ

0.0

0.5

1.0

a
v
e
ra
g
e
 β

seaquest

0.0

0.5

1.0

a
v
e
ra
g
e
 β

time_pilot

0.0

0.5

1.0

a
v
e
ra
g
e
 β

up_n_down

0.0

0.5

1.0

a
v
e
ra
g
e
 β

surround

Figure 4: Reduction in value estimation error compared to the baseline. The proxies we use are average
squared TD-errors encountered during training, comparing εv = 1

2
(Zt − v(St;θ))

2 and εβ = 1
2
(Zt −Gβt)

2.
Top: Summary graph for all games, showing relative change in error (εβ − εv)/εv , averaged over the full
training run. As expected, the natural value estimate consistently has equal or lower error, validating our core
hypothesis. Bottom: Detailed plots on a handful of games. It shows the direct estimate error εv (blue) and
natural value estimate error εβ (red). In addition, the blending proportion β (cyan) adapts over time to use more
of the prospective value estimate if that is more accurate.

trained to provide the best estimate Gβt at time t (where k is the truncation horizon of BPTT). We
experimented with this variant as well: it led to a clear improvement over the baseline as well, but its
performance was substantially below the simpler feed-forward setup with reward buffer in Equation 9
(median normalized scores of 78% and 103% for the human and no-op starts respectively).

7 Discussion

Relation to eligibility traces In TD(λ) [11], a well-known and successful variant of TD, the value
function (1) is not learned by a one-step update, but instead relies on multiple value estimates from
further in the future. Concretely, the target for the update of the estimate Vt is then Gλt , which can
be defined recursively by Gλt = Rt+1 + γt+1(1− λ)Vt+1 + γt+1λG

λ
t+1, or as a mixture of several

n-step targets [12]. The trace parameter λ is similar to our β parameter, but faces backwards in time
rather than forwards.

A quantity very similar to Gβt was discussed by van Hasselt and Sutton [13], where this quantity
was then used to update values prior to time t. The inspiration was similar, in the sense that it was
acknowledged that Gβt may be a more accurate target to use than either the Monte Carlo return or any
single estimated state value. The use of Gβt itself for online predictions, apart from using it as a target
to update towards, was not yet investigated.

Extension to action-values There is no obstacle to extend our approach to estimators of action-
values q(St, At,θ). One generalization from TD to SARSA is almost trivial. The quantity Gβt then
has the semantics of the value of action At in state St.

It is also possible to consider off-policy learning. Consider the Bellman optimality equation
Q∗(s, a) = E [Rt+1 + γt+1 maxa′ Q

∗(St+1, a
′)]. This implies that for the optimal value function

Q∗,

E
[
max
a

Q∗(St, a)
]

= E
[
Q∗(St−1, At−1)−Rt

γt

]
.

7

This implies that we may be able to use the quantity (Q(St−1, At−1)−Rt)/γt as an estimate for the
greedy value maxaQ(St, a). For instance, we could blend the value as in SARSA, and define

Gβt = (1− βt)Q(St, At) + βt
Gβt−1 −Rt

γt
.

Perhaps we could require βt = 0 whenever At 6= arg maxaQ(St, a), in a similar vein as Watkins’
Q(λ) [16] that zeros the eligibility trace for non-greedy actions. We leave this and other potential
variants for more detailed consideration in future work.

Memory NVA adds a small amount of memory to the system (a single scalar), which raises the
question of whether other forms of memory, such as the LSTM [4], provide a similar benefit. We
do not have a conclusive answer, but the existing empirical evidence indicates that the benefit of
natural value estimation goes beyond just memory. This can be seen by comparing to the A3C+LSTM
baseline (also proposed in [9]), which has vastly larger memory and number of parameters, yet did not
achieve equivalent performance (median normalized scores of 81% for the human starts). To some
extent this may be caused by the fact that recurrent neural networks are more difficult to optimize.

Regularity and structure Results from the supervised learning literature indicate that computing
a reasonable approximation of a given target function is feasible when the learning algorithm exploits
some kind of regularity in the latter [3]. For example, one may assume that the target function is
bounded, smooth, or lies in a low-dimensional manifold. These assumptions are usually materialised
in the choice of approximator. Making structural assumptions about the function to approximate
is both a blessing and a curse. While a structural assumption makes it possible to compute an
approximation with a reasonable amount of data, or using a smaller number of parameters, it can also
compromise the quality of the solution from the outset. We believe that while our method may not be
the ideal structural assumption for the problem of approximating value functions, it is at least better
than the smooth default.

Online learning By construction, the natural value estimates are an online quantity, that can only be
computed from a trajectory. This means that the extension to experience replay [6] is not immediately
obvious. It may be possible to replay trajectories, rather than individual transitions, or perhaps it
suffices to use stale value estimates at previous states, which might still be of better quality than the
current value estimate at the sampled state. We leave a full investigation of the combination of these
methods to future work.

Predictions as state In our proposed method the value is estimated in part as a function of a single
past prediction, and this has some similarity to past work in predictive state representations [7].
Predictive state representations are quite different in practice: their state consists of only predictions,
the predictions are of future observations and actions (not rewards), and their objective is to provide a
sufficient representation of the full environmental dynamics. The similarities are not too strong with
the work proposed here, as we use a single prediction of the actual value, this prediction is used as a
small but important part of the state, and the objective is to estimate only the value function.

8 Conclusion

This paper argues that there is one specific structural regularity that underlies the value function
of many reinforcement learning problems, which arises from the temporal nature of the problem.
We proposed natural value approximation, a method that learns how to combine a direct value
estimate with ones projected from past estimates. It is effective and simple to implement, which
we demonstrated by augmenting the value critic in A3C, and which significantly improved median
performance across 57 Atari games.

Acknowledgements

The authors would like to thank Volodymyr Mnih for his suggestions and comments on the early
version of the paper, the anonymous reviewers for constructive suggestions to improve the paper. The
authors also thank the DeepMind team for setting up the environments and building helpful tools
used in the paper.

8

References
[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[2] Richard Bellman. A Markovian decision process. Technical report, DTIC Document, 1957.

[3] László Györfi. A Distribution-Free Theory of Nonparametric Regression. Springer Science &
Business Media, 2002.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[5] Diederik Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. In ICLR, 2014.

[6] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[7] Michael L Littman, Richard S Sutton, and Satinder Singh. Predictive representations of state.
In NIPS, pages 1555–1562, 2002.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[9] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, pages 1928–1937, 2016.

[10] Richard S Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University
of Massachusetts Amherst, 1984.

[11] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[12] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
1998.

[13] Hado van Hasselt and Richard S. Sutton. Learning to predict independent of span. CoRR,
abs/1508.04582, 2015.

[14] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
Q-learning. In AAAI, pages 2094–2100, 2016.

[15] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In ICML, pages 1995–2003,
2016.

[16] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis,
University of Cambridge England, 1989.

[17] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990.

9

