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1 More discussions on the paper

1.1 Can the variational lower bound be derived using Jensen’s inequality?

Yes. There are two equivalent ways of deriving VI:

1. Applying Jensen’s inequality directly to the log marginal likelihood.

2. Explicitly writing down the KL(q‖p), noting that it is non-negative and rearranging to get
the same bound as in (1).

(1) is often used in traditional VI literature. Many recent papers (e.g. [1] and our paper) use (2).

1.2 Comparison to [2]

It is not clear how to compare to [2] fairly since it does not provide methods for learning hyperparam-
eters and their framework does not support such an extension. Accurate hyperparameter learning is
required for real datasets like those in the paper. So [2] performs extremely poorly unless suitable
settings for the hyperparameters can be guessed from the first batch of data. Furthermore, our paper
goes beyond [2] by providing a method for optimising pseudo-inputs which has been shown to
substantially improve upon the heuristics used in [2] in the batch setting [3].

1.3 Are SVI or the stream-based method performing differently due to different
approximations?

No. Conventional SVI is fundamentally unsuited to the streaming setting and it performs very poorly
practically compared to both the collapsed and uncollapsed versions of our method. The SVI learning
rates require a lot of dataset and iteration specific tuning so the new data can be revisited multiple
times without forgetting old data. The uncollapsed versions of our method do not require tuning of
this sort and perform just as well as the collapsed version given sufficient updates.

1.4 Are pseudo-points appropriate for streaming settings?

In any setting (batch/streaming), pseudo-point approximations require the pseudo-points to cover the
input space occupied by the data. This means they can be inappropriate for very long time-series or
very high-dimensional inputs. This is a general issue with the approximation class. The development
of new pseudo-point approximations to handle very large numbers of pseudo-points is a key and
active research area [4], but orthogonal to our focus in this paper. A moving window could be
introduced so just recent data are modelled (as we use for SGP/GP) but the utility of this depends on
the task. Here we assume all input regions must be modelled which is problematic for windowing.
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1.5 A possible explanation on why all models including full GP regression tend to learn
bigger noise variances

This is a bias that arises because the learned functions are more discrepant from the training data than
the true function and so the learned observation noise inflates to accommodate the mismatch.

1.6 Are the hyperparameters learned in the time-series and spatial data experiments?

Yes, hyperparameters and pseudo-inputs are optimised using the online variational free energy. This
is absolutely central to our approach and the key difference to [2, 5].

1.7 Why is there a non-monotonic behaviour in fig. 4 in the main text?

This occurs because at some point the GP/SGP memory window cannot cover all observed data.
Some parts of the input space are then missed, leading to decreasing performance.

2 Variational free energy approach for streaming sparse GP regression

2.1 The variational lower bound

Let a = f(zold) and b = f(znew) be the function values at the pseudo-inputs before and after seeing
new data. The previous posterior, qold(f) = p(f6=a|a, θold)q(a), can be used to find the approximate
likelihood given by old observations as follows,

p(yold|f) ≈ qold(f)p(yold|θold)

p(f |θold)
as qold(f) ≈ p(f |θold)p(yold|f)

p(yold|θold)
. (1)

Substituting this into the posterior that we want to target gives us:

p(f |yold,ynew) =
p(f |θnew)p(yold|f)p(ynew|f)

p(ynew,yold|θnew)
≈ p(f |θnew)qold(f)p(yold|θold)p(ynew|f)

p(f |θold)p(ynew,yold|θnew)
.

The new posterior approximation takes the same form, but with the new pseudo-points and new
hyperparameters: qnew(f) = p(f 6=b|b, θnew)q(b). This approximate posterior can be obtained by
minimising the KL divergence,

KL[qnew(f)||p̂(f |yold,ynew)] =

∫
dfqnew(f) log

p(f 6=b|b, θnew)qnew(b)
Z1(θold)
Z2(θnew)p(f |θnew)p(ynew|f) qold(f)

p(f |θold)

(2)

= log
Z2(θnew)

Z1(θold)
+

∫
dfqnew(f)

[
log

p(a|θold)qnew(b)

p(b|θnew)qold(a)p(ynew|f)

]
.

(3)

The last equation above is obtained by noting that p(f |θnew)/p(f6=b|b, θnew) = p(b|θnew) and

qold(f)

p(f |θold)
=

hhhhhhp(f6=a|a, θold)qold(a)
hhhhhhp(f 6=a|a, θold)p(a|θold)

=
qold(a)

p(a|θold)
.

Since the KL divergence is non-negative, the second term in (3) is the negative lower bound of the
approximate online log marginal likelihood, or the variational free energy, F(qnew(f)). We can
decompose the bound as follows,

F(qnew(f)) =

∫
dfqnew(f)

[
log

p(a|θold)qnew(b)

p(b|θnew)qold(a)p(ynew|f)

]
(4)

= KL(q(b)||p(b|θnew))−
∫
qnew(f) log p(ynew|f)

+ KL(qnew(a)||qold(a))−KL(qnew(a)||p(a|θold)). (5)

The first two terms form the batch variational bound if the current batch is the whole training data,
and the last two terms constrain the posterior to take into account the old likelihood (through the
approximate posterior and the prior).
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2.2 Derivation of the optimal posterior update and the collapsed bound

The aim is to find the new approximate posterior qnew(f) such that the free energy is minimised.
This is achieved by setting the derivative of F and a Lagrange term 2 w.r.t. q(b) equal 0,

dF
dq(b)

+ λ =

∫
df6=bp(f 6=b|b)

[
log

p(a|θold)q(b)

p(b|θnew)q(a)
− log p(y|f)

]
+ 1 + λ = 0, (6)

resulting in,

qopt(b) =
1

C p(b) exp
(∫

dap(a|b) log
q(a)

p(a|θold)
+

∫
dfp(f |b) log p(y|f)

)
. (7)

Note that we have dropped θnew from p(b|θnew), p(a|b, θnew) and p(f |b, θnew) to lighten the
notation. Substituting the above result into the variational free energy leads to F(qopt(f)) = − log C.
We now consider the exponents in the optimal qopt(b), noting that q(a) = N (a; ma,Sa) and
p(a|θold) = N (a; 0,K′aa), and denoting Da = (S−1a −K′−1aa )−1, Qf = Kff −KfbK−1bbKbf , and
Qa = Kaa −KabK−1bbKba,

E1 =

∫
dap(a|b) log

q(a)

p(a|θold)
(8)

=
1

2

∫
daN (a; KabK−1bbb,Qa)

(
− log

|Sa|
|K′aa|

− (a−ma)ᵀS−1a (a−ma) + aᵀK′−1aa a
)

= logN (DaS−1a ma; KabK−1bbb,Da) + ∆1, (9)

E2 =

∫
dfp(f |b) log p(y|f) (10)

=

∫
dfN (f ; KfbK−1bbb,Qf ) logN (y; f , σ2I) (11)

= logN (y; KfbK−1bbb, σ2I) + ∆2, (12)

2∆1 = − log
|Sa|

|K′aa||Da|
+ mᵀ

aS−1a DaS−1a ma − tr[D−1a Qa]−mᵀ
aS−1a ma +Ma log(2π), (13)

∆2 = − 1

2σ2
tr(Qf ). (14)

Putting these results back into the optimal q(b), we obtain:

qopt(b) ∝ p(b)N (ŷ,Kf̂bK−1bbb,Σŷ) (15)

= N (b; Kbf̂ (Kf̂bK−1bbKbf̂ + Σŷ)−1ŷ,Kbb −Kbf̂ (Kf̂bK−1bbKbf̂ + Σŷ)−1Kf̂b) (16)

where

ŷ =

[
y

DaS−1a ma

]
, Kf̂b =

[
Kfb

Kab

]
, Σŷ =

[
σ2
yI 0
0 Da

]
. (17)

The negative variational free energy, which is the lower bound of the log marginal likelihood, can
also be derived,

F = log C = logN (ŷ; 0,Kf̂bK−1bbKbf̂ + Σŷ) + ∆1 + ∆2. (18)

2.3 Implementation

In this section, we provide efficient and numerical stable forms for a practical implementation of the
above results.

2.3.1 The variational free energy

The first term in eq. (18) can be written as follows,

F1 = logN (ŷ; 0,Kf̂bK−1bbKbf̂ + Σŷ) (19)

2to ensure q(b) is normalised
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= −N +Ma

2
log(2π)− 1

2
log |Kf̂bK−1bbKbf̂ + Σŷ| −

1

2
ŷᵀ(Kf̂bK−1bbKbf̂ + Σŷ)−1ŷ. (20)

Let Sy = Kf̂bK−1bbKbf̂ + Σŷ and Kbb = LbLᵀ
b, using the matrix determinant lemma, we obtain,

log |Sy| = log |Kf̂bK−1bbKbf̂ + Σŷ| (21)

= log |Σŷ|+ log |I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb | (22)

= N log σ2
y + log |Da|+ log |I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb |. (23)

Let D = I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb . Note that,

Kbf̂ Σ−1ŷ Kf̂b =
1

σ2
y

KbfKfb + KbaS−1a Kab −KbaK′−1aa Kab. (24)

Using the matrix inversion lemma gives us,

S−1y = (Kf̂bK−1bbKbf̂ + Σŷ)−1 (25)

= Σ−1ŷ − Σ−1ŷ Kf̂bL−ᵀb D−1L−1b Kbf̂ Σ−1ŷ , (26)

leading to,

ŷᵀS−1y ŷ = ŷᵀΣ−1ŷ ŷ − ŷᵀΣ−1ŷ Kf̂bL−ᵀb D−1L−1b Kbf̂ Σ−1ŷ ŷ. (27)

Note that,

ŷᵀΣ−1ŷ ŷ =
1

σ2
y

yᵀy + mᵀ
aS−1a DaS−1a ma, (28)

and c = Kbf̂ Σ−1ŷ ŷ =
1

σ2
Kbfy + KbaS−1a ma. (29)

Substituting these results back into equation eq. (18),

F = −N
2

log(2πσ2)− 1

2
log |D| − 1

2σ2
yᵀy +

1

2
cᵀL−ᵀb D−1L−1b c

− 1

2
log |Sa|+

1

2
log |K′aa| −

1

2
tr[D−1a Qa]− 1

2
mᵀ

aS−1a ma −
1

2σ2
tr(Qf ). (30)

2.3.2 Prediction

We revisit and rewrite the optimal variational distribution, qopt(b), using its natural parameters:

qopt(b) ∝ p(b)N (ŷ,Kf̂bK−1bbb,Σŷ) (31)

= N−1(b; K−1bbKbf̂ Σ−1ŷ ŷ,K−1bb + K−1bbKbf̂ Σ−1ŷ Kf̂bK−1bb). (32)

The predictive covariance at some test points s is:

Vss = Kss −KsbK−1bbKbs + KsbK−1bb(K−1bb + K−1bbKbf̂ Σ−1ŷ Kf̂bK−1bb)−1K−1bbKbs (33)

= Kss −KsbK−1bbKbs + KsbL−ᵀb (I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb )−1L−ᵀb Kbs (34)

= Kss −KsbK−1bbKbs + KsbL−ᵀb D−1L−ᵀb Kbs. (35)

And the predictive mean is:

ms = KsbK−1bb(K−1bb + K−1bbKbf̂ Σ−1ŷ Kf̂bK−1bb)−1K−1bbKbf̂ Σ−1ŷ ŷ (36)

= KsbL−ᵀb (I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb )−1L−1b Kbf̂ Σ−1ŷ ŷ (37)

= KsbL−ᵀb D−1L−1b Kbf̂ Σ−1ŷ ŷ. (38)
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3 Power-EP for streaming sparse Gaussian process regression

Similar to the variational approach above, we also use a = f(zold) and b = f(znew) as pseudo-
outputs before and after seeing new data. The exact posterior upon observing new data is

p(f |y,yold) =
1

Z p(f 6=a|a, θold)q(a)p(y|f) (39)

=
1

Z p(f |θold)
q(a)

p(a|θold)
p(y|f). (40)

In addition, we assume that the hyperparameters do not change significantly after each online update
and as a result, the exact posterior can be approximated by:

p(f |y,yold) ≈ 1

Z p(f |θnew)
q(a)

p(a|θold)
p(y|f). (41)

We posit the following approximate posterior, which mirrors the form of the exact posterior,

q(f) ∝ p(f |θnew)q1(b)q2(b), (42)

where q1(b) and q2(b) are the approximate effect that q(a)
p(a|θold) and p(y|f) have on the posterior,

respectively. Next we describe steps to obtain the closed-form expressions for the approximate factors
and the approximate marginal likelihood.

3.1 q1(b)

The cavity and tilted distributions are:

qcav,1(f) = p(f)q1−α1 (b)q2(b) (43)

= p(f6=a,b|b)p(b)q2(b)p(a|b)q1−α1 (b) (44)

and q̃1(f) = p(f6=a,b|b)p(b)q2(b)p(a|b)q1−α1 (b)

(
q(a)

p(a|θold)

)α
. (45)

We note that, q(a) = N (a; ma,Sa) and p(a|θold) = N (a; 0,K′aa), leading to:(
q(a)

p(a|θold)

)α
= C1N (a; m̂a, Ŝa) (46)

where m̂a = DaS−1a ma, (47)

Ŝa =
1

α
Da, (48)

Da = (S−1a −K′−1aa )−1, (49)

C1 = (2π)M/2|K′aa|α/2|Sa|−α/2|Ŝa|1/2 exp(
α

2
mᵀ

a[S−1a DaS−1a − S−1a ]ma). (50)

Let Σa = Da + αQa. Note that:

p(a|b) = N (a; KabK−1bbb; Kaa −KabK−1bbKba) = N (a; Wab,Qa). (51)

As a result, ∫
dap(a|b)

(
q(a)

p(a|θold)

)α
=

∫
daC1N (a; m̂a, Ŝa)N (a; Wab,Qa) (52)

= C1N (m̂a; Wab,Σa/α). (53)

Since this is the contribution towards the posterior from a, it needs to match qα1 (b) at convergence,
that is,

q1(b) ∝ [C1N (m̂a; Wab,Σa/α)]
1/α (54)

= N (m̂a; Wab, α(Σa/α)) (55)
= N (m̂a; Wab,Σa). (56)
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In addition, we can compute:

log Z̃1 = log

∫
df q̃1(f) (57)

= logC1N (m̂a; Wamcav,Σa/α+ WaVcavW
ᵀ
a) (58)

= logC1 −
M

2
log(2π)− 1

2
log |Σa/α+ WaVcavW

ᵀ
a| −

1

2
m̂ᵀ

a(Σa/α+ WaVcavW
ᵀ
a)−1m̂a

+ mᵀ
cavW

ᵀ
a(Σa/α+ WaVcavW

ᵀ
a)−1m̂a −

1

2
mᵀ

cavW
ᵀ
a(Σa/α+ WaVcavW

ᵀ
a)−1Wamcav.

(59)

Note that:

V−1 = V−1cav + Wᵀ
a(Σa/α)−1Wa, (60)

V−1m = V−1cavmcav + Wᵀ
a(Σa/α)−1m̂a. (61)

Using matrix inversion lemma gives

V = Vcav −VcavW
ᵀ
a(Σa/α+ WaVcavW

ᵀ
a)−1WaVcav. (62)

Using matrix determinant lemma gives

|V−1| = |V−1cav||(Σa/α)−1||Σa/α+ WaVcavW
ᵀ
a|. (63)

We can expand terms in log Z̃1 above as follows:

log Z̃1A = −1

2
log |Σa/α+ WaVcavW

ᵀ
a| (64)

= −1

2
(log |V−1| − log |V−1cav| − log |(Σa/α)−1|) (65)

=
1

2
log |V| − 1

2
log |Vcav| −

1

2
log |(Σa/α)|. (66)

log Z̃1B = −1

2
m̂ᵀ

a(Σa/α+ WaVcavW
ᵀ
a)−1m̂a (67)

= −1

2
m̂ᵀ

a(Σa/α)−1m̂a +
1

2
m̂ᵀ

a(Σa/α)−1WaVWᵀ
a(Σa/α)−1m̂a. (68)

log Z̃1C = mᵀ
cavW

ᵀ
a(Σa/α+ WaVcavW

ᵀ
a)−1m̂a (69)

= mᵀ
cavW

ᵀ
a(Σa/α)−1m̂a −mᵀ

cavW
ᵀ
a(Σa/α)−1WaVWᵀ

a(Σa/α)−1m̂a. (70)

log Z̃1D = −1

2
mᵀ

cavW
ᵀ
a(Σa/α+ WaVcavW

ᵀ
a)−1Wamcav (71)

= −1

2
mᵀ

cavV
−1
cavmcav +

1

2
mᵀ

cavV
−1
cavVV−1cavmcav (72)

= −1

2
mᵀ

cavV
−1
cavmcav +

1

2
mᵀV−1m

+
1

2
m̂ᵀ

a(Σa/α)−1WaVWᵀ
a(Σa/α)−1m̂a − m̂a(Σa/α)−1Wam. (73)

log Z̃1DA = −m̂a(Σa/α)−1Wam (74)

= −m̂ᵀ
a(Σa/α)−1WaVV−1cavmcav − m̂ᵀ

a(Σa/α)−1WaVWᵀ
a(Σa/α)−1m̂a. (75)

log Z̃1DA1 = −m̂ᵀ
a((Σa/α)−1)WaVV−1cavmcav (76)

= −m̂ᵀ
a(Σa/α)−1Wa(I−VWᵀ

aΣa/α)−1Wa)mcav (77)

= −mᵀ
cavW

ᵀ
a(Σa/α)−1m̂a + mᵀ

cavW
ᵀ
a(Σa/α)−1WaVWᵀ

a(Σa/α)−1m̂a. (78)

which results in:

log Z̃1 + φcav,1 − φpost = logC1 −
M

2
log(2π)− 1

2
log |(Σa/α)| − 1

2
m̂ᵀ

a(Σa/α)−1m̂a. (79)
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3.2 q2(b)

We repeat the above procedure to find q2(b). The cavity and tilted distributions are,

qcav,2(f) = p(f)q1(b)q1−α2 (b) (80)

= p(f6=f ,b|b)p(b)q1(b)p(f |b)q1−α2 (b) (81)

and q̃2(f) = p(f6=f ,b|b)p(b)q1(b)p(a|b)q1−α2 (b)pα(y|f) (82)

We note that, p(y|f) = N (y; f , σ2
yI) leading to,

pα(y|f) = C2N (y; f , Ŝy) (83)

where Ŝy =
σ2
y

α
I (84)

C2 = (2πσ2
y)N(1−α)/2α−N/2 (85)

Let Σy = σ2
yI + αQf . Note that,

p(f |b) = N (f ; KfbK−1bbb; Kff −KfbK−1bbKbf ) = N (a; Wfb,Qf ) (86)

As a result, ∫
dap(f |b)pα(y|f) =

∫
dfC2N (y; f , Ŝy)N (f ; Wfb, B) (87)

= C2N (y; Wfb, Ŝy + Qf ) (88)

Since this is the contribution towards the posterior from y, it needs to match qα(b) at convergence,
that is,

q2(b) ∝
[
C2N (y; Wfb, Ŝy + Qf )

]1/α
(89)

= N (y; Wfb, α(Σy/α)) (90)
= N (y; Wfb,Σy) (91)

In addition, we can compute,

log Z̃2 = log

∫
df q̃2(f) (92)

= logC2N (y; Wfmcav,Σy/α+ WfVcavW
ᵀ
f ) (93)

= logC2 −
N

2
log(2π)− 1

2
log |Σy/α+ WfVcavW

ᵀ
f | −

1

2
yᵀ(Σy/α+ WfVcavW

ᵀ
f )−1y

+ mᵀ
cavW

ᵀ
f (Σy/α+ WfVcavW

ᵀ
f )−1y − 1

2
mᵀ

cavW
ᵀ
f (Σy/α+ WfVcavW

ᵀ
f )−1Wfmcav

(94)

By following the exact procedure as shown above for q1(b), we can obtain,

log Z̃2 + φcav,2 − φpost = logC2 −
N

2
log(2π)− 1

2
log |(Σy/α)| − 1

2
yᵀ(Σy/α)−1y (95)

3.3 Approximate posterior

Putting the above results together gives the approximate posterior over b as follows,

qopt(b) ∝ p(b)q1(b)q2(b) (96)

∝ p(b)N (ŷ,Kf̂bK−1bbb,Σŷ) (97)

= N (a; Kbf̂ (Kf̂bK−1bbKbf̂ + Σŷ)−1ŷ,Kbb −Kbf̂ (Kf̂bK−1bbKbf̂ + Σŷ)−1Kf̂b) (98)

where

ŷ =

[
y
ya

]
=

[
y

DaS−1a ma

]
, Kf̂b =

[
Kfb

Kab

]
, Σŷ =

[
Σy 0
0 Σa

]
, (99)

and Σy = σ2I + αdiagQf , and Σa = Da + αQa.
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3.4 Approximate marginal likelihood

The Power-EP procedure above also provides us an approximation to the marginal likelihood, which
can be used to optimise the hyperparameters and the pseudo-inputs,

F = φpost − φprior +
1

α
(log Z̃1 + φcav,1 − φpost) +

1

α
(log Z̃2 + φcav,2 − φpost) (100)

Note that,

∆0 = φpost − φprior (101)

=
1

2
log |V|+ 1

2
mᵀV−1m− 1

2
log |Kbb| (102)

= −1

2
log |Σŷ|+

1

2
log |Σa|+

1

2
log |Σy| −

1

2
ŷᵀΣ−1ŷ ŷ +

1

2
yᵀΣ−1y y +

1

2
yᵀ

aΣ−1a ya (103)

∆1 =
1

α
(log Z̃1 + φcav,1 − φpost) (104)

=
1

2
log
|K′aa|
|Sa|

− 1

2α
log |I + αD−1a Qa| −

1

2
yᵀ

aΣ−1a ya +
1

2
mᵀ

a[S−1a DaS−1a − S−1a ]ma

(105)

∆2 =
1

α
(log Z̃2 + φcav,2 − φpost) (106)

= −N
2

log(2π) +
N(1− α)

2α
log(σ2

y)− 1

2α
log |Σy| −

1

2
yᵀΣ−1y y (107)

Therefore,

F = logN (ŷ; 0,Σŷ) +
N(1− α)

2α
log(σ2

y)− 1− α
2α

log |Σy|

+
1

2
log |K′aa| −

1

2
log |Sa|+

1

2
log |Σa| −

1

2α
log |I + αD−1a Qa|

+
Ma

2
log(2π) +

1

2
mᵀ

a[S−1a DaS−1a − S−1a ]ma (108)

The limit as α tends to 0 is the variational free energy in eq. (18). This is achieved similar to the
batch case as detailed in [6] and by further observing that as α→ 0,

1

2α
log |I + αD−1a Qa| ≈

1

2α
log(1 + αtr(D−1a Qa) +O(α2)) (109)

≈ 1

2
tr(D−1a Qa) (110)

3.5 Implementation

In this section, we provide efficient and numerical stable forms for a practical implementation of the
above results.

3.5.1 The Power-EP approximate marginal likelihood

The first term in eq. (108) can be written as follows,

F1 = logN (ŷ; 0,Kf̂bK−1bbKbf̂ + Σŷ) (111)

= −N +Ma

2
log(2π)− 1

2
log |Kf̂bK−1bbKbf̂ + Σŷ| −

1

2
ŷᵀ(Kf̂bK−1bbKbf̂ + Σŷ)−1ŷ (112)

Let denote Sy = Kf̂bK−1bbKbf̂ + Σŷ, Kbb = LbLᵀ
b, Qa = LqLᵀ

q, Ma = I + αLᵀ
qD−1a Lq and

D = I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb . By using the matrix determinant lemma, we obtain,

log |Sy| = log |Kf̂bK−1bbKbf̂ + Σŷ| (113)

= log |Σŷ|+ log |I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb | (114)
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= log |Σy|+ log |Σa|+ log |D| (115)

Note that,

Kbf̂ Σ−1ŷ Kf̂b = Kbf Σ−1y Kfb + KbaΣ−1a Kab (116)

Kbf Σ−1y Kfb = Kbf (σ2
yI + αQf )−1Kfb (117)

KbaΣ−1a Kab = Kba(Da + αQa)−1Kab (118)

= Kba(D−1a − αD−1a Lq[I + αLᵀ
qD−1a Lq]−1Lᵀ

qD−1a )Kab (119)

= KbaD−1a Kab − αKbaD−1a LqM−1
a Lᵀ

qD−1a Kab (120)

Using the matrix inversion lemma gives us,

S−1y = (Kf̂bK−1bbKbf̂ + Σŷ)−1 (121)

= Σ−1ŷ − Σ−1ŷ Kf̂bL−ᵀb D−1L−1b Kbf̂ Σ−1ŷ (122)

leading to,

ŷᵀS−1y ŷ = ŷᵀΣ−1ŷ ŷ − ŷᵀΣ−1ŷ Kf̂bL−ᵀb D−1L−1b Kbf̂ Σ−1ŷ ŷ (123)

Note that,

ŷᵀΣ−1ŷ ŷ = yᵀΣ−1y y + yᵀ
aΣ−1ya

ya (124)

yᵀΣ−1y y = yᵀ(σ2
yI + αQf )−1y (125)

yᵀ
aΣ−1ya

ya = yᵀ
a(Da + αQa)−1ya (126)

= mᵀ
aS−1a D−1a S−1a ma − αmᵀ

aS−1a LqM−1
a Lᵀ

qS−1a ma (127)

and c = Kbf̂ Σ−1ŷ ŷ (128)

= Kbf Σ−1y y + KbaΣ−1a ya (129)

= Kbf Σ−1y y + KbaS−1a ma − αKbaD−1a LqM−1
a Lᵀ

qS−1a ma (130)

Substituting these results back into equation eq. (108),

F = −1

2
yᵀΣ−1y y +

1

2
αmᵀ

aS−1a LqM−1
a Lᵀ

qS−1a ma +
1

2
cᵀL−ᵀb D−1L−1b c

− 1

2
log |Σy| −

1

2
log |D| − 1

2
log |Sa|+

1

2
log |K′aa| −

1

2α
log |Ma| −

1

2
mᵀ

aS−1a ma

+
N(1− α)

2α
log(σ2

y)− 1− α
2α

log |Σy| −
N

2
log(2π) (131)

3.5.2 Prediction

We revisit and rewrite the optimal approximate distribution, qopt(b), using its natural parameters:

qopt(b) ∝ p(b)N (ŷ,Kf̂bK−1bbb,Σŷ) (132)

= N−1(b; K−1bbKbf̂ Σ−1ŷ ŷ,K−1bb + K−1bbKbf̂ Σ−1ŷ Kf̂bK−1bb) (133)

The predictive covariance at some test points s is,

Vss = Kss −KsbK−1bbKbs + KsbK−1bb(K−1bb + K−1bbKbf̂ Σ−1ŷ Kf̂bK−1bb)−1K−1bbKbs (134)

= Kss −KsbK−1bbKbs + KsbL−ᵀb (I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb )−1L−ᵀb Kbs (135)

= Kss −KsbK−1bbKbs + KsbL−ᵀb D−1L−ᵀb Kbs (136)

And, the predictive mean,

ms = KsbK−1bb(K−1bb + K−1bbKbf̂ Σ−1ŷ Kf̂bK−1bb)−1K−1bbKbf̂ Σ−1ŷ ŷ (137)

= KsbL−ᵀb (I + L−1b Kbf̂ Σ−1ŷ Kf̂bL−ᵀb )−1L−1b Kbf̂ Σ−1ŷ ŷ (138)

= KsbL−ᵀb D−1L−1b Kbf̂ Σ−1ŷ ŷ (139)
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4 Equivalence results

When the hyperparameters and the pseudo-inputs are fixed, α-divergence inference for streaming
sparse GP regression recovers the batch solutions provided by Power-EP with the same α value. In
other words, only a single pass through the data is necessary for Power-EP to converge in sparse GP
regression. This result is in a similar vein to the equivalence between sequential inference and batch
inference in full GP regression, when the hyperparameters are kept fixed. As an illustrative example,
assume that za = zb and θ is kept fixed, and {x1,y1} and {x2,y2} are the first and second data
batches respectively. The optimal variational update gives,

q1(a) ∝ p(a) exp

∫
df1p(f1|a) log p(y1|f1) (140)

q2(a) ∝ q1(a) exp

∫
df2p(f2|a) log p(y2|f2) ∝ p(a) exp

∫
dfp(f |a) log p(y|f) (141)

where y = {y1,y2} and f = {f1, f2}. Equation (141) is exactly identical to the optimal variational
approximation for the batch case of [7], when we group all data batches into one. A similar procedure
can be shown for Power-EP. We demonstrate this equivalence in fig. 1.

In addition, in the setting where hyperparameters and the pseudo-inputs are fixed, if pseudo-points
are added at each stage at the new data input locations, the method returns the true posterior and
marginal likelihood. This equivalence is demonstrated in fig. 2.

-2.0

-1.0

0.0

1.0

2.0

y

-2751.900

online VFE

-2751.900

batch VFE

-2.0

-1.0

0.0

1.0

2.0

y

-1373.789 -4128.308

−2 0 2 4 6 8 10 12

x

-2.0

-1.0

0.0

1.0

2.0

y

-2000.894

−2 0 2 4 6 8 10 12

x

-6129.112

Figure 1: Equivalence between the streaming variational approximation and the batch variational
approximation when hyperparameters and pseudo-inputs are fixed. The inset numbers are the
approximate marginal likelihood (the variational free energy) for each model. Note that the numbers
in the batch case are the cumulative sum of the numbers on the left for the streaming case. Small
differences, if any, are merely due to numerical computation.
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Figure 2: Equivalence between the streaming variational approximation and the exact GP regression
when hyperparameters and pseudo-inputs are fixed, and the pseudo-points are at the training points.
The inset numbers are the (approximate) marginal likelihood for each model. Note that the numbers
in the batch case are the cumulative sum of the numbers on the left for the streaming case. Small
differences, if any, are merely due to numerical computation.

5 Extra experimental results

5.1 Hyperparameter learning on synthetic data

In this experiment, we generated several time series from GPs with known kernel hyperparameters and
observation noise. We tracked the hyperparameters as the streaming algorithm learns and plot their
traces in figs. 3 and 4. It could be seen that for the smaller lengthscale, we need more pseudo-points
to cover the input space and to learn correct hyperparameters. Interestingly, all models including
full GP regression on the entire dataset tend to learn bigger noise variances. Overall, the proposed
streaming method can track and learn good hyperparameters; and if there is enough pseudo-points,
this method performs comparatively to full GP on the entire dataset.

5.2 Learning and inference on a toy time series

As shown in the main text, we construct a synthetic time series to demonstrate the learning procedure
as data arrives sequentially. Figures 5 and 6 show the results for non-iid and iid streaming settings
respectively.

5.3 Binary classification

We consider a binary classification task on the benchmark banana dataset. In particular, we test two
streaming settings, non-iid and iid, as shown in figs. 7 and 8 respectively. In all cases, the streaming
algorithm performs well and reaches the performance of the batch case using a sparse variational
method [8] (as shown in the right-most plots).
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Figure 3: Learnt hyperparameters on a time series dataset, that was generated from a GP with an
exponentiated quadratic kernel and with a lengthscale of 0.5. Note the y−axis show the difference
between the learnt values and the groundtruth.

5.4 Sensitivity to the order of the data

We consider the classification task above but now with more (smaller) mini-batches and the order
of the batches are varied. The aim is to evaluate the sensitivity of the algorithm to the order of the
data. The classification errors as data arrive are included in table 1 and are consistent with what we
included in the main text.

Table 1: Classification errors as data arrive in different orders
Order/Index 1 2 3 4 5 6 7 8 9 10

Left to Right 0.255 0.145 0.1325 0.1225 0.1075 0.11 0.105 0.1 0.0925 0.0875
Right to Left 0.255 0.1475 0.1325 0.12 0.105 0.1025 0.0975 0.0925 0.09 0.095

Random 0.5025 0.2775 0.26 0.2725 0.2875 0.1975 0.1125 0.125 0.105 0.095
Batch 0.095

5.5 Additional plots for the time-series and spatial datasets

In this section, we plot the mean marginal log-likelihood and RMSE against the number of batches
for the models in the “speed versus accuracy” experiment in the main text. Fig. 9 shows the results
for the time-series datasets while fig. 10 shows the results for the spatial datasets.
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Figure 9: Results for time-series datasets with batch sizes 300 and 500. The solid and dashed lines
are for M = 100, 200 respectively.
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Figure 10: Results for spatial data (see fig. 9 for the legend). Solid and dashed lines indicate the
results for M = 400, 600 pseudo-points respectively.
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