
Supplementary Material for Preventing Gradient Explosions in Gated
Recurrent Units

A Proofs of lemmas

First, we show GRU as follows:

zt =sigm(Wxzxt +Whzht−1), (1)
rt =sigm(Wxrxt +Whrht−1), (2)

ht =zt � ht−1 + (1− zt)� h̃t, (3)

h̃t =tanh(Wxhxt +Whh(rt � ht−1)), (4)

where xt ∈ Rm×1 is the input vector, and ht ∈ Rn×1 is the state vector. Wxz ∈ Rn×m, Whz ∈
Rn×n, Wxr ∈ Rn×m, Whr ∈ Rn×n Wxh ∈ Rn×m, and Whh ∈ Rn×n are weight matrices.
sigm(·) and tanh(·) represent the element-wise logistic sigmoid function and hyperbolic tangent,
respectively. 1 is the vector of all ones, and � means the element-wise product.

A.1 Proof of Lemma 1

Lemma 1. A one-layer GRU has a fixed point at h∗ = 0.

Proof. Substituting an input vector xt = 0 and a previous state vector ht−1 = 0 in eqs. (1) and (2),
we get an update gate zt = 1

2 and reset gate rt = 1
2 . Then, substituting xt = 0, ht−1 = 0, rt = 1

2

in eq. (4) gives a candidate state h̃t = 0. Finally, by substituting ht−1 = 0, zt = 1
2 , h̃t = 0 for

eq. (3), we get a new state ht = 0. Therefore, ht−1 = ht = 0 holds, and thus, GRU has a fixed
point h∗ = 0.

A.2 Proof of Lemma 2

Lemma 2. Let I be an n×n identity matrix, λi(·) be the eigenvalue that has the i-th largest absolute
value, and J = 1

4Whh +
1
2I . When the spectral radius |λ1(J)| < 1, a one-layer GRU without input

can be approximated by the following linearized GRU near ht = 0:

ht = Jht−1, (5)

and the fixed point h∗ = 0 of a one-layer GRU is locally stable.

Proof. Local stability can be revealed through the analysis of a linearized system at a fixed point [8].
A linearized GRU at h∗ = 0 without an input can be obtained from a first-order Taylor expansion
[5], as follows:

ht = Jht−1. (6)

In eq. (6), J is the Jacobian matrix of ht with respect to the state ht−1 at ht−1 = 0 and xt = 0; J
is obtained as follows:

J = ∂ht
∂ht−1

∣∣∣
ht−1=0,xt=0

= 1
4Whh +

1
2I. (7)

From eq. (6), we have

ht = J
th0. (8)

Since the J t depends on the t-th powers of the eigenvalues of J , eq. (8) indicates that the eigenvalues
of J determine the behavior of the linearized GRU. From the Hartman-Grobman theorem, the
behavior of a dynamical system near a hyperbolic fixed point is homeomorphic to the behavior of
the linearized system [8]. When |λ1(J)| < 1, the fixed point h∗ = 0 is a hyperbolic fixed point.
Therefore, a one-layer GRU without input can be approximated as eq. (6). Then, local stability
is determined by the spectral radius |λ1(J)|. When |λ1(J)| < 1, we have limt→∞ |ht − h∗| =
limt→∞ |ht| = limt→∞ |J th0| = 0 for ht whose initial value h0 is sufficiently near h∗ = 0. As a
result, the fixed point h∗ = 0 is locally stable.
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A.3 Proof of Lemma 3

Lemma 3. When σ1(Whh) < 2, we have |λ1( 14Whh +
1
2I)| < 1.

Proof. Let M be an n × n square matrix and c be a scalar value; the eigenvalue of M + cI
becomes λi(M) + c. Therefore, |λ1( 14Whh +

1
2I)| = |

1
4λ1(Whh) +

1
2 | holds. From the triangle

inequality, | 14λ1(Whh) +
1
2 | ≤

1
4 |λ1(Whh)|+ 1

2 . We have Weyl’s inequality for its singular values
and eigenvalues:

∑k
i=1 |λi(M)| ≤

∑k
i=1 σi(M) for k = 1, 2, . . . , n. Therefore, |λ1(Whh)| ≤

σ1(Whh) and 1
4 |λ1(Whh)|+ 1

2 is less than or equal to 1
4σ1(Whh)+

1
2 . As a result, when σ1(Whh) <

2, we have 1 > 1
4σ1(Whh) +

1
2 ≥

1
4 |λ1(Whh)| + 1

2 ≥ |λ1(
1
4Whh + 1

2I)|. Therefore, we have
|λ1( 14Whh +

1
2I)| < 1 when σ1(Whh) < 2.

A.4 Proof of Lemma 4

Lemma 4. When |λ1( 14Wl,hh +
1
2I)| < 1 for l = 1, . . . , L, the fixed point h∗ = 0 of a multi-layer

GRU is locally stable.

Proof. In the same way as the one-layer GRU, ht = [hT
1,t, . . . ,h

T
L,t]

T = 0 is a fixed point, and the
Jacobian matrix ∂ht

∂ht−1
at ht−1 = 0 and xt = 0 becomes

J =



∂h1,t
∂h1,t−1

O ... O

∂h2,t
∂h1,t−1

∂h2,t
∂h2,t−1

O ...
...

...
. . . . . .

∂hL−1,t
∂h1,t−1

∂hL−1,t
∂h2,t−1

...
∂hL−1,t
∂hL−1,t−1

O

∂hL,t
∂h1,t−1

∂hL,t
∂h2,t−1

...
∂hL,t

∂hL−1,t−1

∂hL,t
∂hL,t−1


. (9)

This matrix is a block lower triangular matrix. The diagonal and off-diagonal blocks respectively
become
∂hl,t
∂hl,t−1

= Al, (10)

∂hl,t
∂hl−d,t−1

=
∑d
p=0

[∏p−1
k=0(Bl−k)Al−p

∏−p+d−1
q=0 (Bl−p−q)

]
, (11)

whereAl =
1
4Wl,hh +

1
2I ,Bl =

1
2Wl,xh,Wl,hh andWl,xh are weight matrices of the GRU at the

l-th layer. Because the eigenvalues of a block lower triangular matrix correspond to the eigenvalues
of diagonal blocks, the eigenvalues of J can be obtained from those of ∂hl,t

∂hl,t−1
for l = 1, . . . , L.

Therefore, the spectral radius becomes

|λ1(J)| = maxl |λ1( 14Wl,hh +
1
2I)|. (12)

As a result, when |λ1( 14Wl,hh +
1
2I)| < 1 for l = 1, . . . , L, |λ1(J)| = maxl |λ1( 14Wl,hh +

1
2I)| <

1.

A.5 Proof of Lemma 5

Lemma 5. The weight matrixW (τ)
hh obtained by Pδ(·) in our method is a solution of the following

optimization:

min
W

(τ)
hh

||Ŵ (τ)
hh −W

(τ)
hh ||2F , s.t. σ1(W

(τ)
hh )≤2−δ, (13)

where || · ||2F represents the Frobenius norm.

Proof. The following inequality holds for any square matricesM ∈ Rq×q andK ∈ Rq×q [2]:∑q
i=1{σi(M)− σi(K)}2 ≤ ||M −K||2F , (14)

Equation (14) gives ||Ŵ (τ)
hh −W

(τ)
hh ||2F ≥

∑n
i=1{σi(Ŵ

(τ)
hh )− σi(W (τ)

hh )}2. In addition, the lower
bound of the right hand side is

∑n
i=1{σi(Ŵ

(τ)
hh )−σi(W (τ)

hh )}2 ≥
∑s
i=1{(σi(Ŵ

(τ)
hh )−(2−δ)}2, where
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s is the number of singular values that are greater than 2− δ. On the other hand, using our method,
the Frobenius norm becomes ||Ŵ (τ)

hh −W
(τ)
hh ||2F = ||UΣV − UΣ̄V ||2F = ||U(Σ − Σ̄)V ||2F =

tr(V ∗(Σ− Σ̄)U∗U(Σ− Σ̄)V ) = tr(V ∗(Σ− Σ̄)2V ) = tr(V V ∗(Σ− Σ̄)2) = tr((Σ− Σ̄)2) =∑s
i=1{σi(Ŵ

(τ)
hh )− (2− δ)}2, where tr(·) is the trace of a matrix. As described above, the obtained

W
(τ)
hh satisfies ||Ŵ (τ)

hh −W
(τ)
hh ||2F =

∑s
i=1{σi(Ŵ

(τ)
hh )− (2− δ)}2, and this is the lower bound of

eq. (13). Therefore, it is the solution of eq. (13).

A.6 Proof of Lemma 6

Lemma 6. The singular value of Ŵ (τ)
hh is bounded as the following inequality:

σi(Ŵ
(τ)
hh ) ≤ σi(W (τ−1)

hh ) + |η|||∇Whh
CDτ (θ))||F . (15)

Proof. The following inequalities hold for any square matrices M ∈ Rq×q and K ∈ Rq×q [1]:
σi+j−1(M + K) ≤ σi(M) + σj(K), and σ1(K) ≤ ||K||F . As a result, σi−1(M + K) ≤
σi(M) + σ1(K) ≤ σi(M) + ||K||F . Therefore, σi(Ŵ

(τ)
hh ) = σi(W

(τ−1)
hh − η∇Whh

CDτ (θ))) ≤
σi(W

(τ−1)
hh ))+σ1(−η∇Whh

CDτ (θ))) = σi(W
(τ−1)
hh ))+ |η|σ1(∇Whh

CDτ (θ))) ≤ σi(W
(τ−1)
hh )+

|η|||∇Whh
CDτ (θ))||F .

B Preliminary Experiments

We conducted preliminary experiments in order to select the learning methods (such as Adam [4]
or RMSprop [6]) and tune the hyper-parameters. In these experiments, we evaluated the model for
each experimental condition. The model architectures were as the same as in the main experiments in
the paper. The number of epochs was set to 60 in the language modeling experiment. In the music
modeling experiments of Adam and RMSprop, we stopped the learning process if we observed no
improvement of over 50 consecutive epochs. The experimental condition of the music modeling
experiment of SGD is the same as in the main experiment. We evaluated the validation losses at
each epoch, and we compared the methods using their lowest losses during their learning processes.
Thresholds of gradient clipping were set to 5 in language modeling and 15 in music modeling
because the average norms of the gradient in language modeling and music modeling were 10 and 30,
respectively. In the language modeling experiment of SGD with the learning rate 0.1, we evaluated
thresholds [5, 10, 15, 20] and delta of our methods [0.6, 0.9, 1.2, 1.5, 1.8]. This is because the small
threshold degraded performance when the small learning rate was used. In addition, we evaluated
success rates because we expected that the small learning rate might alleviate the gradient exploding
problem.

B.1 Learning Method and Range of Hyper-parameters

Learning methods and their hyper-parameters we examined were as follows:

• Adam: α ∈ {10−2, 10−3, 10−4}, β1 = 0.9, β2 = 0.999, ε = 10−8.
• RMSprop: Learning rate η ∈ {10−2, 10−3, 10−4}, β = 0.99, ε = 10−8.
• SGD: We set learning rate η to 1.0 and we divided η by {1.2, 1.1, 1.05} for each epoch after

10 epochs in language modeling on the basis of the previous study [9]. We also evaluated
learning rate 0.1 without decay. In music modeling, we set η to 0.1 and divided η by 1.25 if
we observed no improvement over 10 consecutive epochs following the previous study [3].

B.2 Results

The lowest validation losses in the learning processes are listed in Tables 1 - 3. In Table 1, N/A means
the validation perplexity diverged in the learning process. Tables 1 and 2 show the GRU trained by
SGD (η divided by 1.1) achieved the lowest perplexity. Therefore, we used SGD (η divided by 1.1) in
the main experiments in language modeling. In Table 3, Adam (α = 10−3) achieved the lowest loss
among the results of our method. On the other hand, SGD achieved the lowest loss among the results
of gradient clipping. SGD achieved the 2nd lowest loss among the results of our method. Since both
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Table 1: Language modeling results
Our method δ = 0.2 Gradient clipping threshold = 5

Method (hyper-parameters) Validation Method (hyper-parameters) Validation

Adam (α = 10−2) 116.7 Adam (α = 10−2) N/A
Adam (α = 10−3) 121.0 Adam (α = 10−3) 121.1
Adam (α = 10−4) 164.2 Adam (α = 10−4) 167.2

RMSprop (η = 10−2) 129.0 RMSprop (η = 10−2) N/A
RMSprop (η = 10−3) 116.0 RMSprop (η = 10−3) 115.5
RMSprop (η = 10−4) 166.5 RMSprop (η = 10−4) 167.0

SGD (η divided by 1.2) 105.5 SGD (η divided by 1.2) 109.5
SGD (η divided by 1.1) 103.5 SGD (η divided by 1.1) 109.2
SGD (η divided by 1.05) 105.2 SGD (η divided by 1.05) 109.9

Table 2: Language modeling results (SGD η = 0.1)
Our method Gradient clipping

Delta 0.2 0.5 0.8 1.1 1.4 Threshold 5 10 15 20

Success Rate 100 % 100 % 100 % 100 % 100 % Success Rate 50 % 100 % 100 % 80 %
Validation 138.1±0.8 137.9±0.7 137.4±0.6 137.0±0.6 136.8±0.4 Validation 178.8±0.8 154.7±0.8 145.1±0.8 219.3±1

Table 3: Music modeling results
Our method δ = 0.2 Gradient clipping threshold = 15

Method (hyper-parameters) Validation Method (hyper-parameters) Validation

Adam (α = 10−2) 4.37 Adam (α = 10−2) 13.7
Adam (α = 10−3) 3.38 Adam (α = 10−3) 3.73
Adam (α = 10−4) 10.8 Adam (α = 10−4) 12.9

RMSprop (η = 10−2) 4.80 RMSprop (η = 10−2) 13.9
RMSprop (η = 10−3) 3.42 RMSprop (η = 10−3) 3.56
RMSprop (η = 10−4) 3.58 RMSprop (η = 10−4) 3.63

SGD 3.42 SGD 3.55

Table 4: Language modeling results of gradient elementwise clipping
Gradient clipping

Threshold 0.0015 0.003 0.0045 0.006

Success Rate 70 % 10 % 10 % 10 %
Validation 268.7.8±0.9 326.5 310.3 330.6
Validation 276.0±1.7 331.3 312.9 334.8

of our method and gradient clipping showed good performance, we used SGD (learning rate schedule
was set as the previous study [3]) in music modeling.

C Gradient Elementwise Clipping

We evaluated gradient elementwise clipping in language modeling. No previous studies suggested
guidlines for tuning a threshold of gradient elementwise clipping to the best of our knowledge.
Therefore, we tuned the threshold based on the average value of the elements of the gradient in the
same way as the gradient norm clipping. We varied the threshold in [0.0015, 0.003, 0.0045, 0.006]
because the average value of the elements of the gradient was about 0.003. The other settings of the
experiment is the same as that of gradient norm clipping.

The results of gradient elementwise clipping are listed in Table 4. We can see that perplexity and
success rate of gradient elementwise clipping were lower than gradient norm clipping. This is because
gradient elementwise clipping changes the direction of parameter updates as the results of clipping
while gradient norm clipping does not change the direction. In addition, gradient elementwise clipping
was more difficult to tune the threshold than that of gradient norm clipping because elementwise
clipping uniformly clips elements of the gradient of which scales are different among the parameters.
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D Conditions of Computation Time Experiment

The conditions of this experiment were the same as in the language modeling experiment using our
proposed method (δ = 0.2) and gradient clipping (threshold = 5). The experiment used the following
set up: GPU: NVIDIA Tesla M40, CPU: Intel Xeon E5-2640 v4 2.40GHz, 1 TB of main memory,
Ubuntu 16.04, CUDA (version 8.0) and cuDNN (version 5.1). The implementation of our model was
based on Chainer (version 1.18.0) [7], and used NumPy (version1.12.1) for the naive SVD and fbpca1

for the truncated SVD.
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