
Appendix: Deep Sets

A Proofs and Discussion Related to Theorem 2
A function f transforms its domain X into its range Y . Usually, the input domain is a vector space
Rd and the output response range is either a discrete space, e.g. {0, 1} in case of classification, or a
continuous space R in case of regression.

Now, if the input is a set X = {x1, . . . , xM}, xm ∈ X, i.e. X = 2X, then we would like the response
of the function not to depend on the ordering of the elements in the set. In other words,

Property 1 A function f : 2X → R acting on sets must be permutation invariant to the order of
objects in the set, i.e.

f({x1, ..., xM}) = f({xπ(1), ..., xπ(M)}) (7)
for any permutation π.

Now, roughly speaking, we claim that such functions must have a structure of the form f(X) =
ρ
(∑

x∈X φ(x)
)

for some functions ρ and φ. Over the next two sections we try to formally prove this
structure of the permutation invariant functions.

A.1 Countable Case

Theorem 2 Assume the elements are countable, i.e. |X| < ℵ0. A function f : 2X → R operating on
a set X can be a valid set function, i.e. it is permutation invariant to the elements in X , if and only if
it can be decomposed in the form ρ

(∑
x∈X φ(x)

)
, for suitable transformations φ and ρ.

Proof. Permutation invariance follows from the fact that sets have no particular order, hence any
function on a set must not exploit any particular order either. The sufficiency follows by observing
that the function ρ

(∑
x∈X φ(x)

)
satisfies the permutation invariance condition.

To prove necessity, i.e. that all functions can be decomposed in this manner, we begin by noting
that there must be a mapping from the elements to natural numbers functions, since the elements
are countable. Let this mapping be denoted by c : X → N. Now if we let φ(x) = 4−c(x) then∑
x∈X φ(x) constitutes an unique representation for every set X ∈ 2X. Now a function ρ : R→ R

can always be constructed such that f(X) = ρ
(∑

x∈X φ(x)
)
.

A.2 Uncountable Case

The extension to case when X is uncountable, e.g. X = [0, 1], is not so trivial. We could only prove in
case of fixed set size, e.g. X = [0, 1]M instead of X = 2X = 2[0,1], that any permutation invariant
continuous function can be expressed as ρ

(∑
x∈X φ(x)

)
. Also, we show that there is a universal

approximator of the same form. These results are discussed below.

To illustrate the uncountable case, we assume a fixed set size of M . Without loss of generality we
can let X = [0, 1]. Then the domain becomes [0, 1]M . Also, to handle ambiguity due to permutation,
we often define the domain to be the set X = {(x1, ..., xM) ∈ [0, 1]M : x1 ≤ x2 ≤ · · · ≤ xM} for
some ordering of the elements in X.

The proof builds on the famous Newton-Girard formulae which connect moments of a sample set
(sum-of-power) to the elementary symmetric polynomials. But first we present some results needed
for the proof. The first result establishes that sum-of-power mapping is injective.

Lemma 4 Let X = {(x1, ..., xM) ∈ [0, 1]M : x1 ≤ x2 ≤ · · · ≤ xM}. The sum-of-power mapping
E : X → RM+1 defined by the coordinate functions

Zq := Eq(X) :=

M∑
m=1

(xm)q, q = 0, ...,M. (8)

is injective.

Proof. Suppose for some u, v ∈ X , we have E(u) = E(v). We will now show that it must be the
case that u = v. Construct two polynomials as follows:

Pu(x) =

M∏
m=1

(x− um) Pv(x) =

M∏
m=1

(x− vm) (9)

12

If we expand the two polynomials we obtain:

Pu(x) = xM − a1x
M−1 + · · · (−1)M−1aM−1x+ (−1)MaM

Pv(x) = xM − b1xM−1 + · · · (−1)M−1bM−1x+ (−1)MbM
(10)

with coefficients being elementary symmetric polynomials in u and v respectively, i.e.

am =
∑

1≤j1<j2<···<jm≤M

uj1uj2 · · ·ujm bm =
∑

1≤j1<j2<···<jm≤M

vj1vj2 · · · vjm (11)

These elementary symmetric polynomials can be uniquely expressed as a function of E(u) and E(v)
respectively, by Newton-Girard formula. The m-th coefficient is given by the determinant of m×m
matrix having terms from E(u) and E(v) respectively:

am =
1

m
det

E1(u) 1 0 0 · · · 0
E2(u) E1(u) 1 0 · · · 0
E3(u) E2(u) E1(u) 1 · · · 0

...
...

...
...

. . .
...

Em−1(u) Em−2(u) Em−3(u) Em−4(u) · · · 1
Em(u) Em−1(u) Em−2(u) Em−3(u) · · · E1(u)

bm =
1

m
det

E1(v) 1 0 0 · · · 0
E2(v) E1(v) 1 0 · · · 0
E3(v) E2(v) E1(v) 1 · · · 0

...
...

...
...

. . .
...

Em−1(v) Em−2(v) Em−3(v) Em−4(v) · · · 1
Em(v) Em−1(v) Em−2(v) Em−3(v) · · · E1(v)

(12)

Since we assumed E(u) = E(v) implying [a1, ..., aM] = [b1, ..., bM], which in turn implies that the
polynomials Pu and Pv are the same. Therefore, their roots must be the same, which shows that
u = v.

The second result we borrow from [46] which establishes a homeomorphism between coefficients
and roots of a polynomial.

Theorem 5 [46] The function f : CM → CM , which associates every a ∈ CM to the multiset of
roots, f(a) ∈ CM , of the monic polynomial formed using a as the coefficient i.e. xM + a1x

M−1 +
· · · (−1)M−1aM−1x+ (−1)MaM , is a homeomorphism.

Among other things, this implies that (complex) roots of a polynomial depends continuously on the
coefficients. We will use this fact for our next lemma.

Finally, we establish a continuous inverse mapping for the sum-of-power function.

Lemma 6 Let X = {(x1, ..., xM) ∈ [0, 1]M : x1 ≤ x2 ≤ · · · ≤ xM}. We define the sum-of-power
mapping E : X → Z by the coordinate functions

Zq := Eq(X) :=

M∑
m=1

(xm)q, q = 0, ...,M. (13)

where Z is the range of the function. The function E has a continuous inverse mapping.

Proof. First of all note that Z , the range of E, is a compact set. This follows from following
observations:

• The domain of E is a bounded polytope (i.e. a compact set),
• E is a continuous function, and
• image of a compact set under a continuous function is a compact set.

To show the continuity of inverse mapping, we establish connection to the continuous dependence of
roots of polynomials on its coefficients.

13

As in Lemma 4, for any u ∈ X , let z = E(u) and construct the polynomial:

Pu(x) =

M∏
m=1

(x− um) (14)

If we expand the polynomial we obtain:

Pu(x) = xM − a1x
M−1 + · · · (−1)M−1aM−1x+ (−1)MaM (15)

with coefficients being elementary symmetric polynomials in u, i.e.

am =
∑

1≤j1<j2<···<jm≤M

uj1uj2 · · ·ujm (16)

These elementary symmetric polynomials can be uniquely expressed as a function of z by Newton-
Girard formula:

am =
1

m
det

z1 1 0 0 · · · 0
z2 z1 1 0 · · · 0
z3 z2 z1 1 · · · 0
...

...
...

...
. . .

...
zm−1 zm−2 zm−3 zm−4 · · · 1
zm zm−1 zm−2 zm−3 · · · z1

 (17)

Since determinants are just polynomials, a is a continuous function of z. Thus to show continuity
of inverse mapping of E, it remains to show continuity from a back to the roots u. In this regard,
we invoke Theorem 5. Note that homeomorphism implies the mapping as well as its inverse is
continuous. Thus, restricting to the compact set Z where the map from coefficients to roots only goes
to the reals, the desired result follows. To explicitly check the continuity, note that limit of E−1(z),
as z approaches z∗ from inside Z , always exists and is equal to E−1(z∗) since it does so in the
complex plane.

With the lemma developed above we are in a position to tackle the main theorem.

Theorem 7 Let f : [0, 1]M → R be a permutation invariant continuous function iff it has the
representation

f(x1, ..., xM) = ρ

(
M∑
m=1

φ(xm)

)
(18)

for some continuous outer and inner function ρ : RM+1 → R and φ : R→ RM+1 respectively. The
inner function φ is independent of the function f .

Proof. The sufficiency follows by observing that the function ρ
(∑M

m=1 φ(xm)
)

satisfies the permu-
tation invariance condition.

To prove necessity, i.e. that all permutation invariant continuous functions over the compact set can
be expressed in this manner, we divide the proof into two parts, with outline in Fig. 4. We begin

Figure 4: Outline of the proof strategy for Theorem 2.1. The proof consists of two parts. First, we desire to show
that we can find unique embeddings for each possible input, i.e. we show that there exists a homeomorphism E
of the form E(X) =

∑
x∈X φ(x) between original domain and some higher dimensional space Z . The second

part of the proof consists of showing we can map the embedding to desired target value, i.e. to show the existence
of the continuous map ρ between Z and original target space such that f(X) = ρ(

∑
x∈X φ(x)).

14

by looking at the continuous embedding formed by the inner function: E(X) =
∑M
m=1 φ(xm).

Consider φ : R → RM+1 defined as φ(x) = [1, x, x2, ..., xM]. Now as E is a polynomial, the
image of [0, 1]M in RM+1 under E is a compact set as well, denote it by Z . Then by definition, the
embedding E : [0, 1]M → Z is surjective. Using Lemma 4 and 6, we know that upon restricting
the permutations, i.e. replacing [0, 1]M with X = {(x1, ..., xM) ∈ [0, 1]M : x1 ≤ x2 ≤ · · · ≤ xM},
the embedding E : X → Z is injective with a continuous inverse. Therefore, combining these
observation we get that E is a homeomorphism between X and Z . Now it remains to show that we
can map the embedding to desired target value, i.e. to show the existence of the continuous map
ρ : Z → R such that ρ(E(X)) = f(X). In particular consider the map ρ(z) = f(E−1(z)). The
continuity of ρ follows directly from the fact that composition of continuous functions is continuous.
Therefore we can always find continuous functions φ and ρ to express any permutation invariant
function f as ρ

(∑M
m=1 φ(xm)

)
.

A very similar but more general results holds in case of any continuous function (not necessarily
permutation invariant). The result is known as Kolmogorov-Arnold representation theorem [47, Chap.
17] which we state below:

Theorem 8 (Kolmogorov–Arnold representation) Let f : [0, 1]M → R be an arbitrary multivariate
continuous function iff it has the representation

f(x1, ..., xM) = ρ

(
M∑
m=1

λmφ(xm)

)
(19)

with continuous outer and inner functions ρ : R2M+1 → R and φ : R→ R2M+1. The inner function
φ is independent of the function f .

This theorem essentially states a representation theorem for any multivariate continuous function.
Their representation is very similar to the one we are proved, except for the dependence of inner
transformation on the co-ordinate through λm. Thus it is reassuring that behind all the beautiful
mathematics something intuitive is happening. If the function is permutation invariant, this dependence
on co-ordinate of the inner transformation gets dropped!

Further we can show that arbitrary approximator having the same form can be obtained for continuous
permutation-invariant functions.

Theorem 9 Assume the elements are from a compact set in Rd, i.e. possibly uncountable, and the
set size is fixed to M . Then any continuous function operating on a set X , i.e. f : Rd×M → R which
is permutation invariant to the elements in X can be approximated arbitrarily close in the form of
ρ
(∑

x∈X φ(x)
)
, for suitable transformations φ and ρ.

Proof. Permutation invariance follows from the fact that sets have no particular order, hence any
function on a set must not exploit any particular order either. The sufficiency follows by observing
that the function ρ

(∑
x∈X φ(x)

)
satisfies the permutation invariance condition.

To prove necessity, i.e. that all continuous functions over the compact set can be approximated
arbitrarily close in this manner, we begin noting that polynomials are universal approximators by
Stone–Weierstrass theorem [48, sec. 5.7]. In this case the Chevalley-Shephard-Todd (CST) theorem
[49, chap. V, theorem 4], or more precisely, its special case, the Fundamental Theorem of Symmetric
Functions states that symmetric polynomials are given by a polynomial of homogeneous symmetric
monomials. The latter are given by the sum over monomial terms, which is all that we need since it
implies that all symmetric polynomials can be written in the form required by the theorem.

Finally, we still conjecture that even in case of sets of all sizes, i.e. when the domain is 2[0,1], a
representation of the form f(X) = ρ

(∑
x∈X φ(x)

)
should exist for all “continuous” permutation

invariant functions for some suitable transformations ρ and φ. However, in this case even what a
“continuous” function means is not clear as the space 2[0,1] does not have any natural topology. As
a future work, we want to study further by defining various topologies, like using Fréchet distance
as used in [46] or MMD distance. Our preliminary findings in this regards hints that using MMD
distance if the representation is allowed to be in `2, instead of being finite dimensional, then the
conjecture seems to be provable. Thus, clearly this direction needs further exploration. We end this
section by providing some examples:

15

Examples:

• x1x2(x1 + x2 + 3), Consider φ(x) = [x, x2, x3] and ρ([u, v, w]) = uv−w+ 3(u2− v)/2,
then ρ(φ(x1) + φ(x2)) is the desired function.

• x1x2x3 + x1 + x2 + x3, Consider φ(x) = [x, x2, x3] and ρ([u, v, w]) = (u3 + 2w −
3uv)/6 + u, then ρ(φ(x1) + φ(x2) + φ(x3)) is the desired function.
• 1/n(x1 +x2 +x3 + ...+xm), Consider φ(x) = [1, x] and ρ([u, v]) = v/u, then ρ(φ(x1) +
φ(x2) + φ(x3) + ...+ φ(xm)) is the desired function.
• max{x1, x2, x3, ..., xm}, Consider φ(x) = [eαx, xeαx] and ρ([u, v]) = v/u, then as α →
∞, then we have ρ(φ(x1)+φ(x2)+φ(x3)+ ...+φ(xm)) approaching the desired function.

• Second largest among {x1, x2, x3, ..., xm}, Consider φ(x) = [eαx, xeαx] and ρ([u, v]) =
(v− (v/u)eαv/u)/(u− eαv/u), then as α→∞, we have ρ(φ(x1) + φ(x2) + φ(x3) + ...+
φ(xm)) approaching the desired function.

16

B Proof of Lemma 3
Our goal is to design neural network layers that are equivariant to permutations of elements in the
input x. The function f : XM → YM is equivariant to the permutation of its inputs iff

f(πx) = πf(x) ∀π ∈ SM
where the symmetric group SM is the set of all permutation of indices 1, . . . ,M .

Consider the standard neural network layer

fΘ(x)
.
= σ(Θx) Θ ∈ RM×M (20)

where Θ is the weight vector and σ : R→ R is a nonlinearity such as sigmoid function. The following
lemma states the necessary and sufficient conditions for permutation-equivariance in this type of
function.

Lemma 3 The function fΘ : RM → RM as defined in (20) is permutation equivariant if and only if
all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well.
That is,

Θ = λI + γ (11T) λ, γ ∈ R 1 = [1, . . . , 1]T ∈ RM

where I ∈ RM×M is the identity matrix.

Proof.
From definition of permutation equivariance fΘ(πx) = πfΘ(x) and definition of f in (20), the
condition becomes σ(Θπx) = πσ(Θx), which (assuming sigmoid is a bijection) is equivalent to
Θπ = πΘ. Therefore we need to show that the necessary and sufficient conditions for the matrix
Θ ∈ RM×M to commute with all permutation matrices π ∈ SM is given by this proposition. We
prove this in both directions:

• To see why Θ = λI + γ (11T) commutes with any permutation matrix, first note that
commutativity is linear – that is

Θ1π = πΘ1 ∧Θ2π = πΘ2 ⇒ (aΘ1 + bΘ2)π = π(aΘ1 + bΘ2).

Since both Identity matrix I, and constant matrix 11T, commute with any permutation
matrix, so does their linear combination Θ = λI + γ (11T).

• We need to show that in a matrix Θ that commutes with “all” permutation matrices
– All diagonal elements are identical: Let πk,l for 1 ≤ k, l ≤M,k 6= l, be a transposition

(i.e. a permutation that only swaps two elements). The inverse permutation matrix of
πk,l is the permutation matrix of πl,k = πT

k,l. We see that commutativity of Θ with the
transposition πk,l implies that Θk,k = Θl,l:

πk,lΘ = Θπk,l ⇒ πk,lΘπl,k = Θ ⇒ (πk,lΘπl,k)l,l = Θl,l ⇒ Θk,k = Θl,l

Therefore, π and Θ commute for any permutation π, they also commute for any
transposition πk,l and therefore Θi,i = λ ∀i.

– All off-diagonal elements are identical: We show that since Θ commutes with any
product of transpositions, any choice two off-diagonal elements should be identical.
Let (i, j) and (i′, j′) be the index of two off-diagonal elements (i.e. i 6= j and i′ 6= j′).
Moreover for now assume i 6= i′ and j 6= j′. Application of the transposition πi,i′Θ,
swaps the rows i, i′ in Θ. Similarly, Θπj,j′ switches the jth column with j′th column.
From commutativity property of Θ and π ∈ Sn we have

πj′,jπi,i′Θ = Θπj′,jπi,i′ ⇒ πj′,jπi,i′Θ(πj′,jπi,i′)
−1 = Θ ⇒

πj′,jπi,i′Θπi′,iπj,j′ = Θ ⇒ (πj′,jπi,i′Θπi′,iπj,j′)i,j = Θi,j ⇒ Θi′,j′ = Θi,j

where in the last step we used our assumptions that i 6= i′, j 6= j′, i 6= j and i′ 6= j′. In
the cases where either i = i′ or j = j′, we can use the above to show that Θi,j = Θi′′,j′′

and Θi′,j′ = Θi′′,j′′ , for some i′′ 6= i, i′ and j′′ 6= j, j′, and conclude Θi,j = Θi′,j′ .

17

C More Details on the architecture

C.1 Invariant model

The structure of permutation invariant functions in Theorem 2 hints at a general strategy for in-
ference over sets of objects, which we call deep sets. Replacing φ and ρ by universal approxima-
tors leaves matters unchanged, since, in particular, φ and ρ can be used to approximate arbitrary
polynomials. Then, it remains to learn these approximators. This yields in the following model:

+

ϕ
ρ

X

x1

x2

z
Optional

conditioning

based on meta-

information

S(X)

Figure 5: Architecture of DeepSets: Invariant

• Each instance xm∀1 ≤ m ≤ M is
transformed (possibly by several lay-
ers) into some representation φ(xm).

• The addition
∑
m φ(xm) of these rep-

resentations processed using the ρ net-
work very much in the same manner
as in any deep network (e.g. fully con-
nected layers, nonlinearities, etc).

• Optionally: If we have additional meta-
information z, then the above men-
tioned networks could be conditioned
to obtain the conditioning mapping
φ(xm|z).

In other words, the key to deep sets is to add up
all representations and then apply nonlinear transformations.

The overall model structure is illustrated in Fig. 7.

This architecture has a number of desirable properties in terms of universality and correctness. We
assume in the following that the networks we choose are, in principle, universal approximators. That
is, we assume that they can represent any functional mapping. This is a well established property (see
e.g. [50] for details in the case of radial basis function networks).

What remains is to state the derivatives with regard to this novel type of layer. Assume parametrizations
wρ and wφ for ρ and φ respectively. Then we have

∂wφρ

(∑
x′∈X

φ(x′)

)
= ρ′

(∑
x′∈X

φ(x)

) ∑
x′∈X

∂wφφ(x′)

This result reinforces the common knowledge of parameter tying in deep networks when ordering is
irrelevant. Our result backs this practice with theory and strengthens it by proving that it is the only
way to do it.

C.2 Equivariant model

Consider the standard neural network layer

fΘ(x) = σ(Θx) (21)

where Θ ∈ RM×M is the weight vector and σ : RM → RM is a point-wise nonlinearity such as a
sigmoid function. The following lemma states the necessary and sufficient conditions for permutation-
equivariance in this type of function.

Figure 6: Illustration of permuta-
tion equivariant layer. Same color
indicates weight sharing.

Lemma 3 The function fΘ(x) = σ(Θx) for Θ ∈ RM×M is
permutation equivariant, iff all the off-diagonal elements of Θ are
tied together and all the diagonal elements are equal as well. That
is,

Θ = λI + γ (11T) λ, γ ∈ R 1 = [1, . . . , 1]T ∈ RM

where I ∈ RM×M is the identity matrix.

This function is simply a non-linearity applied to a weighted com-
bination of i) its input Ix and; ii) the sum of input values (11T)x.
Since summation does not depend on the permutation, the layer is

18

permutation-equivariant. Therefore we can manipulate the operations and parameters in this layer,
for example to get another variation f(x) = σ (λIx + γ maxpool(x)1), where the maxpooling
operation over elements of the set (similarly to summation) is commutative. In practice using this
variation performs better in some applications.

+
ϕ

X

x1

x2

z
Optional

conditioning

based on meta-

information

Y y1
y2

Λ

Γ

Figure 7: Architecture of DeepSets: Equivariant

So far we assumed that each instance xm ∈ R
– i.e. a single input and also output channel.
For multiple input-output channels, we may
speed up the operation of the layer using matrix
multiplication. For D/D′ input/output channels
(i.e. x ∈ RM×D, y ∈ RM×D′ , this layer be-
comes

f(x) = σ
(
xΛ − 11TxΓ

)
(22)

where Λ,Γ ∈ RD×D′ are model parameters. As
before, we can have a maxpool version as: f(x) = σ

(
xΛ − 1maxpool(x)Γ

)
where maxpool(x) =

(maxm x) ∈ R1×D is a row-vector of maximum value of x over the “set” dimension. We may further
reduce the number of parameters in favor of better generalization by factoring Γ and Λ and keeping a
single Λ ∈ RD,D′ and β ∈ RD′

f(x) = σ
(
β +

(
x − 1maxpool(x)

)
Γ
)

(23)

Stacking: Since composition of permutation equivariant functions is also permutation equivariant,
we can build deep models by stacking layers of (23). Moreover, application of any commutative
pooling operation (e.g. max-pooling) over the set instances produces a permutation invariant function.

+
ϕ

X

x1

x2

z
Optional

conditioning

based on meta-

information

Y y1
y2

Λ

Γ

Λ

+ Γ

Figure 8: Using multiple permutation equivariant layers. Since permutation equivariance compose we can stack
multiple such layers

19

D Bayes Set [36]
Bayesian sets consider the problem of estimating the likelihood of subsets X of a ground set X . In
general this is achieved by an exchangeable model motivated by deFinetti’s theorem concerning
exchangeable distributions via

p(X|α) =

∫
dθ

[
M∏
m=1

p(xm|θ)

]
p(θ|α). (24)

This allows one to perform set expansion, simply via the score

s(x|X) = log
p(X ∪ {x} |α)

p(X|α)p({x} |α)
(25)

Note that s(x|X) is the pointwise mutual information between x and X . Moreover, due to exchange-
ability, it follows that regardless of the order of elements we have

S(X) :=

M∑
m=1

s (xm| {xm−1, . . . x1}) = log p(X|α)−
M∑
m=1

log p({xm} |α) (26)

In other words, we have a set function log p(X|α) with a modular term-dependent correction. When
inferring sets it is our goal to find set completions {xm+1, . . . xM} for an initial set of query terms
{x1, . . . , xm} such that the aggregate set is well coherent. This is the key idea of the Bayesian Set
algorithm.

D.1 Exponential Family

In exponential families, the above approach assumes a particularly nice form whenever we have
conjugate priors. Here we have

p(x|θ) = exp (〈φ(x), θ〉 − g(θ)) and p(θ|α,M0) = exp (〈θ, α〉 −M0g(θ)− h(α,M0)) . (27)

The mapping φ : x→ F is usually referred as sufficient statistic of x which maps x into a feature
space F . Moreover, g(θ) is the log-partition (or cumulant-generating) function. Finally, p(θ|α,M0)
denotes the conjugate distribution which is in itself a member of the exponential family. It has the
normalization h(α,M0) =

∫
dθ exp (〈θ, α〉 −M0g(θ)). The advantage of this is that s(x|X) and

S(X) can be computed in closed form [36] via

s(X) = h (α+ φ(X),M0 +M) + (M − 1)h(α,M0)−
M∑
m=1

h(α+ φ(xm),M + 1) (28)

s(x|X) = h (α+ φ({x} ∪X),M0 +M + 1) + h(α,M0) (29)
− h (α+ φ(X),M0 +M)− h(α+ φ(x),M + 1)

For convenience we defined the sufficient statistic of a set to be the sum over its constituents, i.e.
φ(X) =

∑
m φ(xm). It allows for very simple computation and maximization over additional

elements to be added to X , since φ(X) can be precomputed.

D.2 Beta-Binomial Model

The model is particularly simple when dealing with the Binomial distribution and its conjugate Beta
prior, since the ratio of Gamma functions allows for simple expressions. In particular, we have

h(β) = log Γ(β+) + log Γ(β−)− Γ(β). (30)

With some slight abuse of notation we let α = (β+, β−) and M0 = β+ + β−. Setting φ(1) = (1, 0)
and φ(0) = (0, 1) allows us to obtain φ(X) = (M+,M−), i.e. φ(X) contains the counts of
occurrences of xm = 1 and xm = 0 respectively. This leads to the following score functions

s(X) = log Γ(β+ +M+) + log Γ(β− +M−)− log Γ(β +M) (31)

− log Γ(β+)− log Γ(β−) + log Γ(β)−M+ log
β+

β
−M− log

β−

β

s(x|X) =

{
log β++M+

β+M − log β+

β if x = 1

log β−+M−

β+M − log β−

β otherwise
(32)

20

This is the model used by [36] when estimating Bayesian Sets for objects. In particular, they assume
that for any given object x the vector φ(x) ∈ {0; 1}d is a d-dimensional binary vector, where each
coordinate is drawn independently from some Beta-Binomial model. The advantage of the approach
is that it can be computed very efficiently while only maintaining minimal statistics of X .

In a nutshell, the algorithmic operations performed in the Beta-Binomial model are as follows:

s(x|X) = 1>

[
σ

(
M∑
m=1

φ(xm) + φ(x) + β

)
− σ (φ(x) + β)

]
(33)

In other words, we sum over statistics of the candidates xm, add a bias term β, perform a coordinate-
wise nonlinear transform over the aggregate statistic (in our case a logarithm), and finally we aggregate
over the so-obtained scores, weighing each contribution equally. s(X) is expressed analogously.

D.3 Gauss Inverse Wishart Model

Before abstracting away the probabilistic properties of the model, it is worth paying some attention to
the case where we assume that xi ∼ N (µ,Σ) and (µ,Σ) ∼ NIW(µ0, λ,Ψ, ν), for a suitable set of
conjugate parameters. While the details are (arguably) tedious, the overall structure of the model is
instructive.

First note that the sufficient statistic of the data x ∈ Rd is now given by φ(x) = (x, xx>). Secondly,
note that the conjugate log-partition function h amounts to computing determinants of terms involving∑
m xmx

>
m and moreover, nonlinear combinations of the latter with

∑
m xm.

The algorithmic operations performed in the Gauss Inverse Wishart model are as follows:

s(x|X) = σ

(
M∑
m=1

φ(xm) + φ(x) + β

)
− σ (φ(x) + β) (34)

Here σ is a nontrivial convex function acting on a (matrix, vector) pair and φ(x) is no longer a
trivial map but performs a nonlinear dimension altering transformation on x. We will use this general
template to fashion the Deep Sets algorithm.

21

E Text Concept Set Retrieval
We consider the task of text concept set retrieval, where the objective is to retrieve words belonging
to a ‘concept’ or ‘cluster’, given few words from that particular concept. For example, given the set
of words {tiger, lion, cheetah}, we would need to retrieve other related words like jaguar, puma,
etc, which belong to the same concept of big cats. The model implicitly needs to reason out the
concept connecting the given set and then retrieve words based on their relevance to the inferred
concept. Concept set retrieval is an important due to wide range of potential applications including
personalized information retrieval, tagging large amounts of unlabeled or weakly labeled datasets,
etc. This task of concept set retrieval can be seen as a set completion task conditioned on the latent
semantic concept, and therefore our DeepSets form a desirable approach.
Dataset To construct a large dataset containing sets of related words, we make use of Wikipedia
text due to its huge vocabulary and concept coverage. First, we run topic modeling on publicly
available wikipedia text with K number of topics. Specifically, we use the famous latent Dirichlet
allocation [38, 39], taken out-of-the-box4. Next, we choose top NT = 50 words for each latent topic
as a set giving a total of K sets of size NT . To compare across scales, we consider three values
of k = {1k, 3k, 5k} giving us three datasets LDA-1k, LDA-3k, and LDA-5k, with corresponding
vocabulary sizes of 17k, 38k, and 61k. Few of the topics from LDA-1k are visualized in Tab. 9.
Methods Our DeepSets model uses a feedforward neural network (NN) to represent a query and
each element of a set, i.e., φ(x) for an element x is encoded as a NN. Specifically, φ(x) represents
each word via 50-dimensional embeddings that are we learn jointly, followed by two fully connected
layers of size 150, with ReLU activations. We then construct a set representation or feature, by sum
pooling all the individual representations of its elements, along with that of the query. Note that
this sum pooling achieves permutation invariance, a crucial property of our DeepSets (Theorem 2).
Next, use input this set feature into another NN to assign a single score to the set, shown as ρ(.).
We instantiate ρ(.) as three fully connected layers of sizes {150, 75, 1} with ReLU activations. In
summary, our DeepSets consists of two neural networks – (a) to extract representations for each
element, and (b) to score a set after pooling representations of its elements.
Baselines We compare to several baselines: (a) Random picks a word from the vocabulary uni-
formly at random. (b) Bayes Set [36], and (c) w2v-Near that computes the nearest neighbors in
the word2vec [40] space. Note that both Bayes Set and w2v NN are strong baselines. The former
runs Bayesian inference using Beta-Binomial conjugate pair, while the latter uses the powerful 300
dimensional word2vec trained on the billion word GoogleNews corpus5. (d) NN-max uses a similar
architecture as our DeepSets with an important difference. It uses max pooling to compute the set
feature, as opposed to DeepSets which uses sum pooling. (e) NN-max-con uses max pooling on set
elements but concatenates this pooled representation with that of query for a final set feature. (f)
NN-sum-con is similar to NN-max-con but uses sum pooling followed by concatenation with query
representation.
Evaluation To quantitatively evaluate, we consider the standard retrieval metrics – recall@K,
median rank and mean reciprocal rank. To elaborate, recall@K measures the number of true labels
that were recovered in the top K retrieved words. We use three values of K = {10, 100, 1k}. The
other two metrics, as the names suggest, are the median and mean of reciprocals of the true label
ranks, respectively. Each dataset is split into TRAIN (80%), VAL (10%) and TEST (10%). We learn
models using TRAIN and evaluate on TEST, while VAL is used for hyperparameter selection and
early stopping.
Results and Observations Tab. 3 contains the results for the text concept set retrieval on LDA-
1k, LDA-3k, and LDA-5k datasets. We summarize our findings below: (a) Our /deepsets model
outperforms all other approaches on LDA-3k and LDA-5k by any metric, highlighting the significance
of permutation invariance property. For instance, /deepsets is better than the w2v-Near baseline by
1.5% in Recall@10 on LDA-5k. (b) On LDA-1k, neural network based models do not perform well
when compared to w2v-Near. We hypothesize that this is due to small size of the dataset insufficient
to train a high capacity neural network, while w2v-Near has been trained on a billion word corpus.
Nevertheless, our approach comes the closest to w2v-Near amongst other approaches, and is only
0.5% lower by Recall@10.

4github.com/dmlc/experimental-lda
5code.google.com/archive/p/word2vec/

22

github.com/dmlc/experimental-lda
code.google.com/archive/p/word2vec/

Topic 1
legend

airy
tale

witch
devil
giant
story

folklore

Topic 2
president

vice
served
office

elected
secretary

presidency
presidential

Topic 3
plan

proposed
plans

proposal
planning
approved
planned

development

Topic 4
newspaper

daily
paper
news
press

published
newspapers

editor

Topic 5
round
teams
final

played
redirect

won
competition
tournament

Topic 6
point
angle
axis

plane
direction
distance
surface
curve

Figure 9: Examples from our LDA-1k datasets. Notice that each of these are latent topics of LDA and
hence are semantically similar.

F Image Tagging

We next experiment with image tagging, where the task is to retrieve all relevant tags corresponding
to an image. Images usually have only a subset of relevant tags, therefore predicting other tags can
help enrich information that can further be leveraged in a downstream supervised task. In our setup,
we learn to predict tags by conditioning /deepsets on the image. Specifically, we train by learning to
predict a partial set of tags from the image and remaining tags. At test time, we the test image is used
to predict relevant tags.

Datasets We report results on the following three datasets:
(a) ESPgame [51]: Contains around 20k images spanning logos, drawings, and personal photos,
collected interactively as part of a game. There are a total of 268 unique tags, with each image having
4.6 tags on average and a maximum of 15 tags.
(b) IAPRTC-12.5 [52]: Comprises of around 20k images including pictures of different sports and
actions, photographs of people, animals, cities, landscapes, and many other aspects of contemporary
life. A total of 291 unique tags have been extracted from captions for the images. For the above two
datasets, train/test splits are similar to those used in previous works [41, 44].
(c) COCO-Tag: We also construct a dataset in-house, based on MSCOCO dataset[53]. COCO is
a large image dataset containing around 80k train and 40k test images, along with five caption
annotations. We extract tags by first running a standard spell checker6 and lemmatizing these captions.
Stopwords and numbers are removed from the set of extracted tags. Each image has 15.9 tags on an
average and a maximum of 46 tags. We show examples of image tags from COCO-Tag in Fig. 10.
The advantages of using COCO-Tag are three fold–richer concepts, larger vocabulary and more tags
per image, making this an ideal dataset to learn image tagging using /deepsets.

Image and Word Embeddings Our models use features extracted from Resnet, which is the
state-of-the-art convolutional neural network (CNN) on ImageNet 1000 categories dataset using the
publicly available 152-layer pretrained model7. To represent words, we jointly learn embeddings with
the rest of /deepsets neural network for ESPgame and IAPRTC-12.5 datasets. But for COCO-Tag,
we bootstrap from 300 dimensional word2vec embeddings8 as the vocabulary for COCO-Tag is
significantly larger than both ESPgame and IAPRTC-12.5 (13k vs 0.3k).

Methods The setup for DeepSets to tag images is similar to that described in Appendix E. The
only difference being the conditioning on the image features, which is concatenated with the set
feature obtained from pooling individual element representations. In particular, φ(x) represents each
word via 300-dimensional word2vec embeddings, followed by two fully connected layers of size
300, with ReLU activations, to construct the set representation or features. As mentioned earlier, we
concatenate the image features and pass this set features into another NN to assign a single score to
the set, shown as ρ(.). We instantiate ρ(.) as three fully connected layers of sizes {300, 150, 1} with
ReLU activations. The resulting feature forms the new input to a neural network used to score the set,
in this case, score the relevance of a tag to the image.

Baselines We perform comparisons against several baselines, previously reported from [41]. Specif-
ically, we have Least Sq., a ridge regression model, MBRM [42], JEC [43] and FastTag [41]. Note
that these methods do not use deep features for images, which could lead to an unfair comparison. As
there is no publicly available code for MBRM and JEC, we cannot get performances of these models
with Resnet extracted features. However, we report results with deep features for FastTag and Least
Sq., using code made available by the authors 9.

6http://hunspell.github.io/
7github.com/facebook/fb.resnet.torch
8https://code.google.com/p/word2vec/
9http://www.cse.wustl.edu/~mchen/

23

http://hunspell.github.io/
github.com/facebook/fb.resnet.torch
https://code.google.com/p/word2vec/
http://www.cse.wustl.edu/~mchen/

Evaluation For ESPgame and IAPRTC-12.5, we follow the evaluation metrics as in [44] – precision
(P), recall (R), F1 score (F1) and number of tags with non-zero recall (N+). Note that these metrics
are evaluate for each tag and the mean is reported. We refer to [44] for further details. For COCO-Tag,
however, we use recall@K for three values of K = {10, 100, 1000}, along with median rank and
mean reciprocal rank (see evaluation in Appendix E for metric details).
Results and Observations Tab. 4 contains the results of image tagging on ESPgame and IAPRTC-
12.5, and Tab. 5 on COCO-Tag. Here are the key observations from Tab. 4: (a) The performance
of /deepsets is comparable to the best of other approaches on all metrics but precision. (b) Our
recall beats the best approach by 2% in ESPgame. On further investigation, we found that /deepsets
retrieves more relevant tags, which are not present in list of ground truth tags due to a limited 5 tag
annotation. Thus, this takes a toll on precision while gaining on recall, yet yielding improvement in
F1. On the larger and richer COCO-Tag, we see that /deepsets approach outperforms other methods
comprehensively, as expected. We show qualitative examples in Fig. 10.

GT Pred
building building

sign street
brick city

picture brick
empty sidewalk
white side
black pole
street white
image stone

GT Pred
standing person
surround group
woman man
crowd table
wine sit

person room
group woman
table couple
bottle gather

GT Pred
traffic clock
city tower

building sky
tall building

large tall
tower large

European cloudy
front front
clock city

GT Pred
photograph ski

snowboarder snow
snow slope
glide person
hill snowy

show hill
person man
slope skiing
young skier

GT Pred
laptop refrigerator
person fridge
screen room
room magnet
desk cabinet
living kitchen

counter shelf
computer wall
monitor counter

GT Pred
beach jet

shoreline airplane
stand propeller
walk ocean
sand plane

lifeguard water
white body
person person

surfboard sky

Figure 10: Qualitative examples of image tagging using /deepsets. Top row: Positive examples where
most of the retrieved tags are present in the ground truth (brown) or are relevant but not present in the
ground truth (green). Bottom row: Few failure cases with irrelevant/wrong tags (red). From left to
right, (i) Confusion between snowboarding and skiing, (ii) Confusion between back of laptop and
refrigerator due to which other tags are kitchen-related, (iii) Hallucination of airplane due to similar
shape of surfboard.

24

G Improved Red-shift Estimation Using Clustering Information

An important regression problem in cosmology is to estimate the red-shift of galaxies, corresponding
to their age as well as their distance from us [33]. Two common types of observation for distant
galaxies include a) photometric and b) spectroscopic observations, where the latter can produce more
accurate red-shift estimates.

One way to estimate the red-shift from photometric observations is using a regression model [34].
We use a multi-layer Perceptron for this purpose and use the more accurate spectroscopic red-shift
estimates as the ground-truth. As another baseline, we have a photometric redshift estimate that
is provided by the catalogue and uses various observations (including clustering information) to
estimate individual galaxy-red-shift. Our objective is to use clustering information of the galaxies to
improve our red-shift prediction using the multi-layer Preceptron.

Note that the prediction for each galaxy does not change by permuting the members of the galaxy
cluster. Therefore, we can treat each galaxy cluster as a “set” and use permutation-equivariant layer
to estimate the individual galaxy red-shifts.

For each galaxy, we have 17 photometric features 10 from the redMaPPer galaxy cluster catalog [35],
which contains photometric readings for 26,111 red galaxy clusters. In this task in contrast to
the previous ones, sets have different cardinalities; each galaxy-cluster in this catalog has between
∼ 20−300 galaxies – i.e. x ∈ RN(c)×17, whereN(c) is the cluster-size. See Fig. 11(a) for distribution
of cluster sizes. The catalog also provides accurate spectroscopic red-shift estimates for a subset of
these galaxies as well as photometric estimates that uses clustering information. Fig. 11(b) reports
the distribution of available spectroscopic red-shift estimates per cluster.

We randomly split the data into 90% training and 10% test clusters, and use the following simple
architecture for semi-supervised learning. We use four permutation-equivariant layers with 128, 128,
128 and 1 output channels respectively, where the output of the last layer is used as red-shift estimate.
The squared loss of the prediction for available spectroscopic red-shifts is minimized.11 Fig. 11(c)
shows the agreement of our estimates with spectroscopic readings on the galaxies in the test-set with
spectroscopic readings. The figure also compares the photometric estimates provided by the catalogue
[35], to the ground-truth. As it is customary in cosmology literature, we report the average scatter
|zspec−z|
1+zspec

, where zspec is the accurate spectroscopic measurement and z is a photometric estimate. The
average scatter using our model is .023 compared to the scatter of .025 in the original photometric
estimates for the redMaPPer catalog. Both of these values are averaged over all the galaxies with
spectroscopic measurements in the test-set.

We repeat this experiment, replacing the permutation-equivariant layers with fully connected layers
(with the same number of parameters) and only use the individual galaxies with available spectroscopic
estimate for training. The resulting average scatter for multi-layer Perceptron is .026, demonstrating
that using clustering information indeed improves photometric red-shift estimates.

Figure 11: Application of permutation-equivariant layer to semi-supervised red-shift prediction using
clustering information: (a) distribution of cluster (set) size; (b) distribution of reliable red-shift
estimates per cluster; (c) prediction of red-shift on test-set (versus ground-truth) using clustering
information as well as RedMaPPer photometric estimates (also using clustering information).

10We have a single measurement for each u,g,r, i and z band as well as measurement error bars, location of
the galaxy in the sky, as well as the probability of each galaxy being the cluster center. We do not include the
information regarding the richness estimates of the clusters from the catalog, for any of the methods, so that
baseline multi-layer Preceptron is blind to the clusters.

11We use mini-batches of size 128, Adam [54], with learning rate of .001, β1 = .9 and β2 = .999. All layers
except for the last layer use Tanh units and simultaneous dropout with 50% dropout rate.

25

Figure 12: Examples for 8 out of 40 object classes (column) in the ModelNet40. Each point-cloud
is produces by sampling 1000 particles from the mesh representation of the original MeodelNet40
instances. Two point-clouds in the same column are from the same class. The projection of particles
into xy, zy and xz planes are added for better visualization.

H Point Cloud Classification

Tab. 6 presents a more detailed result on classification performance, using different techniques. Fig. 12
shows examples of the dataset used for training. Fig. 13 shows the features learned by the first and
second layer of our deep model. Here, we review the details of architectures used in the experiments.

DeepSets We use a network comprising of 3 permutation-equivariant layers with 256 channels
followed by max-pooling over the set structure. The resulting vector representation of the set is
then fed to a fully connected layer with 256 units followed by a 40-way softmax unit. We use Tanh
activation at all layers and dropout on the layers after set-max-pooling (i.e. two dropout operations)
with 50% dropout rate. Applying dropout to permutation-equivariant layers for point-cloud data
deteriorated the performance. We observed that using different types of permutation-equivariant
layers (see Appendix C) and as few as 64 channels for set layers changes the result by less than 5%
in classification accuracy.

For the setting with 5000 particles, we increase the number of units to 512 in all layers and randomly
rotate the input around the z-axis. We also randomly scale the point-cloud by s ∼ U(.8, 1./.8). For
this setting only, we use Adamax [54] instead of Adam and reduce learning rate from .001 to .0005.

Graph convolution. For each point-cloud instance with 1000 particles, we build a sparse K-nearest
neighbor graph and use the three point coordinates as input features. We normalized all graphs
at the preprocessing step. For direct comparison with set layer, we use the exact architecture of 3
graph-convolution layer followed by set-pooling (global graph pooling) and dense layer with 256
units. We use exponential linear activation function instead of Tanh as it performs better for graphs.
Due to over-fitting, we use a heavy dropout of 50% after graph-convolution and dense layers. Similar
to dropout for sets, all the randomly selected features are simultaneously dropped across the graph
nodes. the We use a mini-batch size of 64 and Adam for optimization where the learning rate is .001
(the same as that of permutation-equivariant counter-part).

Despite our efficient sparse implementation using Tensorflow, graph-convolution is significantly
slower than the set layer. This prevented a thorough search for hyper-parameters and it is quite
possible that better hyper-parameter tuning would improve the results that we report here.

Table 6: Classification accuracy and the (size of) representation used by different methods on the
ModelNet40 dataset.

model instance size representation accuracy
DeepSets + transformation (ours) 5000× 3 point-cloud 90± .3%

DeepSets (ours) 1000× 3 point-cloud 87± 1%

Deep-Sets w. pooling only (ours) 1000× 3 point-cloud 83± 1%

DeepSets (ours) 100× 3 point-cloud 82± 2%

KNN graph-convolution (ours) 1000× (3 + 8) directed 8-regular graph 58± 2%

3DShapeNets [25] 303 voxels (using convolutional deep belief net) 77%

DeepPano [20] 64× 160 panoramic image (2D CNN + angle-pooling) 77.64%

VoxNet [26] 323 voxels (voxels from point-cloud + 3D CNN) 83.10%

MVCNN [21] 164× 164× 12 multi-vew images (2D CNN + view-pooling) 90.1%

VRN Ensemble [27] 323 voxels (3D CNN, variational autoencoder) 95.54%

3D GAN [28] 643 voxels (3D CNN, generative adversarial training) 83.3%

26

Tab. 6 compares our method against the competition.12 Note that we achieve our best accuracy using
5000× 3 dimensional representation of each object, which is much smaller than most other methods.
All other techniques use either voxelization or multiple view of the 3D object for classification.
Interestingly, variations of view/angle-pooling, as in [20, 21], can be interpreted as set-pooling
where the class-label is invariant to permutation of different views. The results also shows that
using fully-connected layers with set-pooling alone (without max-normalization over the set) works
relatively well.

We see that reducing the number of particles to only 100, still produces comparatively good results.
Using graph-convolution is computationally more challenging and produces inferior results in this
setting. The results using 5000 particles is also invariant to small changes in scale and rotation around
the z-axis.

Figure 13: Each box is the particle-cloud maximizing the activation of a unit at the firs (top) and
second (bottom) permutation-equivariant layers of our model. Two images of the same column are
two different views of the same point-cloud.

Features. To visualize the features learned by the set layers, we used Adamax [54] to locate 1000
particle coordinates maximizing the activation of each unit.13 Activating the tanh units beyond the
second layer proved to be difficult. 13 shows the particle-cloud-features learned at the first and second
layers of our deep network. We observed that the first layer learns simple localized (often cubic)
point-clouds at different (x, y, z) locations, while the second layer learns more complex surfaces
with different scales and orientations.

I Set Anomaly Detection
Our model has 9 convolution layers with 3× 3 receptive fields. The model has convolution layers
with 32, 32, 64 feature-maps followed by max-pooling followed by 2D convolution layers with
64, 64, 128 feature-maps followed by another max-pooling layer. The final set of convolution layers
have 128, 128, 256 feature-maps, followed by a max-pooling layer with pool-size of 5 that reduces
the output dimension to batch-size.M × 256, where the set-size M = 16. This is then forwarded
to three permutation-equivariant layers with 256, 128 and 1 output channels. The output of final
layer is fed to the Softmax, to identify the outlier. We use exponential linear units [55], drop out
with 20% dropout rate at convolutional layers and 50% dropout rate at the first two set layers. When
applied to set layers, the selected feature (channel) is simultaneously dropped in all the set members
of that particular set. We use Adam [54] for optimization and use batch-normalization only in the
convolutional layers. We use mini-batches of 8 sets, for a total of 128 images per batch.

12The error-bar on our results is due to variations depending on the choice of particles during test time and it
is estimated over three trials.

13We started from uniformly distributed set of particles and used a learning rate of .01 for Adamax, with first
and second order moment of .1 and .9 respectively. We optimized the input in 105 iterations. The results of
Fig. 13 are limited to instances where tanh units were successfully activated. Since the input at the first layer of
our deep network is normalized to have a zero mean and unit standard deviation, we do not need to constrain the
input while maximizing unit’s activation.

27

Figure 14: Each row shows a set, constructed from CelebA dataset, such that all set members except for an
outlier, share at least two attributes (on the right). The outlier is identified with a red frame. The model is
trained by observing examples of sets and their anomalous members, without access to the attributes. The
probability assigned to each member by the outlier detection network is visualized using a red bar at the bottom
of each image.

28

Figure 15: Each row of the images shows a set, constructed from CelebA dataset images, such that all set
members except for an outlier, share at least two attributes. The outlier is identified with a red frame. The model
is trained by observing examples of sets and their anomalous members and without access to the attributes. The
probability assigned to each member by the outlier detection network is visualized using a red bar at the bottom
of each image. The probabilities in each row sum to one.

29

References
[1] B. Poczos, A. Rinaldo, A. Singh, and L. Wasserman. Distribution-free distribution regression.

In International Conference on AI and Statistics (AISTATS), JMLR Workshop and Conference
Proceedings, 2013. pages 1

[2] I. Jung, M. Berges, J. Garrett, and B. Poczos. Exploration and evaluation of ar, mpca and kl
anomaly detection techniques to embankment dam piezometer data. Advanced Engineering
Informatics, 2015. pages 1

[3] M. Ntampaka, H. Trac, D. Sutherland, S. Fromenteau, B. Poczos, and J. Schneider. Dynamical
mass measurements of contaminated galaxy clusters using machine learning. The Astrophysical
Journal, 2016. URL http://arxiv.org/abs/1509.05409. pages 1

[4] M. Ravanbakhsh, J. Oliva, S. Fromenteau, L. Price, S. Ho, J. Schneider, and B. Poczos. Esti-
mating cosmological parameters from the dark matter distribution. In International Conference
on Machine Learning (ICML), 2016. pages 1

[5] J. Oliva, B. Poczos, and J. Schneider. Distribution to distribution regression. In International
Conference on Machine Learning (ICML), 2013. pages 1

[6] Z. Szabo, B. Sriperumbudur, B. Poczos, and A. Gretton. Learning theory for distribution
regression. Journal of Machine Learning Research, 2016. pages

[7] K. Muandet, D. Balduzzi, and B. Schoelkopf. Domain generalization via invariant feature
representation. In In Proceeding of the 30th International Conference on Machine Learning
(ICML 2013), 2013. pages

[8] K. Muandet, K. Fukumizu, F. Dinuzzo, and B. Schoelkopf. Learning from distributions
via support measure machines. In In Proceeding of the 26th Annual Conference on Neural
Information Processing Systems (NIPS 2012), 2012. pages 1, 3

[9] Felix A. Faber, Alexander Lindmaa, O. Anatole von Lilienfeld, and Rickard Armiento. Machine
learning energies of 2 million elpasolite (abC2D6) crystals. Phys. Rev. Lett., 117:135502, Sep
2016. doi: 10.1103/PhysRevLett.117.135502. pages 1

[10] B. Poczos, L. Xiong, D. Sutherland, and J. Schneider. Support distribution machines, 2012.
URL http://arxiv.org/abs/1202.0302. pages 3, 4

[11] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for
learning latent variable models. arXiv preprint arXiv:1210.7559, 2012. pages 3

[12] Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in neural
information processing systems, pages 2537–2545, 2014. pages 3

[13] Taco S Cohen and Max Welling. Group equivariant convolutional networks. arXiv preprint
arXiv:1602.07576, 2016. pages

[14] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through parameter-
sharing. arXiv preprint arXiv:1702.08389, 2017. pages 3

[15] Xu Chen, Xiuyuan Cheng, and Stéphane Mallat. Unsupervised deep haar scattering on graphs.
In Advances in Neural Information Processing Systems, pages 1709–1717, 2014. pages 3

[16] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.
pages 3

[17] Nicholas Guttenberg, Nathaniel Virgo, Olaf Witkowski, Hidetoshi Aoki, and Ryota Kanai.
Permutation-equivariant neural networks applied to dynamics prediction. arXiv preprint
arXiv:1612.04530, 2016. pages 3

[18] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for
sets. arXiv preprint arXiv:1511.06391, 2015. pages 3

[19] David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Schölkopf, and Léon Bottou.
Discovering causal signals in images. arXiv preprint arXiv:1605.08179, 2016. pages 3

9

http://arxiv.org/abs/1509.05409
http://arxiv.org/abs/1202.0302

[20] Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. Deeppano: Deep panoramic repre-
sentation for 3-d shape recognition. IEEE Signal Processing Letters, 22(12):2339–2343, 2015.
pages 3, 26, 27

[21] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In Proceedings of the IEEE International
Conference on Computer Vision, pages 945–953, 2015. pages 3, 5, 26, 27

[22] Jason S Hartford, James R Wright, and Kevin Leyton-Brown. Deep learning for predicting
human strategic behavior. In Advances in Neural Information Processing Systems, pages
2424–2432, 2016. pages 3

[23] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropa-
gation. In Neural Information Processing Systems, pages 2244–2252, 2016. pages 3

[24] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines
using selective sampling. In Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston,
editors, Large Scale Kernel Machines, pages 301–320. MIT Press, Cambridge, MA., 2007.
pages 5

[25] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1912–1920, 2015.
pages 5, 26

[26] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-
time object recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 922–928. IEEE, 2015. pages 5, 26

[27] Andrew Brock, Theodore Lim, JM Ritchie, and Nick Weston. Generative and discriminative
voxel modeling with convolutional neural networks. arXiv preprint arXiv:1608.04236, 2016.
pages 5, 26

[28] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B Tenenbaum.
Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling.
arXiv preprint arXiv:1610.07584, 2016. pages 5, 26

[29] Siamak Ravanbakhsh, Junier Oliva, Sebastien Fromenteau, Layne C Price, Shirley Ho, Jeff
Schneider, and Barnabás Póczos. Estimating cosmological parameters from the dark matter
distribution. In Proceedings of The 33rd International Conference on Machine Learning, 2016.
pages 5

[30] Hong-Wei Lin, Chiew-Lan Tai, and Guo-Jin Wang. A mesh reconstruction algorithm driven by
an intrinsic property of a point cloud. Computer-Aided Design, 36(1):1–9, 2004. pages 5

[31] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015. pages 5

[32] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13
2011. pages 5

[33] James Binney and Michael Merrifield. Galactic astronomy. Princeton University Press, 1998.
pages 5, 25

[34] AJ Connolly, I Csabai, AS Szalay, DC Koo, RG Kron, and JA Munn. Slicing through multicolor
space: Galaxy redshifts from broadband photometry. arXiv preprint astro-ph/9508100, 1995.
pages 5, 25

[35] Eduardo Rozo and Eli S Rykoff. redmapper ii: X-ray and sz performance benchmarks for the
sdss catalog. The Astrophysical Journal, 783(2):80, 2014. pages 5, 25

[36] Zoubin Ghahramani and Katherine A Heller. Bayesian sets. In NIPS, volume 2, pages 22–23,
2005. pages 6, 7, 20, 21, 22

10

[37] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 25–32,
Cambridge, MA, 2004. MIT Press. pages 6

[38] Jonathan K. Pritchard, Matthew Stephens, and Peter Donnelly. Inference of population structure
using multilocus genotype data. Genetics, 155(2):945–959, 2000. ISSN 0016-6731. URL
http://www.genetics.org/content/155/2/945. pages 6, 22

[39] David M. Blei, Andrew Y. Ng, Michael I. Jordan, and John Lafferty. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:2003, 2003. pages 6, 22

[40] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013. pages 7, 22

[41] Minmin Chen, Alice Zheng, and Kilian Weinberger. Fast image tagging. In Proceedings of The
30th International Conference on Machine Learning, pages 1274–1282, 2013. pages 7, 23

[42] S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and
video annotation. In Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR’04, pages 1002–1009, Washington, DC, USA, 2004.
IEEE Computer Society. pages 7, 23

[43] Ameesh Makadia, Vladimir Pavlovic, and Sanjiv Kumar. A new baseline for image annotation.
In Proceedings of the 10th European Conference on Computer Vision: Part III, ECCV ’08,
pages 316–329, Berlin, Heidelberg, 2008. Springer-Verlag. pages 7, 23

[44] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Tagprop:
Discriminative metric learning in nearest neighbor models for image auto-annotation. In
Computer Vision, 2009 IEEE 12th International Conference on, pages 309–316. IEEE, 2009.
pages 7, 23, 24

[45] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015. pages 8

[46] Branko Ćurgus and Vania Mascioni. Roots and polynomials as homeomorphic spaces. Exposi-
tiones Mathematicae, 24(1):81–95, 2006. pages 13, 15

[47] Boris A Khesin and Serge L Tabachnikov. Arnold: Swimming Against the Tide, volume 86.
American Mathematical Society, 2014. pages 15

[48] Jerrold E Marsden and Michael J Hoffman. Elementary classical analysis. Macmillan, 1993.
pages 15

[49] Nicolas Bourbaki. Eléments de mathématiques: théorie des ensembles, chapitres 1 à 4, volume 1.
Masson, 1990. pages 15

[50] C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive
definite functions. Constructive Approximation, 2:11–22, 1986. pages 18

[51] Luis Von Ahn and Laura Dabbish. Labeling images with a computer game. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 319–326. ACM, 2004.
pages 23

[52] Michael Grubinger. Analysis and evaluation of visual information systems performance, 2007.
URL http://eprints.vu.edu.au/1435. Thesis (Ph. D.)–Victoria University (Melbourne,
Vic.), 2007. pages 23

[53] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, pages 740–755. Springer, 2014. pages 23

[54] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. pages 25, 26, 27

[55] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015. pages 27

11

http://www.genetics.org/content/155/2/945
http://eprints.vu.edu.au/1435

	Proofs and Discussion Related to Theorem 2
	Countable Case
	Uncountable Case

	Proof of Lemma 3
	More Details on the architecture
	Invariant model
	Equivariant model

	Bayes Set ghahramani2005bayesian
	Exponential Family
	Beta-Binomial Model
	Gauss Inverse Wishart Model

	Text Concept Set Retrieval
	Image Tagging
	Improved Red-shift Estimation Using Clustering Information
	Point Cloud Classification
	Set Anomaly Detection

