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A Derivation of the equivalent form of the cost in [7]

The cost function in [7] can be expressed as:
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We now show how to derive (3) from the above expression. In N -gram case, the language model can
be written as
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Substituting the above expression into the cost (6), we obtain
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B Properties of p✓(i1, . . . , iN)

B.1 p

✓

(i1, . . . , iN ) is the expected N -gram frequency of all the output sequences

In this section, we formally derive the following relation, which interprets p
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(i1, . . . , iN ) as the
expected frequency of (i1, . . . , iN ) in the output sequence:
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where step (a) uses the fact that the expectation of an indicator function of an event equals the
probability of the event. Divide both sides by T , the right hand side of the above expression becomes
p
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(i1, . . . , iN ), and we conclude our proof.
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Then, we can conclude the proof by recognizing that p̂(x1, . . . , xN
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)/T .

C Optimizing Empirical-ODM by SGD is intrinsically biased

In this section, we show that the stochastic gradient of Empirical-ODM is intrinsically biased. To see
this, we can express the (full batch) gradient of J (✓) as

r
✓

J (✓) = �
X

i1,...,iN

pLM(i1, . . . , iN )

1
T

P
M

n=1

P
Tn

t

r
✓

⇣Q
N�1
k=0 p

✓

(y

n

t�k

= i

N�k

|xn

t�k

)

⌘

1
T

P
M

n=1

P
Tn

t

Q
N�1
k=0 p

✓

(y

n

t�k

= i

N�k

|xn

t�k

)

(12)

Note that the gradient expression has sample averages in both the numerator and denominator.
Therefore, full batch gradient method is less scalable as it needs to go over the entire training set
to compute r

✓

J (✓) at each update. To apply SGD, we may obtain an unbiased estimate of it by
sampling the numerator with a single component while keeping the denominator the same:
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However, this implementation is still not scalable as it needs to average over the entire training set at
each update to compute the denominator. On the other hand, if we sample both the numerator and the
denominator, i.e.,
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then it will be a biased estimate of the gradient (12). Our experiments in Section 4 showed that this
biased SGD does not perform well on the unsupervised learning problem.

D Gradient formula for SPDG

In this section, we derive the gradient formula for the SPDG algorithm in Algorithm 1. We first derive
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Finally, we derive the gradient formula for @L

n
t

@✓

:

@L

n

t

@✓

=

X

i1,...,iN

pLM(i1, . . . , iN )⌫

i1,...,iN

⇥
N�1X

m=0

@

@✓

p

✓

(y

n

t�m

= i

N�m

|xn

t�m

)

N�1Y

k=0,k 6=m

p

✓

(y

n

t�k

= i

N�k

|xn

t�k

) (15)

where the gradient term @p
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/@✓ depends on the specific model for the classifier p
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(y|x) and can be
calculated easily by substituting its expression.

E Experiment Details

In the experiment, we implement the model with Python 2.7 and Tensorflow 0.12.

In training of models both on OCR and Spell-Corr task, we initialize the linear model’s parameters
(primal variable) with w

init

= 1/dim(x) and � = 10, where dim(x) is the dimension of input. And
we initialize the dual parameters V

init

with uniformly distributed random variables v ⇠ U(�1, 0).
We set the learning rate for primal parameter µ

✓

= 10

�6 and learning rate for dual parameter
µ

v

= 10

�4. We use Adam optimization to train our model.

The test set of OCR is generated also from UWIII database,but avoiding overlap with training set.
The size of test set of OCR is 15000. Furthermore, the size of the test set of Spell-Corr is also 15000
without overlapping with the training set.

F The details of visualizing the high-dimensional cost functions

Since J (✓) is a high-dimensional function, it is hard to visualize its full profile. Instead, we use
the following procedure to partially visualize J (✓). First, since the supervised learning of linear
classifiers is a convex optimization problem, from which we could obtain its global optimal solution
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.

9 Then, we randomly generate two parameter vectors ✓1 and ✓2 and plot the two-dimensional
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For the profile of L(✓, V ) in (5), similar to the case of J (✓), in order to visualize
L(✓, V ), we first solve the supervised learning problem to get ✓
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G Additional visualization of J (✓)

In Figures 3, 4 and 5, we show three visualization examples of J (✓) for the OCR dataset on three
different affine spaces, part of the first example was included in Figure 1. The six sub-figures in each
example show the same profile from six different angles, spinning clock-wise from (a)-(f). The red
dots indicate the global minimum.

In Figure 6, we show the same type of profiles as above except using synthetic data for of a binary
classification problem. First, we sequentially generated a sequence of states from 0, 1 by an hidden
Markov model. Then we sample the corresponding data points from two separate 2-dimensional
Gaussian models. accordingly.

9Note that, we solve the supervised learning only for the purpose of understanding our proposed unsupervised
learning cost J (✓). In our implementation of the unsupervised learning algorithm, we do not use any of the
training label information nor supervised learning algorithms.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Profile Example I: J (✓) for the OCR dataset on a two-dimensional affine space

(a) (b) (c)

(d) (e) (f)

Figure 4: Profile Example II: J (✓) for the OCR dataset on a two-dimensional affine space

H Additional visualization of L(✓, V )

Figure 7 shows the profile of L(✓, V ) for the OCR data set on a two-dimensional affine space viewed
from nine different angles. The red dots show the saddle points of the profile, one for each angle.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Profile Example III: J (✓) for the OCR dataset on a two-dimensional affine space

(a) (b) (c)

(d) (e) (f)

Figure 6: Complete J (✓) profile created from 2-dim synthetic data with two parameters
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Profile of L(✓, V ) for the OCR dataset on a two-dimensional affine space. Red dots show
the saddle points (the optimal solution) of the profile from nine different angles.
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