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Abstract

In many machine learning applications, submodular functions have been used
as a model for evaluating the utility or payoff of a set such as news items to
recommend, sensors to deploy in a terrain, nodes to influence in a social network,
to name a few. At the heart of all these applications is the assumption that the
underlying utility/payoff function is known a priori, hence maximizing it is in
principle possible. In many real life situations, however, the utility function is not
fully known in advance and can only be estimated via interactions. For instance,
whether a user likes a movie or not can be reliably evaluated only after it was
shown to her. Or, the range of influence of a user in a social network can be
estimated only after she is selected to advertise the product. We model such
problems as an interactive submodular bandit optimization, where in each round
we receive a context (e.g., previously selected movies) and have to choose an action
(e.g., propose a new movie). We then receive a noisy feedback about the utility
of the action (e.g., ratings) which we model as a submodular function over the
context-action space. We develop SM-UCB that efficiently trades off exploration
(collecting more data) and exploration (proposing a good action given gathered
data) and achieves a O(

√
T ) regret bound after T rounds of interaction. More

specifically, given a bounded-RKHS norm kernel over the context-action-payoff
space that governs the smoothness of the utility function, SM-UCB keeps an upper-
confidence bound on the payoff function that allows it to asymptotically achieve
no-regret. Finally, we evaluate our results on four concrete applications, including
movie recommendation (on the MovieLense data set), news recommendation (on
Yahoo! Webscope dataset), interactive influence maximization (on a subset of the
Facebook network), and personalized data summarization (on Reuters Corpus). In
all these applications, we observe that SM-UCB consistently outperforms the prior
art.

1 Introduction

Interactive learning is a modern machine learning paradigm that has recently received significant
interest in both theory and practice [15, 14, 7, 6]. In this setting, the learning algorithm engages in a
two-way dialog with the environment (e.g., users) by performing actions and receiving a response (e.g.,
like or dislike) for each action. Interactive learning has led to substantial performance improvement
in a variety of machine learning applications [43, 13], including clustering [4, 25, 1], classification
[46, 10], language learning [48], decision making [26], and recommender systems [28], to name a
few.

At a high level, interactive learning can be cast as a dynamic optimization problem with a known
utility/payoff function where the goal is to achieve an objective whose value depends on the selected
actions, their responses, and the state of the environment. In many practical settings, the utility
functions are submodular, stating (informally) that the payoff of performing an action earlier is more
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than performing it later. In fact, rigorous treatment of submodularity in interactive settings led to
strong theoretical guarantees on the performance of greedy policies [19, 22].

In this paper, we go one step further and consider scenarios where the exact form of the submodular
payoff function is not completely known and hence needs to be estimated through interactions. This
problem is closely related to the contextual multi-armed bandit [38, 9, 36] where for a sequence of
T rounds, we receive a payoff function along with some side information or context (e.g., user’s
features), based on which we have to choose an action (e.g., proposing an item) and then a noisy
feedback about the obtained payoff is revealed (e.g., rating of the proposed item). The goal is to
minimize the regret of not selecting the optimal action due to the uncertainty associated with the
utility function. The interactive contextual bandit generalizes this setting by allowing to interact with
a payoff function multiple times, where each time we need to take a new action based on both the
context and previously taken actions. The regret is then defined in terms of the difference between the
utility of the best set of actions that we could have chosen versus the ones that are actually selected.
In this paper, we further assume that the marginal payoffs of actions show diminishing returns. This
problem, which we call interactive submodular bandit, appears in many practical scenarios, including:

• Interactive recommender system. The goal is to design a recommender system that
interacts with the users in order to elicit and satisfy their preferences. In our approach, we
model the utility of a set of items as an unknown submodular objective function that the
recommender systems aims to maximize. In each round of interaction, the recommender
system decides which item should be presented to the user, given the previously proposed
items to this or similar users (affinity between users, if this side information exists, can
be leveraged to enhance recommendation performance). Since the users’ preferences are
unknown, the recommender system can only gather information about the users through the
feedback they provide in terms of ratings. A successful recommender system should be able
to minimize the total regret accumulated over T iterations with users.

• Interactive influence maximization. Influence spread maximization addresses the problem
of selecting the most influential source nodes of a given size in a diffusion network [51].
A diffusion process that starts with those source nodes can potentially reach the greatest
number of nodes in the network. Under many diffusion models, the expected total number
of influenced people is a submodular function of the seed subjects [29, 20]. In a natural
interactive variant of this problem, users may be recruited in a sequential manner [42, 5]
where a new user is selected once we fully observe the extent to which the current seed users
influenced people. Note that finding the optimal set of source nodes in a diffusion network
depends dramatically on the underlying dynamics of the diffusion. Again, very often in
practice, we are faced with the dilemma of estimating the underlying diffusion parameters
through interactively selecting the nodes while at the same time trying to maximize the
influence.

• Interactive coverage. Coverage problems arise naturally in many applications [32, 33].
Consider an environmental monitoring task, for instance, where sensors are placed in the
Alps to better predict floods, landslides and avalanches [8]. Similarly, Wi-Fi hotspots are
carefully arranged to cover every corner of a floor. However, it is likely that the actual
coverage of a device is uncertain before deployment due to unknown conditions present in
the environment. Hence, we might need to install devices in a sequential manner after we
observe the actual coverage of the ones already installed [19, 22].

Without any assumptions about the smoothness of the payoff function, no algorithm may be able
to achieve low regret [31]. Thus, in our setting, we make a crucial yet very natural assumption
that the space of context-action-payoff has low complexity, quantified in terms of the Reproducing
Kernel Hilbert Space (RKHS) norm associated with some kernel [24]. We then show that SM-
UCB, an upper-confidence-bound based algorithm achieves an O(

√
T ) regret. We also evaluate

the performance of SM-UCB on four real-world applications, including movie recommendation
[40], news recommendation [16], interactive influence maximization [42, 34], and personalized data
summarization [39].
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2 Problem Formulation

As we stated earlier, many utility or payoff functions we encounter in machine learning applications
are submodular. As a reminder, a set function f is called submodular if for all A ⊆ B ⊆ Ω we have

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B).

An equivalent definition of submodularity that shows better the diminishing returns property is as
follows: for all A ⊆ B ⊆ Ω and any element e 6∈ B we have

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B).

We also denote the marginal gain of an element e to a set A by ∆(e|A) , f(A ∪ {e})− f(A). The
function f is called monotone if for all A ⊆ B we have f(A) ≤ f(B).

In this paper, we consider a sequential decision making process for a horizon of T time steps, where
at each round i, a monotone submodular function fi, is (partially) revealed. Let us first consider the
simple bandit problem [50] where we need to select an item (or an arm) e from the set of items Ω
such that fi(e) is maximized. After the item e is selected, the payoff fi(e) is revealed. Since ft’s
are not known in advance, the goal is to minimize the accumulated regret over T rounds, for not
choosing the optimum items. Contextual submodular bandit generalizes the aforementioned setting
by allowing to receive side information φi (also called context) in each round i [31]. But still the goal
is to select a single item e such that fφi

(e) is maximized. In the interactive contextual submodular
bandit, the focus of this paper, we may encounter the same valuation function fφ, with its associate
context φ, multiple times over the time horizon T . Here instead, at each round, we need to propose a
new item that maximizes the marginal payoff given the ones we selected in the previous encounters.
Therefore, we are sequentially building up subsets of items that maximize the payoff for each separate
function fφ. For instance, a recommender system may interact with a user (or a number of users)
multiple times. In each interaction, it has to recommend a new item while taking into account what it
has recommended in previous interactions.

More formally, let us assume that we encounter m ≤ T distinct functions fφ, in an arbitrary
order, over the time horizon T , i.e., φ ∈ {φ1, . . . , φm}. We denote the arriving ordered sequence
by f1, f2, . . . , fT where for each round i, we have fi ∈ {fφ1 , . . . , fφm}. Let us also denote by
ui ∈ {1, . . . ,m} the index of the context received in round i. We also need to maintain a collection of
m sets S1, . . . , Sm, (initialized to the empty set) corresponding to fφ1 , . . . , fφm . Our goal is to select
a subset Sj ⊆ Ω for each function fφj that maximizes its corresponding utility fφj (Sj). Note that if
fφj

were known in advance, we could simply use the greedy algorithm. However, in the interactive
submodular bandit setting, we need to build up the sets Sj sequentially and through interactions, as
the marginal payoff of an element is only revealed after it is selected. Let oi ,

∑
j≤i 1{uj = ui}

denote the number of occurrences of function fφui
in the first i rounds. In each round, say the i-th

with the corresponding function fφui
, we need to select a new item xoi,ui

from the set of items Ω
and add it to Sui

. Clearly, after including xoi,ui
, the set Sui

will be of cardinality oi. For the ease of
presentation, we denote Sui

∪ {xoi,ui
} by Soi,ui

, initialized to the empty set in the beginning, i.e.,
S0,ui

= ∅. After selecting the item xoi,ui
and given the previously selected items Sui

, we receive yi,
a noisy (but unbiased) estimate of xoi,ui ’s marginal payoff, i.e.,

yi = ∆(xoi,ui
|Soi−1,ui

, φui
) + εi,

where the marginal gain ∆(·|·, ·) : Ω× 2Ω × Φ→ R is defined as

∆(x|S, φ) = fφ(S ∪ {x})− fφ(S). (1)

We also assume that εi’s are uniformly bounded noise variables that form a martingale difference
sequence, i.e.,

E[εi|ε1, ε2, . . . , εi−1] = 0 and |εi|≤ σ for all i ∈ {1, . . . , T}.
We call σ the noise level. Note that yi is the only feedback that we obtain in round i. It crucially
depends on the previously selected items and contextual information Soi−1,ui , φui . Therefore, the
only avenue through which we can learn about the payoff functions fφ (that we try to optimize over)
is via noisy feedbacks yi. We need to design an algorithm that minimizes the accumulated regret
over the total number of T rounds. Formally, we compare the performance of any algorithm in this
interactive submodular bandit setting with that of the greedy algorithm with the full knowledge of the
payoff functions fφ1

, . . . , fφm
.
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Algorithm 1 SM-UCB
Input: set of items Ω, mean µ0 = 0, variance σ0.

1: Initialize Si ← ∅ for all i ∈ [m]
2: for i = 1, 2, 3, . . . do
3: select an item xoi,ui

← argmaxx∈Ω µi−1(x) +
√
βiσi−1(x)

4: update the set Sui
← Sui

∪ {xoi,ui
}

5: obtain the feedback yi = ∆(xoi,ui
|Soi−1,ui

, φui
) + εi

6: let ki(x) be a vector-valued function that outputs an i-dimensional column vector with j-th
entry k((xoj ,uj , Soj−1,uj , φuj ), (x, Soi−1,ui , φui))

7: let Ki be an i×imatrix with (j, j′)-entry k((xoj ,uj , Soj−1,uj , φuj ), (xoj′ ,uj′ , Soj′−1,uj′ , φuj′ ))

8: update yi ← [y1, y2, . . . , yi]
T

9: let ki(x, x′) be a kernel function defined as k(x, x′)− ki(x)T (Ki + σ2I)−1ki(x
′)

10: estimate µi(x)← ki(x)T (Ki + σ2I)−1yi
11: estimate σi(x)←

√
ki(x, x)

12: end for

Suppose that by the end of the T -th round, an algorithm has selected Tj items for the payoff
function fφj

; therefore the cardinality of Sj by the end of the T -th round is Tj . Thus, we have
Tj =

∑
t≤T 1{ut = j} and T =

∑m
j=1 Tj . We use S∗j to denote the set that maximizes the payoff

of function fφj
with at most Tj elements, i.e., S∗j = argmax|S|≤Tj

fφj
(S). We know that the greedy

algorithm is guaranteed to achieve (1 − 1/e)
∑m
j=1 fφj

(S∗j ) [41] and there is no polynomial time
algorithm that achieves a better approximation guarantee in general [17]. Therefore, we define the
total regret of an algorithm up to round T as follows:

RT , (1− 1/e)

m∑

j=1

fφj (S∗j )−
m∑

j=1

fφj (STj ,j), (2)

which is the gap between the greedy algorithm’s guarantee and the total utility obtained by the
algorithm. Without any smoothness assumption over the payoff functions, it may not be possible to
guarantee a sublinear regret [31]. In this paper, we make a natural assumption about the complexity
of payoff functions. More specifically, we assume that the marginal payoffs, defined in (1), have a low
RKHS-norm according to a kernel k : (Ω× 2Ω × Φ)× (Ω× 2Ω × Φ)→ R, i.e., ‖∆(·|·, ·)‖k≤ B.
Note that such a kernel encodes how close two marginal payoffs are if a) the contexts φi and φj or b)
the selected elements Si and Sj are similar. For instance, a recommender system can leverage this
information to propose an item to a user if it has observed that a user with similar features liked that
item.

3 Main Results

In Algorithm 1 we propose SM-UCB, an interactive submodular bandit algorithm. Recall that
the marginal gain function ∆ has a low RKHS norm w.r.t. some kernel k. In each round, say the
i-th, SM-UCB maintains the posterior mean µi−1(·) and standard deviation σi−1(·) conditioned
on the historical observations or context {(xoj ,uj

, Soj−1,uj
, φuj

) : 1 ≤ j ≤ i}. Based on these
posterior estimates, SM-UCB then selects an item x that attains the highest upper confidence bound
µi−1(x)+

√
βiσi−1(x). It then receives the noisy feedback yi = ∆(xoi,ui |Soi−1,ui , φui)+ εi. Since

εi’s are uniformly bounded and form a martingale difference sequence, SM-UCB can predict the
mean µi and standard deviation σi via posterior inference in order to determine the item to be selected
in the next round.

In order to bound the regret of an algorithm, we need to quantify how much information that algorithm
can acquire through interactions. Let yA denote a subset of noisy observations indexed by the set
A, i.e., yA = {yi|i ∈ A}. Note that any subset A of noisy observations yA reduces our uncertainty
about the marginal gain function ∆. In an extreme case, if we had perfect information (or no
uncertainty) about ∆, we could have achieved zero regret. We can precisely quantify this notion
through what is called the information gain I(yA; ∆) = H(yA)−H(yA|∆), where H denotes the
Shannon entropy. In fact, by lifting the results from [31, 44] to a much more general setting, we
relate the regret to the maximum information gain γT [44] obtained after T rounds and defined as
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γT , maxA⊆Ω:|A|=T I(yA; ∆). Another important quantity that shows up in the regret bound is the
confidence parameter βT (see line 3 of Algorithm 1) that needs to be chosen carefully so that our
theoretical guarantee holds with high probability. In fact, the following theorem shows that SM-UCB
attains a O(

√
TβT γT ) regret bound with high probability.

Theorem 1. Suppose that the true marginal gain function ∆(·|·, ·) has a small RKHS norm according
to some kernel k, i.e., ‖∆(·|·, ·)‖k≤ B. The noise variables εt satisfy E[εt|ε1, ε2, . . . , εt−1] = 0
for all t ∈ N and are uniformly bounded by σ. Let δ ∈ (0, 1), βt = 2B2 + 300γt ln3(t/δ) and
C1 = 8/log(1 + σ−2). Then, the accumulated regret of SM-UCB over T rounds is as follows:

Pr
{
RT ≤

√
C1TβT γT + 2,∀T ≥ 1

}
≥ 1− δ.

The proof of the above theorem is provided in the Supplementary Material. It relies on two powerful
ideas: greedy selection for constrained submodular maximization [41] and upper confidence bounds
of contextual Gaussian bandit [31]. If the marginal payoffs were completely known, then the greedy
policy would provide a competitive solution to the optimum. However, one cannot run the greedy
policy without knowing the marginal gains. In fact, there are strong negative results regarding the
approximation guarantee of any polynomial time algorithm if the marginal gains are arbitrarily noisy
[23]. Instead, SM-UCB relies on optimistic estimates of the marginal gains and select greedily an
item with the highest upper confidence bound. By assuming that marginal gains are smooth and
relying on Theorem 1 in [31], we can control the accumulated error of a greedy-like solution that
relies on confidence bounds and obtain low regret. Our setting and theoretical result generalize a
number of prior work mentioned below.

Linear submodular bandit [50]. In this setting, the objective function has the form f(S) =∑d
i=1 wifi(S), where fi’s are known submodular functions and wi’s are positive unknown coeffi-

cients. Therefore, the marginal gain function can be written as ∆(x|S) =
∑d
i=1 wi∆i(x|S), where

∆i(·|·)’s are known functions and wi’s are unknown coefficients. Let w = (w1, w2, . . . , wd) denote
the weight vector. Since the only unknown part of the marginal gain function is the weight vector,
the space of the marginal gain function is isomorphic to the space of weight vectors, which is in
fact a d-dimensional Euclidean space Rd. The RKHS norm of ∆ is given by some norm in Rd;
i.e., ‖∆‖k, ‖w‖. The assumption in [50] that ‖w‖≤ B is equivalent to assuming that ‖∆‖k≤ B.
Therefore, the linear bandit setting is included in our setting where the marginal gain function ∆ has
a special form and its RKHS norm is given by the norm of its corresponding weight vector in the
Euclidean space. Also, LSBGREEDY proposed in [50], is a special case of SM-UCB (except that
the feedback is delayed).

Adaptive valuable item discovery [47]. In this setting, the objective function has the form
f(S) = (1 − λ)

∑
x∈S g(x) + λD(S), where D is a known submodular function that quantifies

the diversity of the items in S, g is an unknown function that denotes the utility g(x) for any item
x, and λ is a known tradeoff parameter balancing the importance of the accumulative utility and
joint diversity of the items. Note that the unknown function M(S) =

∑
x∈S g(x) is a modular

function. Therefore, the marginal gain function has the form ∆(x|S) = (1− λ)g(x) + λD(x|S),

where D(x|S) , D({x} ∪ S)−D(S). The only uncertainty of ∆ arises from the uncertainty about
the modular function M . In particular, [47] assumes that the RKHS norm of g is bounded. Again,
our setting encompasses adaptive valuable item discovery as we consider any monotone submodular
function. Moreover, GPSELECT proposed in [47], is a special case of SM-UCB.

Contextual Gaussian bandit [31]. This is the closest setting to ours where in each round i we
receive a context φi from the set of contexts Φ and have to choose an item x from the set of items
Ω. We then receive a payoff fφi(x) + εt. Note that instead of building up a set (our problem), in
the contextual bandit process we simply choose a single element for each function fφi as the main
assumption is that we encounter each function only once. To obtain regret bounds it is assumed in
[31] that f has low norm in the RKHS associated with some kernel k. Again, CGP-UCB proposed
in [31], is a special case of SM-UCB.
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4 Experiments

In this section, we compare empirically the performance of SM-UCB with the following baselines:

• RANDOM. In each round, an item is randomly selected for the current payoff function fφ.

• GREEDY. It has the full knowledge of the submodular functions fφ. In each round, say
the i-th with the corresponding function fφui

, GREEDY selects the item that maximizes the
marginal gain, i.e., argmaxx∈Ω ∆(x|Soi−1, φui).

• HISTORY-FREE. We run SM-UCB without considering the previously selected items.
HISTORY-FREE is basically the contextual Gaussian bandit algorithm proposed in [31]
whose context is the user feature.

• FEATURE-FREE. We run SM-UCB without considering the context φ of an arriving
function f .

• CONTEXT-FREE. We run SM-UCB without considering the context or the previously
selected elements. In fact, CONTEXT-FREE is basically the GP-SELECT algorithm proposed
in [47].

In all of our experiments, the m distinct functions {fφi : 1 ≤ i ≤ m} that the algorithm encounters
represent the valuation functions of m users, where the context φi ∈ Rd encodes users’ features.
Moreover, Si is the set of items that an algorithm selects for user i ∈ [m]. Instead of computing
the regret, we quantify the performance of the algorithms by computing the accumulated reward∑m
i=1 fφi

(Si). Recall that the regret is given by (1− 1/e) ·OPT −∑m
i=1 fφi

(Si), where OPT =∑m
i=1 fφi(S

∗
i ) is a constant generally hard to compute.

Movie Recommendation In this set of experiments, we use the MovieLens dataset1 where a user-
rating matrix M is provided. The rows of M represent users and the columns represent movies. The
matrix M contains 943 users and 1682 movies. As a preprocessing step, we apply the singular-value
decomposition (SVD) to impute the missing values; the six largest singular values are kept.

In the first part of the study, we use the submatrix of M that consists of 80% of the users and all
of the movies for training the feature vectors of movies via SVD. Let M ′ be the submatrix of M
that consists of the remaining nuser users and all of the movies; this matrix is for testing. Let Ω
denote the set of movies. We consider selecting a subset of Ω to maximize the facility-location-
type objective [30] f(S) =

∑nuser

i=1 maxj∈SM ′ij . This objective function corresponds to a scenario
without any context φ as there is only one payoff function f that we are trying to maximize. Thus,
FEATURE-FREE does not apply here. We use the cosine kernel kmovie : Ω × Ω → R for pairs of
movies and Jaccard kernel ksubset(S, T ) = |S ∩ T |/|S ∪ T | [18] for pairs of subsets of movies, say
S and T . The composite kernel k : (Ω× 2Ω)× (Ω× 2Ω)→ R is defined as κ1kmovie ⊕ κ2ksubset,
i.e., k((u, S), (v, T )) = κ1kmovie(u, v) + κ2ksubset(S, T ), where κ1, κ2 > 0. The results are shown
in Fig. 1(a). The horizontal axis denotes the cardinality of S. The vertical axis denotes the function
value of f on the set S. We observe that SM-UCB outperforms all of the baselines except the
practically infeasible GREEDY.

In the second part, we consider a setting where a separate subset of movies is selected for each user.
We cluster the users in the dataset into 40 groups via the k-means algorithm and the users of the
same group are viewed as identical users. The feature vector of a group of users is the mean of the
feature vectors of all member users and the rating of a group is the sum of the ratings of all member
users. The users are labeled as 1, 2, 3, . . . , n′user, where n′user = 40. Similar to the first part, the
feature vectors of the users and movies are obtained via SVD. We maintain a set Si for user i. The
objective function is fφi

(S) = maxj∈SM ′′ij , where M ′′ij is user i’s rating for movie j. In addition,
we also need a collective objective function that quantifies the overall performance of an algorithm
for all users. It is defined as f(S1, S2, . . . , Sn′user

) =
∑n′user
i=1 fφi(Si). We assume a random arrival

of users. We use the linear kernel kuser : Φ × Φ → R for pairs of users. The composite kernel
k : (Ω× 2Ω ×Φ)× (Ω× 2Ω ×Φ)→ R is defined as κ1kmovie ⊕ κ2ksubset ⊕ κ3kuser. In Fig. 1(b),
we plot the performance of SM-UCB against other baselines. The horizontal axis denotes the number
of user arrivals while the vertical axis denotes the value of the collective objective function. We

1https://grouplens.org/datasets/movielens/
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Figure 1: Figs. 1(a) and 1(b) show the results of the experiments on the MovieLens dataset. Fig. 1(a)
shows how the total objective function for all users evolves as the number of selected movies increases;
the algorithm recommends the same subset of movies to all users. In Fig. 1(b), we consider the
situation where users arrive in a random order and we have to recommend a separate subset of movies
to each user. Figs. 1(c) and 1(d) show the dependency of fraction of influenced nodes on the target
set size in the Facebook network and the student network from the User Knowledge Modelling
Dataset [27]. Fig. 1(e) shows how the payoff function varies as more users arrive in the Yahoo news
recommender. In Fig. 1(f), we consider the personalized data summarization from Reuters corpus for
arriving users. It shows the fraction of covered topics versus the number of user arrivals.

observe that SM-UCB outperforms all other baselines except GREEDY. In addition, CONTEXT-FREE
that uses the least amount of information achieves a lower function value than HISTORY-FREE and
FEATURE-FREE, which either leverages the information about users’ features or previously selected
items.
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Interactive Influence Maximization For this experiment, we use the Facebook network provided
in [35]. The goal is to choose a subset of subjects in the network, which we call the target set, in
order to maximize the number of influenced subjects. We assume that each member in the target
set can influence all of her neighbors. Under this assumption, the submodular objective function is
f(S) =

∣∣⋃
u∈S(N (u) ∪ {u})

∣∣, whereN (u) is the set of all neighbors of subject u. All the baselines,
except GREEDY, have no knowledge of the underlying Facebook network or the objective function.
They are only given the feature vector of each subject obtained via the NODE2VEC algorithm [21].
The kernel function ksubject between two subjects is a linear kernel while the kernel function between
subsets of subjects is the Jaccard kernel. The results are shown in Fig. 1(c). Again, SM-UCB reaches
the largest influence w.r.t other baselines except for GREEDY. We ran the same idea over the 6-nearest
neighbor network of randomly sampled 150 students from User Knowledge Modelling Dataset [27].
As Fig. 1(d) indicates, a similar pattern emerges.

News Recommendation For this experiment, we use the Yahoo! Webscope dataset R6A2. The
dataset provides a list of records, each containing a time stamp, a user ID, a news article ID and
a Boolean value that indicates whether the user clicked on the news article that was presented to
her. The feature vectors of the users and the articles are also provided. We use k-means clustering
to cluster users into 175 groups and identify users of the same group as identical users. We form a
matrix M whose (i, j)-entry is the total number of times that user i clicked on article j. This matrix
quantifies each user’s preferences regarding news articles. The objective function for user i is defined
as fφi

(Si) = maxj∈Si
Mij . The collective objective function f is defined as the sum of the objective

functions of all users. From the time stamps, we can infer the order in which the users arrive. We
use the Laplacian kernels knews : Ω× Ω → R and kuser : Φ× Φ → R for pairs of pieces of news
and pairs of users, respectively. For a pair of subsets of news S and T , the kernel function between
them is again the Jaccard kernel. The composite kernel k : (Ω× 2Ω × Φ)× (Ω× 2Ω × Φ)→ R is
defined as κ1knews ⊕ κ2ksubset ⊕ κ3kuser. The results are illustrated in Fig. 1(e). The horizontal axis
is the number of arriving users while the vertical axis is the value of the collective objective function.
Again, we observe that SM-UCB outperforms all other methods except GREEDY.

Personalized Data Summarization For this experiment, we apply latent Dirichlet allocation
(LDA) to the Reuters Corpus. The number of topics is set to ntopic = 10. LDA returns a topic
distribution P (i|a) for each article a and topic i. Suppose that A is a subset of articles. Probabilistic
coverage function quantifies the degree to which a set of articles A covers a topic i [16], and is
given by Fi(A) = 1−∏a∈A(1− P (i|a)). Each user j is characterized by her ntopic-dimensional
preference vector wj = (wj,1, wj,2, wj,3, . . . , wj,ntopic

); we assume that the preference vector is
L1-normalized, i.e., its entries sum to 1. The personalized probabilistic coverage function for user
j is defined as fj(A) =

∑ntopic

i=1 wj,iFi(A) [16, 50]. Note that since the preference vector is L1-
normalized and Fi(A) ≤ 1, we have fj(A) ≤ 1 for any j. The total average coverage function is
f(A) = 1

nuser

∑nuser

j=1 fj(A), where nuser = 10 is the number of users. Random order of user arrivals
is simulated. We use the linear kernel for pairs of users and pairs of articles and use the Jaccard kernel
between subsets of articles. The results are shown in Fig. 1(f). The horizontal axis is the number of
user arrivals while the vertical axis is the total average coverage function f(A), which characterizes
the average fraction of covered topics. We observe that SM-UCB outperforms all the baselines other
than GREEDY.

Discussion Recall that the RKHS is a complete subspace of the L2 space of functions defined on
the product of the item set, its power set, and the context set. It has an inner product (·, ·)k obeying
the reproducing property: (f, k(x, ·))k = f(x) for all f in RKHS. Functions implied by a particular
kernel k are always of the form f(x) =

∑
i αik(xi, x). The bounded norm implies that αi vanish

quickly enough. With universal kernels like Gaussian/Laplacian kernels, such functions are dense
(according to sup-norm) in the space of continuous functions.

In three sets of experiments (movie recommendation, influence maximization, data summarization)
we used the linear and cosine kernels for items and users, and the Jaccard kernel for subsets of items.
In fact, the Jaccard kernel is a widely used metric that quantifies the similarity between subsets of
selected items. Moreover, the linear and cosine kernels between items and users capture the simplest
form of interactions. In contrast to the the above three experiments, in the news recommendation

2http://webscope.sandbox.yahoo.com/
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application, we chose the Laplacian kernel for the following reason. The features provided in the
dataset have highly heterogeneous norms. If we use the linear kernel, the inner product between a
short vector and a close-by vector with a small norm will be easily dominated by the inner product
with a vector with a large norm. We used the Laplacian kernel to circumvent this problem and put
more weight on nearby vectors even if they have small norms.

5 Related Work

Originally, Auer et al. [2] proposed UCB policies for the multi-armed bandit (MAB) problem which
exhibits the exploration-exploitation tradeoff and achieves an O(

√
T ) regret. In the literature, there

are many variants of the multi-armed bandit problem and corresponding solutions, for example,
EXP3 algorithm for adversarial bandits [3], LINUCB for stochastic contextual bandits [36, 12], and a
family of UCB-based policies for infinitely many-armed bandit [49]. Chen et al. [11] considered
the combinatorial MAB problem where the unit of play is a super arm and base arms can be
probabilistically triggered. For a comprehensive survey on bandit problems, we refer the interested
reader to [9].

Srinivas et al. [44] studied the Gaussian process (GP) optimization problem in the bandit setting.
They assumed that the objective function f is either sampled from a Gaussian process or resides
in a reproducing kernel Hilbert space (RKHS). Given a subset of items S ⊆ Ω , the total utility is∑
x∈Ω f(x). Under either the GP model or the RKHS assumption, they showed that their proposed

GP-UCB algorithm achieves an O(
√
T ) regret bound. It is noteworthy to mention that their bound

also relies on the maximum information gain. Based on [44], Krause and Ong [31] further investigated
the contextual Guassian process bandit optimization and their proposed algorithm CGP-UCB
achieves a similar regret bound. Lin et al. [37] addressed an online learning problem where the
input to the greedy algorithm is stochastic with unknown parameters and the algorithm receives
semi-bandit feedbacks. Their algorithm can also be applied to submodular functions. However, there
are several major differences between their work and ours: Firstly, they assume that the objective
functions are drawn from a predetermined but unknown distribution, while our work applies to any
set of submodular functions; secondly they assume bounded submodular functions while we have no
such assumptions; thirdly, their work did not have the notion of context. They optimize the expected
objective function while we optimize objective functions with different contexts simultaneously.
Streeter and Golovin [45] studied the online maximization problem of submodular functions. Yue and
Guestrin [50] studied the linear submodular bandit problem where they assumed that the unknown
submodular function is a linear combination of multiple known submodular functions. The only
uncertainty in their setting is the unknown positive coefficients of each known submodular function.
They proposed LSBGREEDY that achieves a similar O(

√
T ) regret bound. Beyond unconstrained

sequential decision problems, Zhou et al. [52] considered online maximization of list submodular
functions under a knapsack constraint.

Our key contribution in this paper is that the notion of contextual regret that we bound is much more
challenging than the typical notion: Our actions are affecting the future contexts experienced, and we
compete with policies that are aware of this fact and can plan for it. This is qualitatively different
from any prior analysis. More specifically, we need to build up a subset of items/actions as we
encounter a valuation function multiple times. This is a non-trivial task as not only the functions are
unknown, the marginal gains are also noisy. Moreover, the choices we make can affect the future. Our
positive results can be seen in light of very recent negative results in [23] that indicates submodular
optimization is hard when function evaluations are noisy. We show that the UCB-based algorithm
can be naturally combined with the greedy selection policy to provide sublinear regret. To the best of
our knowledge the analysis is new.
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