
Supplementary Material for NIPS 2017 Paper # 1394:
An Inner-loop Free Solution to Inverse Problems

using Deep Neural Networks

Kai Fai∗
Duke University

kai.fan@stat.duke.edu

Qi Wei∗
Duke University

qi.wei@duke.edu

Lawrence Carin
Duke University

lcarin@duke.edu

Katherine Heller
Duke University

kheller@stat.duke.edu

1 Learning A from training data

The objective to estimate A is formulated as

argmin
A

N∑
i=1

‖yi −Axi‖22 + λφ(A) (1)

where (xi,yi)i=1:N are the training pairs and φ(A) corresponds to a regularization to A. Empirically,
when m is large enough, the regularization plays a less important role. The learned and real kernels
for A (of size 4× 4) are visually very similar as is shown in Fig. 1.

0.03

0.04

0.05

0.03

0.04

0.05

2

4

6

8
×10-9

Figure 1: (left) Ground-truth kernel for A , (middle) learned kernel for A, (right) difference of these
two.

∗The authors contributed equally to this work.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Figure 2: (top) convolution matrix H , (middle) downsample matrix S, (right) strided convolution
matrix A = SH .

2 Structure of matrix A in Section 4.1

The degradation matrix A in strided convolution can be decomposed as the product of H and S, i.e.,
A = SH , where H is a square matrix corresponding to 2-D convolution and S represents the regular
2-D downsampling. In general, the blurring matrix H is a block Toeplitz matrix with Toeplitz blocks.
If the convolution is implemented with periodic boundary conditions, i.e., the pixels out of an image
is padded with periodic extension of itself, the matrix H is a block circulant matrix with circulant
blocks (BCCB). Note that for 1-D case, the matrix B reduces to a circulant matrix. For illustration
purposes, an example of matrix B for a 1-D case is given as below.

2

H =

0.5 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2
0.2 0.5 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.2 0.5 0.3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.2 0.5 0.3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.2 0.5 0.3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.2 0.5 0.3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.2 0.5 0.3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.2 0.5 0.3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.2 0.5 0.3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.2 0.5 0.3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.2 0.5 0.3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.2 0.5 0.3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.2 0.5 0.3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.5 0.3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.5 0.3
0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0.5


An example of matrix B for 2-D convolution of a 9× 9 kernel with a 16× 16 image is given in the
top of Fig. 2. Clearly, in this huge matrix, a circulant structure is present in the block scale as well as
within each block, which clearly demonstrates the self-similar pattern of BCCB matrix.

The downsampling matrix S corresponds to downsampling the original signal and its transpose ST

interpolates the decimated signal with zeros. Similarly, a 1-D example of downsampling matrix is
shown in (2) for an illustrative purpose. An example of matrix S for downsampling a 16× 16 image
to the size of 4× 4, i.e., S ∈ R16×256, is displayed in the middle of Fig. 2. The resulting degradation
matrix A, which is the product of S and H is shown in the bottom of Fig. 2.

S =

 1 0 0 0 | 0 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 1 0 0 0 | 0 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 1 0 0 0 | 0 0 0 0
0 0 0 0 | 0 0 0 0 | 0 0 0 0 | 1 0 0 0

 (2)

3 More experimental results

3.1 Motion deblurring

The motion blurring kernel is shown in Fig. 3. More results of motion deblurring on held-out testing
data for CUB dataset are displayed in Fig. 4, 5.

3.2 Super-resolution

More results of super-resolution on held-out testing data for CUB dataset are displayed in Fig. 6, 7.

3.3 Joint super-resolution and colorization

More results of joint super-resolution and colorization on held-out testing data for CelebA dataset are
displayed in Fig. 8.

Figure 3: 9× 9 motion blurring kernel.

3

(a) ground-truth image for motion deblurring task

(b) motion blurred images

Figure 4: motion blurring
4

(a) results using Wiener filter with the best performance by tuning regularization parameter.

(b) deblurred results using Inf-ADMM-ADNN

Figure 5: motion deblurring
5

(a) LR images

(b) bicubic interpolations

Figure 6: super-resolution
6

(a) super-resolved (×4) images using Inf-ADMM-ADNN

(b) HR groundtruth

Figure 7: super-resolution
7

(a) colorless images

(b) joint super-resolution (×2) and colorization using
Inf-ADMM-ADNN

(c) HR groundtruth

Figure 8: joint super-resolution and colorization8

4 Networks Setting

4.1 Network for updating x

For MNIST dataset, we did not use the pixel shuffling strategy, since each data point is a 28 × 28
grayscale image, which is relatively small. Alternatively, we used a standard denoising auto-encoder
with architecture specifications in Table 1.

Table 1: Network Hyper-Parameters of DAE for MNIST

Input Dim Layer Output Dim
28× 28× 1 Conv(5, 5, 1, 32)-Stride(2, 2)-‘SAME’-Relu 14× 14× 32
14× 14× 32 Conv(5, 5, 32, 64)-Stride(2, 2)-‘SAME’-Relu 7× 7× 64
7× 7× 64 Conv(5, 5, 64, 128)-Stride(2, 2)-‘VALID’-Relu 2× 2× 128
2× 2× 128 Conv(2, 2, 128, 64)-Stride(1, 1)-‘VALID’-None 1× 1× 64
1× 1× 64 Conv_trans(3, 3, 64, 128)-Stride(1, 1)-‘VALID’-Relu 3× 3× 128
3× 3× 128 Conv_trans(5, 5, 128, 64)-Stride(1, 1)-‘VALID’-Relu 7× 7× 64
7× 7× 64 Conv_trans(5, 5, 64, 32)-Stride(2, 2)-‘SAME’-Relu 14× 14× 32
14× 14× 32 Conv_trans(5, 5, 32, 1)-Stride(2, 2)-‘SAME’-Sigmoid 28× 28× 1

For CUB-200-2011 dataset, we applied a periodical pixel shuffling layer to the input image of size
256× 256× 3 with the output of size 64× 64× 48. Note that we did not use any stride here since we
keep the image scale in each layer identical. The architecture of the cPSDAE is given in Table 2. For
CelebA dataset, we applied the periodical pixel shuffling layer to the input image of size 128×128×3
with the output of size 32× 32× 48, and the rest of setting is the same as CUB-200-2011 dataset, as
shown in Table 3. In terms of the discriminator, we fed the pixel shuffled images. The architecture of
the disriminator is the same as the one in DCGAN.

Table 2: Network hyper-parameters of cPSDAE for CUB-200-2011

Input Dim Layer Output Dim
256× 256× 3 periodical pixel shuffling 64× 64× 48
64× 64× 48 Conv(4, 4, 48, 128)-‘SAME’-Batch_Norm-Relu 64× 64× 128
64× 64× 128 Conv(4, 4, 128, 64)-‘SAME’-Batch_Norm-Relu 64× 64× 64
64× 64× 64 Conv(4, 4, 64, 32)-‘SAME’-Batch_Norm-Relu 64× 64× 32

64× 64× {32, 3} Concatenate in Channel 64× 64× 35
64× 64× 35 Conv(4, 4, 35, 64)-‘SAME’-Batch_Norm-Relu 64× 64× 64
64× 64× 64 Conv(4, 4, 64, 128)-‘SAME’-Batch_Norm-Relu 64× 64× 128
64× 64× 128 Conv(4, 4, 128, 48)-‘SAME’-Batch_Norm-Relu 64× 64× 48
64× 64× 48 periodical pixel shuffling 256× 256× 3

Table 3: Network hyper-parameters of cPSDAE for CelebA

Input Dim Layer Output Dim
64× 64× 3 periodical pixel shuffling 32× 32× 12
32× 32× 12 Conv(4, 4, 12, 128)-‘SAME’-Batch_Norm-Relu 32× 32× 128
32× 32× 128 Conv(4, 4, 128, 64)-‘SAME’-Batch_Norm-Relu 32× 32× 64
32× 32× 64 Conv(4, 4, 64, 32)-‘SAME’-Batch_Norm-Relu 32× 32× 32

32× 32× {32, 3} Concatenate in Channel 32× 32× 35
32× 32× 35 Conv(4, 4, 35, 64)-‘SAME’-Batch_Norm-Relu 32× 32× 64
32× 32× 64 Conv(4, 4, 64, 128)-‘SAME’-Batch_Norm-Relu 32× 32× 128
32× 32× 128 Conv(4, 4, 128, 12)-‘SAME’-Batch_Norm-Relu 32× 32× 12
32× 32× 12 periodical pixel shuffling 64× 64× 3

4.2 Network for updating z

As described in Section 3.2, the neural network to update z was designed to have symmetric
architecture. The details of this architecture is given in Table 4. Note that W ×H represents the size
of the width and height of measurement y.

9

Table 4: Symmetric network hyper-parameters for updating z

Input Dim Layer Output Dim
H ×W × 3 Conv_trans(4,4,3,32, W0)-‘SAME’-Relu H ×W × 32
H ×W × 32 Conv_trans(4,4,32,64, W1)-‘SAME’-Relu H ×W × 64
H ×W × 64 Conv(4,4,3,32, W1)-‘SAME’-Relu H ×W × 32
H ×W × 32 Conv(4,4,32,64, W0)-‘SAME’ H ×W × 3

10

	Learning A from training data
	Structure of matrix A in Section 4.1
	More experimental results
	Motion deblurring
	Super-resolution
	Joint super-resolution and colorization

	Networks Setting
	Network for updating x
	Network for updating z

