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A Gibbs Samplers for the EPM

A.1 Model Description

The full description of the generative model for the EPM [1] is described as follows:

K
zij; =1I(m; ;. > 1), my;.|U,V, X~ Poisson (Z Ui)kV»)k/\k> ,
k=1
Uik ~ Gammal(ai,b1), Vji ~ Gamma(ag,bs), A ~ Gamma(yy/T,co). (9)

A.2 Closed-form Gibbs Samplers

Posterior inference for all parameters and hyperparameters of the EPM can be performed
using Gibbs sampler.

Sampling m: From Eq. @), as m; ;. = 0 if and only if x; ; = 0, posterior sampling of m
is required only for non-zero entries (x; ; = 1), and can be performed using zero-truncated
Poisson (ZTP) distribution [2] as follows:

5(0) if T 5 = 0,
ZTP(Xp_ Ui heVig) if @ = 1.
Then, latent count m; ;1 related to the k-th atom can be obtained by partitioning m, ;.
into T" atoms as

mi,j,. ‘ U, )\, V ~ { (10)

T
ik ARV
{m@j,k}{:l |m; ;.. U, X,V ~ Multinomial | m; ;.; 7 Uik Ak Vi . (11)
D=1 Uik M Vi |y

Sampling U,V,A: As the generative model for m; ;5 can be given as m; ;i | U,V ,A ~
Poisson(U; 1 V; kAk), according to the additive property of the Poisson distributions, gener-
ative models for aggregated counts also can be expressed as follows:

Mi. g = (30, mijk) | U, V, A ~ Poisson(Ui k(3 Vik) Ak), (12)
m. k= (3 mijk) U, V, X~ Poisson((}" Ui k) VjrAk), (13)
m.. k= (32,3 ,mijk) [U, V, A~ Poisson((32 Uik) (3, Vik)Ak)- (14)

Therefore, thanks to the conjugacy between Poisson and gamma distributions, posterior
samplers for U, V', and X are straightforwardly derived as follows:

Ui | = ~ Gamma(ar +mi,.x, 01 + (3, Vjk) M), (15)
Vx| — ~ Gamma(as +m. i, ba + (Z,;Ui,k)/\k)’ (16)
Ak | = ~ Gamma(yo/T + m... k, co + (32, Uik) (32, Vik))- (17)
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A.3 Sampling Hyperparameters

Sampling b1,b2,c9: Thanks to the conjugacy between gamma distributions, posterior
samplers for by, b, and ¢ are straightforwardly performed as follows:

by |— ~ Gamma(eg + ITay, fo + 3,5, ¢ik), (18)
by | — ~ Gamma(eg + JTaq, fo + ijkwj*k)’ (19)
co | = ~ Gamma(eo + 70, fo + >, Ak)- (20)

For the remaining hyperparameters (i.e., a, as, and ﬁ we can construct closed-form
Gibbs samplers using data augmentation techniques B |’jy B that consider an expanded
probability over target and some auxiliary variables. The key strategy is the use of the
following expansions:

I(u) B(u,n

— ) _ n —1 1,Uu—1 — n—1 v
D(u+n) F(n) =T(n) /0 (1—v)""dv, (21)

u—i—n ZSnw (22)

where B(-,-) is the beta functlon and S(+,+) is the Stirling number of the first kind.

Sampling aj,as: For shape parameter a;, marginalizing U from Eq. ([I2]), we have a
partially marginalized likelihood related to target variable a; as:

T bl fan ! I‘(a1 +mi7i,k)
P({mi,-,k}i,k [V, A) x kl;[l (bl n (Zj‘/}7k>)\k> H F(al)i . (23)

=1

Therefore, expanding Eq. @23)) using Eq. [22) and assuming gamma prior as a3 ~
Gammal(eg, fo), posterior sampling for a; can be performed as follows:

w; i | — ~ Antoniak(m, . r, a1), (24)

by
ai | — ~ Gamma (eo + 3 N wik, fo—Ix 3, In W) ) (25)

where Antoniak(m; . x,a1) is an Antoniak distribution [f]. This is the distribution of the
number of occupied tables if m;,. , customers are assigned to one of an infinite number of
tables using the Chinese restaurant process (CRP) ﬂﬂ | with concentration parameter aj,

mi,. k ay
p=1 a1+p—1
sampler for as can be derived from Eqs. (I3) and (22) (omitted for brevity).

and is sampled as w; , = > Wi kep> Wi kyp ™~ Bernoulli . Similarly, posterior

Sampling 7o: Similar to the samplers for a; and as, according to Eqs. (Id]) and 22), vo
can be updated as follows:

wy, | — ~ Antoniak(m. . x,v0/T), (26)

1
ol G (60 FRe o g T e ey k>> -
P i

B Gibbs Samplers for the CEPM

Posterior inference for the CEPM can be performed using Gibbs sampler as same as that for
the EPM. However, only a; and as do not have closed-form sampler because of introduced
constraints by = Cy xXa; and by = Cs xas. Therefore, instead of sampling from true posterior,
we use the grid Gibbs sampler ﬂg] to sample from a discrete probability distribution

Play|—) o< Eq @3) x P(a1) (28)

over a grid of points ﬁ = 0.01,0.02,...,0.99. Note that as can be sampled in a same
way as a1 (omitted for brevity).
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C Gibbs Samplers for the DEPM

C.1 Closed-form Gibbs Samplers

Sampling ¢,¢: Given m..; =) . Zj m; j i, generative process for latent count my; .
can be expressed as

{mi.k}ioy M.k, &, 1b, A ~ Multinomial (m. . x; {¢ix}i_y) - (29)

Thanks to conjugacy between Eq. (Z9) and Dirichlet prior in Eq. ), posterior sampling for
¢ can be performed as

{¢ir}1_1 | — ~ Dirichlet({oy +mi. 1 }_,). (30)
Similarly, ) can be updated as
{wj,k}}]:1 | — ~ Dirichlet({as + m.’j,k}le). (31)

Sampling m, A: Posterior samplers for remaining latent variables m and A are straight-
forwardly given from Eqs. (I0)), (IT)), and ([IT) by replacing U and V with ¢ and 1, respec-
tively.

C.2 Sampling Hyperparameters

Sampling a;,as: Similar to Appendix [AL3] marginalizing ¢ out from Eq. @) and ex-
panding the marginal likelihood using Egs. (1)) and ([22]), posterior sampling for a; can be
derived as follows:

vk | — ~ Beta(Iag, m.. i), (32)
Wik | — ~ Antoniak(m; . x, 1), (33)
ay | =~ Gamma(eg + > S wi ik, fo— 1 x>, Inwy ). (34)

Note that the posterior sampler for a can be derived in same way (omitted for brevity).

Sampling vp,¢p: The remaining hyperparameters (i.e., 79 and ¢g) can be updated as
same as in the EPM. Similar to the sampler for the EPM, ¢y can be updated using Eq. (20).
Finally, posterior sampler for 7y can be derived as

wg, | — ~ Antoniak(m. . x,v0/T), (35)

Y | — ~ Gamma (eo + 3wk, fo—1In COC—T— 1) . (36)

D Proof of Theorem [4

Considering a joint distribution for m; ;. customers and their assignments z;; =
{zijstii € {1,---,T}™ to T tables, we have following lemma for the truncated
DEPM:

Lemma 1. The joint distribution over m and z for the DEPM is expressed by a fully

factorized form as

I J
Pm,z o9, =] ]]

i=1j=1

1 T o J T _ T e
mij'XHH(bia’;H/XHHkaJ) x [T e (37)
A j=1k=1 k=1

i=1k=1 =

Proof. As the likelihood functions P(m; ;.| ¢, ¥, A) and P(z; ;s |mi ., ¢,%,X) are given
as

T mi,)jﬁ.
1 L
Pmij. [ ¢,4,A) = —— < ¢i,k¢j,k)\k> €™ Lokmr Sikiie, (38)
k=1

505

X Gi ko Vg ke Ak
P(Zi:jvs =k | mi j,., ¢7 d"v )\) = - J

= , (39)
Z;}P/:l ikt Vg ket Ak

12



respectively, we obtain the joint likelihood function for m and z as follows:

P(m,z| ¢, 9, )

I J mi,j,-
= H H {P(mi7j7' | d)a "/"7 >‘) H P(Zi,j.,s | Mi,g,» d)? ¢’ )‘)}
s=1

i=1j=1
I I T J T
_ 1 M,k sk N —/\k(z.@,k)(z.l%',k)
I < I o < TLTT XHA e et la T,
i=1j=1" 50" i=1k=1 j=1k=1
(40)
Thanks to the /1-constraints for ¢ and v we introduced in Eq. (@), substituting Y~ ¢; 1 =
Zﬂ’mk =1 for Eq. (0), we obtain Eq. (37) in Lemma [T 0

Thanks to the conjugacy between Eq. 1) in Lemma [l and prior construction in Eq. ),
marginalizing ¢, ¢, and A out, we obtain the following marginal likelihood for the DEPM:

(ITay) ! Iy +my. )
HH HI‘Ia1+m k)H I(aq)

11]1 bdse

H JOéQ ﬁ Olg—|—m7]k ﬁ F( +m.. ]c)CQWTU
T Ja2+m i Pt ( 0) CO+1)w0+m

o

(41)

Considering a partition [2] instead of the assignments z as same as in [10], the marginal
likelihood function P(m, [z]) for a partition of the truncated DEPM can be expressed as

J
(Jao) ozg—&—mm )
XkI:[lF(Jag-l-m k 1;[

>V°ﬁnl it 1l+70/T)_

42
(o)™ (42)

XLX K+
(T — K, )ITk+ =70 c—+1

Therefore, taking T — oo in Eq. ([@2), we obtain the marginal likelihood function for the
truly infinite DEPM (i.e., IDEPM) as in Eq. (@) of Theorem Fl

E Sampling Hyperparameters for the IDEPM

Sampling a1, as:  Posterior samplers for a; and ag of the IDEPM are equivalent to those
of the truncated DEPM as in Appendix [C.2]

Sampling v9: From Eq. (@), we straightforwardly obtain the posterior sampler for q as

Yo | — ~ Gamma <€O—|—K+,f0—]n COC_T_1> ) (43)

Note that 79 in Eq. (@) can be marginalized out assuming gamma prior. However, we
explicitly sample 7o for simplicity in this paper.

Sampling cy: As derived in Sec. of main article, ¢y is updated as

A | — ~ Gamma(m..x,co+1) ke{l,...,Ki},

Ay | — ~ Gamma(yg, co + 1), (

co | = ~ Gamma(eg + 70, fo + Ayg + 30t Ak)- (

—
[
Tt

S— ~—r

[N
(=)
S~—"
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