
8 Appendix

To lighten the notation system, we drop the feature transform f from our equations. The analysis
procedure does not change with or without f .

8.1 Relationship between Trimmed DRE and Binary SVM [23, 4]

Consider a “symmetrized” extension to the criterion (6):

min
δ

KL [p|q · rδ] + KL [q|p · 1/rδ]

≈c−max
δ

1

np

np∑
i=1

log r̂(x(i)
p ; δ) +

1

nq

nq∑
i=1

log r̂2(x(i)
q ; δ) (13)

that jointly minimizes the KL divergence from P to Q and from Q to P . Similar to (5), we use r̂2 to
model the ratio q/p:

r̂2(x; δ) =
exp〈−δ,x〉
N̂2(δ)

, N̂2(δ) :=
1

np

np∑
j=1

exp〈−δ,x(j)
p 〉.

The minus in front of the δ is due to the inversion of the ratio. We can trim the objective function
(13) and add a regularization term λR(δ) as we did for the asymmetric one:

max
δ

1

np

np∑
i=1

[log r̂(x(i)
p ; δ)− t0]− +

1

nq

nq∑
i=1

[log r̂2(x(i)
q ; δ)− t0]− − λR(δ) (14)

Proposition 2. If np = nq, t0 = 1, R(·) = ‖ · ‖22, the maximizer δ̂ of (14) is the same as the primal
solution of a modified SVM using Xp and Xq as positive and negative class respectively.

It suggests SVM learns an unnormalized and trimmed density ratio function as the decision function.

Proof. By introducing the slack variables as we did in (7). (14) can be rewritten as:

min
δ,ε≥0

1

np
〈εp,1〉+

1

nq
〈εq,1〉+ λR(δ)

s.t. ∀x(i)
p ∈Xp,∀x(i)

q ∈Xq,

log r̂(x(i)
p ; δ) ≥ t0 − εp,i,

log r̂2(x(i)
q ; δ) ≥ t0 − εq,i, (15)

After substituting r̂ and r̂2, (15) can be re–written as

min
δ,ε≥0

1

np
〈εp,1〉+

1

nq
〈εq,1〉+ λR(δ)

s.t. ∀x(i)
p ∈Xp,∀x(i)

q ∈Xq,

〈δ,x(i)
p 〉 − log N̂(δ) ≥ t0 − εp,i,

〈−δ,x(i)
q 〉 − log N̂2(δ) ≥ t0 − εq,i. (16)

Let np = nq, t0 = 1, R(δ) = ‖δ‖2, (16) is an SVM (without a bias term) using Xp and Xq as
positive and negative samples respectively, except the presences of log normalization terms log N̂(δ)

and log N̂2(δ).

8.2 Proof of Proposition 1

Proof. To prove the statement, we construct the dual of (8) which has the exactly same form as (9).
DenoteXp =

[
x
(1)
p , . . . ,x

(np)
p

]
∈ Rd×np andXq =

[
x
(1)
q , . . . ,x

(nq)
q

]
∈ Rd×nq .

12



The Lagrangian of (8) can be written as

l(α,α′, α′′, δ, t, ε) = −〈α, δ>Xp − log N̂(δ) · 1− t · 1 + ε〉

−〈α′, ε〉 − α′′ · t+
1

np
〈ε,1〉 − ν · t+ λR(δ) (17)

where α ∈ Rnp

+ ,α′ ∈ R+, α
′′ ∈ R+. Now we analyze the KKT condition of the above Lagrangian.

Suppose the optimal t̂ > 05, then α′′ = 0 by the slackness condition that t′α′′ = 0. The optimality
condition of t in (17) yields:

∇tl(α,α′, α′′, δ,t, ε) = 〈α,1〉 − ν = 0→
np∑
i=1

αi = ν, (18)

and the optimality condition of ε yields

∇εl(α,α′, α′′, δ, t,ε) = 0→ −α−α′ + 1

np
· 1 = 0 (19)

From (18) and (19), and the slackness condition of optimization (7), we can see x(i)
p ∈ Xp, if

log r̂(x
(i)
p ; δ) < t, then εi > 0 which leads to α′i = 0 (the constraint of εi ≥ 0 is ineffective) and thus

αi = 1
np

.

In contrast, if log r̂(x
(i)
p ; δ) > t, then we have αi = 0, εi = 0 (the constraint of εi ≥ 0 is effective).

If log r̂(x
(i)
p ; δ) falls right on the boundary t, i.e., log r(x

(i)
p ; δ) = t, αi ∈ [0, 1

np
], since the KKT

condition εiα′i = 0 indicating α′i can take non-negative values as long as 1
np
· 1 = α+ α′. We

summarize: 
αi = 1

np
log r̂(x

(i)
p ; δ) < t

0 ≤ αi ≤ 1
np

log r̂(x
(i)
p ; δ) = t

αi = 0 log r̂(x
(i)
p ; δ) > t.

(20)

It can be observed that for (8), (δ = 0, ε = 0.2 · 1, t = 0.1) is a feasible interior point, and it makes
all inequality constraints strict, so the Slater’s condition holds for our original primal problem which
is also convex. Therefore, the lagrangian dual of the original problem (8) is

min
δ

max
α≥0,α′≥0,α′′≥0

min
ε,t

l(α,α′, α′′, δ,t, ε)

= min
δ

max
α
−〈α, δ>Xp − log N̂(δ)〉+ λR(δ) (21)

s.t.α ∈
[
0,

1

np

]np

, 〈1,α〉 = ν. (22)

which is the same as (9) and any points satisfy the KKT condition are both dual (22) and primal (8)
optimal.

8.3 Lemma 1

Lemma 1. If Assumptions 1 and 2 hold, then

−u>∇2
δL(δ∗ + u,w∗)u ≥ νκ′1

2C2
r

‖u‖2 − νc

2C2
r

· ‖u‖
2
1√

nq
, (23)

where c is the constant determined by Assumption 2.

5if t = 0 is the optimal and assume R(0) = 0, we only have a trivial solution δ = 0, ε = 0, which is easy
to verify and rules out.
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Proof. First, we write down -∇2
δL(δ∗ + u,w∗):

−∇2
δL(δ∗ + u,w∗) = −∇2

np∑
i=1

w∗i · log r̂(x(i)
p ; δ∗ + u)

= −
np∑
i=1

w∗i · ∇2 log N̂(δ∗ + u)

= −ν · ∇2 log N̂(δ∗ + u),

= ν ·
nq∑
i=1

e(i)

s
· x(i)

q

(
x(i)
q

)>
− ν ·

{
nq∑
i=1

e(i)

s
·
(
x(i)
q

)}{ nq∑
i=1

e(i)

s
·
(
x(i)
q

)}>
where e(j) := exp

[
〈δ∗ + u,x(j)〉

]
, s :=

∑nq

j=1 e
(j).

νu>


nq∑
i=1

e(i)

s
· x(i)

(
x(i)

)>
−

{
nq∑
i=1

e(i)

s
·
(
x(i)

)}{ nq∑
i=1

e(i)

s
·
(
x(i)

)}>u
=
ν

2
u>


nq∑
i=1

∑
j 6=i

e(i)e(j)

s2

(
x(i) − x(j)

)(
x(i) − x(j)

)>u
Due to Assumption 1, e

(i)

s ≥
1

Crnq
. Let ξi,j =

(
x(i) − x(j)

) (
x(i) − x(j)

)>
, then we have the

following inequalities

ν

2
u>


nq∑
i=1

∑
j 6=i

e(i)e(j)

s2
ξi,j

u ≥ ν

2C2
r

u>

 1

n2q

nq∑
i=1

∑
j 6=i

ξi,j

u =
ν

2C2
r

u>cov(Xq)u

We then invoke Assumption 2 to obtain ν
2C2

r
u>cov(Xq)u ≥ νκ′1

2C2
r
‖u‖2 − νc

2C2
r
√
nq
‖u‖21.

8.4 Proof of Theorem 1

Proof. First, we define the S and Sc are the set of indices of non-zero and zero elements of δ∗. The
cardinlity of S is k.

Define û := δ̂ − δ∗. From the Lemma 1 we can see that,

〈∇δL(δ̂,w∗)−∇δL(δ∗,w∗), û〉 ≥ κ1‖û‖2 − τ1(n, d)‖û‖21,

where we set κ1 :=
νκ′1
2C2

r
, τ1(n, d) := νc

2C2
r
√
nq

. Using Holder’s inequality,

〈∇δL(δ̂,w∗), û〉+ ‖∇δL(δ∗,w∗)‖∞‖û‖1 + τ1(n, d)ρ‖û‖1 ≥ κ1‖û‖2.

The introduction of ρ is due to the bounded optimization region. Due to (11), we can convert the
above inequality into

〈∇δL(δ̂, ŵ), û〉+ κ2‖û‖2 + τ2(n, d)‖û‖1 + ‖∇δL(δ∗,w∗)‖∞‖û‖1 + ρτ1(n, d)‖û‖1 ≥ κ1‖û‖2,

and because of the setting of λn,

〈∇δL(δ̂, ŵ), û〉+
λn
2
‖û‖1 ≥ (κ1 − κ2)‖û‖2, (24)

Note that in the first term, δ̂ is obtained at the stationary condition, which implies that there is a
subgradient, denoted by∇‖δ̂‖1, such that

∇δL(δ̂, ŵ) = −λn∇δ‖δ̂‖1 = −λn∇δ‖û+ δ∗‖1,
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(the second∇ is the subgradient notation) thus we can obtain the upper-bound of 〈∇δL(δ̂, ŵ), û〉
using the following standard procedure:

〈∇δL(δ̂, ŵ), û〉 = −λn〈∇δ‖û+ δ∗‖1, û〉
≤ −λn(‖δ̂‖1 − ‖δ∗‖1) due to convexity of ‖δ‖1 and the definition of subgradient.

= λn(‖δ∗‖1 + ‖ûSc‖1 − ‖ûSc‖1 − ‖δ̂‖1)

= λn(‖δ∗ + ûSc‖1 − ‖ûSc‖1 − ‖δ̂‖1)

= λn(‖δ∗ + ûSc‖1 + ‖ûS‖1 − ‖ûS‖1 − ‖ûSc‖1 − ‖δ̂‖1)

≤ λn(‖δ∗ + ûS + ûSc‖1 + ‖ûS‖1 − ‖ûSc‖1 − ‖δ̂‖1)

≤ λn(‖ûS‖1 − ‖ûSc‖1) (25)
Combining (24) and (25) we have

λn(‖ûS‖1 − ‖ûSc‖1) +
λn
2
‖û‖1 ≥ (κ1 − κ2)‖û‖2

3λn
2
‖ûS‖1 −

λn
2
‖ûSc‖1 ≥ (κ1 − κ2)‖û‖2 (26)

3λn
√
k

2
‖û‖2 ≥ (κ1 − κ2)‖û‖2

1

(κ1 − κ2)
· 3
√
kλn
2

≥ ‖û‖.

Substituting κ1 and τ1(n, d) according to Lemma 1, we have the conclusion in Theorem 1.

8.5 Proof of Theorem 2

Now let’s specify κ2 and τ2 in Theorem 1 under the outlier setting and derive the consistency.

Let’s consider (11). It is easy to see that

∇δL(δ̂, ŵ)−∇δL(δ̂,w∗) =
∑
i∈Ĝ

wif(x(i)
p )− 1

np

∑
i∈G

f(x(i)
p ),where Ĝ := {x(i)

p |ŵi 6= 0}.

It is obvious that if Ĝ ≡ G and ∀i ∈ Ĝ, ŵi = 1
np , and ∀i ∈ B, ŵi = 0,∇δL(δ̂, ŵ)−∇δL(δ̂,w∗) =

0.
Lemma 2. If there exists a “clearance” between the good samples and the bad samples, such that
minj∈B zδ∗(x

(j)
p )−maxi∈G zδ∗(x

(i)
p ) ≥ 3Clipρ, then∇δL(δ̂, ŵ)−∇δL(δ̂,w∗) = 0.

Proof.

min
j∈B

zδ∗(x
(j)
p )−max

i∈G
zδ∗(x

(i)
p ) = min

j∈B
ẑδ∗(x

(j))−max
i∈G

ẑδ∗(x
(i)) ≥ 3Clipρ (27)

Due to Assumption 3 and (27),

∀i ∈ G, j ∈ B, and u ∈ Ball(ρ), ẑδ∗+u(x(j)) > ẑδ∗+u(x(i)). (28)
According to the optimality condition of (9), we should simply assign non-zero weights wi to the νnp
samples corresponding to the smallest ẑδ∗+u values. Therefore, from (28) we can see that Ĝ = G.
Moreover, since the inequality of (28) holds strictly and ν = |G|

np
= |Ĝ|

np
, all weights must be set to

1
np

in order to minimize the inner problem of (9), i.e., ∀i ∈ G, ŵi = 1
np

and ∀i ∈ B, ŵi = 0.

Now we can set κ2 = 0, τ2(n, d) = 0 to make (11) hold.

As explained in Section (5.1), we need to confirm‖∇δL(δ∗,w∗)‖∞ converges to 0 as the sample
size goes to inifinity where∇δL(δ∗,w∗) = 1

np

∑
i∈G∇δ ẑδ∗(x

(i)
p ). Since

‖ 1

np

∑
i∈G
∇δ ẑδ∗(x(i)

p )‖∞ ≤
1

ν
· ‖ 1

np

∑
i∈G
∇δ ẑδ∗(x(i)

p )‖∞ = ‖ 1

|G|
∑
i∈G
∇δ ẑδ∗(x(i)

p )‖∞,
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we only need to bound
∥∥∥ 1
|G|
∑
i∈G∇δ ẑδ∗(x

(i)
p )
∥∥∥
∞

. As samples in G are i.i.d. samples drawn from
P , here can we invoke the Lemma 2 from [14]. First we need the following conditions:

Assumption 6. For any vectoru ∈ Rdim(δ∗) such that δ∗+u ∈ Ball(ρ), the Hessian of the likelihood
function,∇2L(δ∗ + u), has a bounded spectral norm, i.e., ‖∇2L(δ∗ + u)‖ ≤ λmax.

Assumption 7 (Smooth Density Ratio Model Assumption). For any vector u ∈ Rdim(δ∗) such that
δ∗ + u ∈ Ball(ρ) and every a ∈ R, the following inequality holds:

Eq [exp (a (r(x, δ∗ + u)− 1))] ≤ exp
(
Ka2

)
.

If nq = Ω(|G|2), and λn ≥
√

K1 log d
|G| , according to Lemma 2 from [14] we have

P

(∥∥∥∥∥ 1

|G|
∑
i∈G
∇δ ẑδ∗(x(i)

p )

∥∥∥∥∥∞ ≥ λn
)
≤ exp (−c1|G|) , (29)

where K1 and c1 are constants. Finally, we can re-state the Theorem 1 using κ2 = 0, τ2 = 0 and (29)
to obtain Theorem 2.

8.6 Proof of Theorem 3

First we verify (11).

Lemma 3. Under Assumptions 4 and 5,

‖∇δL(δ̂, ŵ)−∇δL(δ̂,w∗)‖∞ ≤ 2CCDF · ‖u‖Cp +
2L · Cp√

np
,

where L is a positive constant. The second term reflects the cost of using the empirical sample to
control the ν-th quantile in (28).

Therefore

〈∇δL(δ̂, ŵ)−∇δL(δ̂,w∗),u〉 ≥ −
(

2CCDF · ‖u‖Cp +
2L · Cp√

np

)
‖u‖21

≥− 2
√
kCCDFCp‖u‖2 −

2L · Cp‖u‖1√
np

.

It can be seen that κ2 = 2
√
kCCDFCp, τ2(n, d) =

2L·Cp√
np

. The proof of Lemma 3 uses a fact that

only xp in the “zone” T (u, L1√
np

) are “dangerous” as they may be mistakenly included or missed out
under small perturbation of u. See Section 8.8 in Appendix for the proof.

To show ‖∇δL(δ∗,w∗)‖∞ → 0, we need some extra procedures since zδ∗(xq) are not necessarily
upper-bounded by t(δ∗). The following lemma bounds ‖∇δL(δ∗,w∗)‖∞.

Lemma 4. Under Assumptions 1, 5, 6 and 7 holds, and if

λn ≥

√
K ′1 log d

|Xp(δ∗)|
+

2C2
rCq|Xq\X

q
(δ∗)|

nq
(30)

‖∇δL(δ∗,w∗)‖∞ ≤ λn with probability at least 1 − exp(c′1|Xp(δ∗)|)), where c′1 and K ′1 are
constants,

See Section 8.7 in Appendix for the proof.

Finally, we can restate Theorem 1 as Theorem 3 using κ1 =
νκ′1
2C2

r
, τ1(n, d) = νc

2C2
r
√
nq

, κ2 =

2
√
kCCDFCp, τ2(n, d) =

2L·Cp√
np

and (30), making sure that κ1 > κ2.
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Figure 4: An illustration of B and G in the case of truncation setting. In this setting, we treat
Xq\Xq(δ∗) as a kind of outlier of Q and only appear in very small quantity.

8.7 Proof of Lemma 4

First, we recycle some notations from the previous section: G := X
q
(δ∗), B := Xq\X

q
(δ∗). The

reason for this arrangement can be seen from Figure 4.

Denote e(j) := exp
[
〈δ∗,x(j)

q 〉
]
, s :=

∑nq

j=1 e
(j) and s̄ =

∑
i∈G e

(i). Note that

∇δL(δ∗,w∗) =
1

np

∑
i∈Xp(δ∗)

[
x(i)
p −∇δ log N̂(δ∗)

]
.

‖∇δL(δ∗,w∗)‖∞ =‖ 1

np

∑
i∈Xp(δ∗)

[
x(i)
p −∇δ log N̂(δ∗)

]
‖∞

=
1

np
‖

∑
i∈Xp(δ∗)

x(i)
p −

nq∑
j=1

e(j)

s
x(j)
q

 ‖∞
=

1

np
‖

∑
i∈Xp(δ∗)

x(i)
p −

∑
j∈G

e(j)

s
x(j)
q −

∑
j∈B

e(j)

s
x(j)
q

 ‖∞
=

1

np
‖

∑
i∈Xp(δ∗)

x(i)
p −

s̄

s

∑
j∈G

e(j)

s̄
x(j)
q −

∑
j∈B

e(j)

s
x(j)
q

 ‖∞
=

1

np
‖

∑
i∈Xp(δ∗)

x(i)
p −

∑
j∈G

e(j)

s̄
x(j)
q + (1− s̄

s
)
∑
j∈G

e(j)

s̄
x(j)
q −

∑
j∈B

e(j)

s
x(j)
q

 ‖∞
≤ 1

np
‖

∑
i∈Xp(δ∗)

x(i)
p −

∑
j∈G

e(j)

s̄
x(j)
q ||∞︸ ︷︷ ︸

a(n,d)

+||(1− s̄

s
)
∑
j∈G

e(j)

s̄
x(j)
q −

∑
j∈B

e(j)

s
x(j)
q ‖∞

≤a(n, d) +
s− s̄
s

∑
j∈G
‖e

(j)

s̄
x(j)
q ‖∞ +

∑
j∈B
‖e

(j)

s
x(j)
q ‖∞

≤a(n, d) +
C2
r |B|
nq

· 1

|G|
∑
j∈G
‖x(j)‖∞ +

Cr
nq

∑
j∈B
‖x(j)

q ‖∞

≤a(n, d) +
C2
r |B|Cq
nq

+
Cr|B|Cq

nq

≤a(n, d) +
2C2

r |B|Cq
nq
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Now, as X
p
(δ∗) and G contains only i.i.d. samples and due to the definition of δ∗, we can invoke

Lemma 2 again from [14] to bound a(n, d). That is if Assumptions 6 and 7 hold and nq = Ω(n2p),

and λn ≥
√

K′1 log d

|Xp(δ∗)|

P (a(n, d) ≥ λn) ≤ exp
(
−c′1|Xp(δ∗)|

)
, (31)

where K ′1 and c′1 are constants. By taking the extra 2C2
r |B|Cq

nq
into account, we obtain Lemma 4.

8.8 Proof of Lemma 3

Before we start, we need to define a few empirical counterparts of population quantities used in
Section 5.3.

• Pn is the empirical distribution of P .

• t̂(δ) is the empirical version of t(δ) and is defined according to

Pnp

[
ẑδ < t̂ν(δ))|Xq

]
≤ ν, Pnp

[
ẑδ ≤ t̂ν(δ))|Xq

]
≥ ν

• The set Xn(δ) is similar to X(δ) but defined by ẑ and t̂:

Xn(δ) :=
{
x ∈ Rd|ẑδ(x) < t̂(δ)

}
.

• Xp

n(δ) := Xp ∩Xn(δ).

• The “borderline points” of Xp: Xborder(δ) := {x ∈ Xp|ẑδ(x) = t̂ν(δ))}.

Proof. We first expand ‖∇δL(δ̂, ŵ)−∇δL(δ̂,w∗)‖∞ as

‖∇δL(δ∗ + û, ŵ)−∇δL(δ∗ + û,w∗)‖∞

=‖
∑
i,wi 6=0

ŵix
(i)
p −

1

np

∑
i∈Xp

(δ∗)

x(i)
p ‖∞

≤ 1

np

∑
i∈X

p

n(δ∗ + û)\Xp
(δ∗)︸ ︷︷ ︸

M1(û)

‖x(i)
p ‖∞ +

1

np

∑
i∈X

p
(δ∗)\Xp

n(δ∗ + û)︸ ︷︷ ︸
M2(û)

‖x(i)
p ‖∞

+
1

np

∑
i∈Xborder(δ∗+û)

‖x(i)
p ‖∞

=
1

np

∑
i∈M(û)

‖x(i)
p ‖∞ +

1

np

∑
i∈Xborder(δ∗+û)

‖x(i)
p ‖∞, (32)

where M(u) := M1(u)∪M2(u), given u ∈ Ball(ρ). Note we isolate the borderline points Xborder

in our analysis as they may have interior weights, i.e., wi∈[0, 1
np

].

We first figure out the cardinality of M(u), a set where samples are likely to be “misplaced” to the
other set under a small perturbation. However, direct quantifying M(u) is hard but we now show that
M(u) ⊆ Xp ∩ T (u, ε) whose cardinality is bounded by our assumptions. See Figure 5 for details.

First, we show that if zδ∗(xp) ≥ t(δ∗) + 2Clip||u||+ ε, then xp /∈ X
p
(δ∗) ∪Xp

n(δ∗ + u).As we
will see, ε ∈ (0, 1) is chosen afterwards.

Under this setting, obviously, xp /∈ X
p
(δ∗), thus it is suffice to show that xp /∈ X

p

n(δ∗ + u). Note
that for any constant c, the quantile of z′ := z(δ∗) + c is t(δ∗) + c.

Since zδ∗ and ẑδ∗ differ only by their normalization functions, we have zδ∗(xp)−t(δ∗) = ẑδ∗(xp)−
t′(δ∗), where t′(δ∗) is defined as P [ẑδ∗ < t′ν(δ∗))|Xq] ≤ ν and P [ẑδ∗ ≤ t′ν(δ∗))|Xq] ≥ ν for a
given Xq , so we have ẑδ∗(xp) ≥ t′(δ∗)+2Clip||u||+ ε. Combining this inequality with Assumption
4, we have

ẑδ∗+u(xp) ≥ ẑδ∗(xp)− Clip||u|| ≥ t′(δ∗) + Clip||u||+ ε (33)
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Figure 5: The relationship of X
P

(δ∗), X
P

n (δ∗ + u), Xp ∩ T (u, ε) and Xborder(δ
∗ + u).

From Dvoretzky–Kiefer–Wolfowitz inequality if np is large enough, with high probability∣∣t′(δ∗)− t̂(δ∗)∣∣ ≤ L1√
np
≤ 1 which is independent of the choice of Xq . Thus we set ε = L1√

np
, and

t′(δ∗) +
L1√
np

+ Clip||u‖ ≥ t̂(δ∗) + Clip||u|| w.h.p. (34)

From Assumption 4, ẑδ∗+u and ẑδ∗ differ only by Clip‖u‖, which means their ν-percentile t̂(δ∗+u)

and t̂(δ∗) differ by Clip‖u‖ at most. Thus,

t̂(δ∗) + Clip||u|| ≥ t̂(δ∗ + u) (35)

From (33) (34) and (35), we now have ẑδ∗+u(xp) ≥ t̂(δ∗ + u) which means

xp /∈ X
p

n(δ∗ + u)

with high probability. As we have mentioned earlier, it is obvious that xp /∈ X
p
(δ∗), so

xp /∈ X
p
(δ∗) ∪Xp

n(δ∗ + u). (36)

Similarly, one can show if zδ∗(xp) ≤ t(δ∗)− 2Clip||u|| − ε, then

xp ∈ X
p

n(δ∗ + u) ∩Xp
(δ∗) (37)

(which is the center-most region in Figure 5) with high probability. Now we can conclude that:

M(u) ⊆ Xp ∩ T (u,
L1√
np

) w.h.p. (38)

Due to Dvoretzky–Kiefer–Wolfowitz inequality,

Pnp
(xp ∈ T (u,

L1√
np

))− P (xp ∈ T (u,
L1√
np

)) ≤ L2√
np

holds with probability at least exp
[
−2L2

2

]
,∀L2 > 0. Thus, using Assumption 4 we have

Pnp(xp ∈ T (u,
L1√
np

)) ≤ CCDF · ‖u‖+
L1√
np

+
L2√
np

w.h.p.

Now we know the cardinality of Xp ∩ T (u, L1√
np

) can be bounded by
(
CCDF · ‖u‖+ L1+L2√

np

)
· np

with high probability. Finally, we have

1

np

∑
i∈Xp∩T (u,

L1√
np

)

‖x(i)
p ‖∞ ≤

1

np

(
CCDF · ‖u‖+

L1 + L2√
np

)
· npCp

≤ CCDF · ‖u‖Cp +
(L1 + L2) · Cp√

np
(39)
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Now, we show Xborder(δ
∗ + u) ⊆ Xp ∩ T (u, L1√

np
). The proof for this is similar to the arguments

above. Using Assumption 4, it can be shown that

t̂(δ∗ + u) ∈
[
t′(δ∗)− Clip‖u‖ −

L1√
np
, t′(δ∗) + Clip‖u‖+

L1√
np

]
,

and from definition, ∀x ∈ Xborder(δ
∗ + u), ẑδ∗+u(x) = t̂(δ∗ + u),

ẑδ∗+u(x) ∈
[
t′(δ∗)− Clip‖u‖ −

L1√
np
, t′(δ∗) + Clip‖u‖+

L1√
np

]
,

and due to Assumption 4,

ẑδ∗(x) ∈
[
t′(δ∗)− 2Clip‖u‖ −

L1√
np
, t′(δ∗) + 2Clip‖u‖+

L1√
np

]
.

Again, this relationship does not change if we replace ẑ and t′ at the same time with z and t

zδ∗(x) ∈
[
t(δ∗)− 2Clip‖u‖ −

L1√
np
, t(δ∗) + 2Clip‖u‖+

L1√
np

]
⊆ T (u,

L1√
np

). (40)

Inequalities (32), (38), (39) and (40) complete the proof.

9 Numerical Analysis

In this section, we present a few numerical experimental results under outlier and truncation setting.
In all experiments, we set np = nq = 5000, λ = 0, and the solution of δ̂ was obtained using
Algorithm 1. We let f(x) = x. Note this is the correct log-ratio model for two Gaussian distributions
with different means.

Outlier Setting In this setting, we first generate two “good” datasets G i.i.d.∼ p(x) = N(0, 1),

and Xq
i.i.d.∼ q(x) = N(−.75, 1). The outlier set Bb is generated from a uniform distribution

U(−0.4 + b, 0.4 + b), b ∈ [0, 6]. The density ratio estimation is performed using two sets of data:
Xp,b = {G,Bb} and Xq , where the cardinality of B is 1000. We repeat the estimation using different
choices of b and test its influence on our estimate r̂(x; δ̂b). The results can be seen from Figure 6,
where the histograms of G and Xq are colored red and green respectively. The true density ratio
p(x)
q(x) is plotted as a dotted line. The histograms of Bb with different choices of b was plotted using
gradient colors from light blue to purple (we skipped some choices of b for better visualization).
For each b, we run the density ratio estimation, and plot learned r̂(x; δ̂b) using the same gradient
color. In the figure, we resale r̂(x; δ̂b) and the true density ratio using a same constant, so they can
be plotted alongside with the histogram. Here, we test two methods: the log-Linear KLIEP and the
robust estimator proposed in this paper.

It can be easily seen that as b→ 6, KLIEP (Figure 6a) tends to significantly overestimate the density
ratio and is sensitive to the change of b. The proposed method (Figure 6b), tends to underestimate the
density ratio when b is small. However, as b gradually shifts away from the center of Xp, leaving the
“gap” between inlier and outlier, the robust estimator converges to the true density ratio function.

Truncated Setting In this setting, we generate samples Xp
i.i.d.∼ p(x) = N(0, 1) without any

contamination. Usually, the ν-th quantile of z(xp; δ∗) cannot be analytically computed as we do not
know the true density ratio. However, it can be seen that for a strictly monotone increasing z(xp, δ∗),
samples in the ν-th quantile of z(xp, δ∗) must be in the ν-th quantile of xp since the relative order
among xp is preserved after a strictly monotone transform. Thus, we obtain the truncation domain
X(δ∗) =

{
−∞ ≤ x ≤ Φ−1(ν)

}
, where Φ−1 is the inverse CDF of N(0, 1). We then generate

samples Xq ∼ TN(−0.5, 1,−∞,Φ−1(ν)), where TN is a truncated Gaussian distribution and the
last two parameters are the truncation borders. Note we set the mean of Q to be a negative value so
that the true density ratio p̄/q̄ is a monotone increasing function.

The results for ν = 0.5 are plotted on Figure 7 where the true truncated ratio is plotted as a dotted
line. It can be seen that the learned r̂(x; δ̂) is fairly close to the true truncated density ratio.
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(a) Non-robust Density Ratio Estimation (b) Robust Density Ratio Estimation

Figure 6: Outlier Setting

Figure 7: Truncated Setting
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