
A Supplementary Experiments

A.1 Navigation on Large LIDAR Maps

We provide results on additional environments for the LIDAR map navigation task. LIDAR maps

are obtained from [33]. See Section C.5 for details. Intel corresponds to Intel Research Lab.

Freiburg corresponds to Freiburg, Building 079. Belgioioso corresponds to Belgioioso Castle. MIT
corresponds to the western wing of the MIT CSAIL building. We note the size of the grid size NxM
for each environment. A QMDP-net policy is trained on the 30x30-D grid navigation domain on

randomly generated environments using K = 90. We then execute the learned QMDP-net policy

with different K settings, i.e. we add convolutional layers to the planner that share the same kernel

weights. We report the task success rate and the average number of time steps for task completion.

Table 2: Additional results for navigation on large LIDAR maps.

QMDP QMDP-net QMDP-net QMDP-net Untied
K=450 K=180 K=90 QMDP-net

Domain SR Time SR Time SR Time SR Time SR Time

Intel 100⇥101 90.2 85.4 94.4 108.0 83.4 89.6 40.8 78.6 20.0 55.3
Freiburg 139⇥57 88.4 66.9 92.0 91.4 93.2 81.1 55.8 68.0 37.4 51.7
Belgioioso 151⇥35 95.8 63.9 95.4 71.8 90.6 62.0 60.0 54.3 41.0 47.7
MIT 41⇥83 94.4 42.6 91.4 53.8 96.0 48.5 86.2 45.4 66.6 41.4

In the conventional setting, when value iteration is executed on a fully known MDP, increasing

K improves the value function approximation and improves the policy in return for the increased

computation. In a QMDP-net increasing K has two effects on the overall planning quality. Estimation

accuracy of the latent values increases and reward information can propagate to more distant states.

On the other hand the learned latent model does not necessarily fit the true underlying model, and it

can be overfitted to the K setting during training. Therefore a too high K can degrade the overall

performance. We found that Ktest = 2Ktrain significantly improved success rates in all our test

cases. Further increasing Ktest = 5Ktrain was beneficial in the Intel and Belgioioso environments,

but it slightly decreased success rates for the Freiburg and MIT environments.

We compare QMDP-net to its untied variant, Untied QMDP-net. We cannot expand the layers of

Untied QMDP-net during execution. In consequence, the performance is poor. Note that the other

alternative architectures we considered are specific to the input size and thus they are not applicable.

A.2 Learning “Incorrect” but Useful Models

We demonstrate that an “incorrect” model can result in better policies when solved by the approximate

QMDP algorithm. We compute QMDP policies on a POMDP with modified reward values, then

evaluate the policies using the original rewards. We use the deterministic 29⇥29 maze navigation

task where QMDP did poorly. We attempt to shape rewards manually. Our motivation is to break

symmetry in the model, and to implicitly encourage information gathering and compensate for the

one-step look-ahead approximation in QMDP. Modified 1. We increase the cost for the stay actions

to 20 times of its original value. Modified 2. We increase the cost for the stay action to 50 times of

its original value, and the cost for the turn right action to 10 times of its original value.

Table 3: QMDP policies computed on an “incorrect” model and evaluated on the “correct” model.

Original

Variant SR Time reward

Original 63.2 54.1 1.09

Modified 1 65.0 58.1 1.71

Modified 2 93.0 71.4 4.96

Why does the “correct” model result in poor policies when solved by QMDP? At a given point the Q
value for a set of possible states may be high for the turn left action and low for the turn right action;

12

while for another set of states it may be the opposite way around. In expectation, both next states

have lower value than the current one, thus the policy chooses the stay action, the robot does not

gather information and it is stuck in one place. Results demonstrate that planning on an “incorrect”

model may improve the performance on the “correct” model.

B Visualizing the Learned Model

B.1 Value Function

We plot the value function predicted by a QMDP-net for the 18⇥ 18 stochastic grid navigation task.

We used K = 54 iterations in the QMDP-net. As one would expect, states close to the goal have

high values.

Fig. 6: Map of a test environment and the corresponding learned value function VK .

B.2 Belief Propagation

We plot the execution of a learned QMDP-net policy and the internal belief propagation on the

18⇥ 18 stochastic grid navigation task. The first row in Fig. 7 shows the environment including the

goal (red) and the unobserved pose of the robot (blue). The second row shows ground-truth beliefs

for reference. We do not access ground-truth beliefs during training except for the initial belief. The

third row shows beliefs predicted by a QMDP-net. The last row shows the difference between the

ground-truth and predicted beliefs.

Fig. 7: Policy execution and belief propagation in the 18⇥ 18 stochastic grid navigation task.

13

The figure demonstrates that QMDP-net was able to learn a reasonable filter for state estimation in

a noisy environment. In the depicted example the initial belief is uniform over approximately half

of the state space (Step 0). Due to the highly uncertain initial belief and the observation noise the

robot stays in place for two steps (Step 1 and 2). After two steps the state estimation is still highly

uncertain, but it is mostly spread out right from the goal. Therefore, moving left is a reasonable

choice (Step 3). After an additional stay action (Step 4) the belief distribution is small enough and

the robot starts moving towards the goal (not shown).

B.3 State-Transition Function

We plot the learned and ground-truth state-transition functions. Columns of the table correspond to

actions. The first row shows the ground-truth transition function. The second row shows fT , the

learned state-transition function in the filter. The third row shows f 0
T , the learned state-transition

function in the planner.

Fig. 8: Learned transition function T in the 18⇥ 18 stochastic grid navigation task.

While both fT and f 0
T represent the same underlying transition dynamics, the learned transition

probabilities are different in the filter and planner. Different weights allows each module to choose its

own approximation and thus provides greater flexibility. The actions in the model a 2 A are learned

abstractions of the agent’s actions a 2 A. Indeed, in the planner the learned transition probabilities

for action ai 2 A do not match the transition probabilities of ai 2 A.

B.4 Reward Function

Next plot the learned reward function R for each action a 2 A.

Fig. 9: Learned reward function R in the 18⇥ 18 stochastic grid navigation domain.

While the learned rewards do not directly correspond to rewards in the underlying task, they are

reasonable: obstacles are assigned negative rewards and the goal is assigned a positive reward. Note

that learned reward values correspond to the reward after taking an action, therefore they should be

interpreted together with the corresponding transition probabilities (third row of Fig. 8).

14

C Implementation Details

C.1 Grid-World Navigation

We implement the grid navigation task in randomly generated discrete N⇥N grids where each cell

has p=0.25 probability of being an obstacle. The robot has 5 actions: move in the four canonical

directions and stay put. Observations are four binary values corresponding to obstacles in the four

neighboring cells. We consider a deterministic variant (denoted by -D) and a stochastic variant

(denoted by -S). In the stochastic variant the robot fails to execute each action with probability

Pt=0.2, in which case it stays in place. The observations are faulty with probability Po=0.1
independently in each direction. Since we receive observations from 4 directions, the probability of

receiving the correct observation vector is only 0.94 = 0.656. The task parameter, ✓, is an N⇥N⇥3

image that encodes information about the environment. The first channel encodes obstacles, 1 for

obstacles, 0 for free space. The second channel encodes the goal, 1 for the goal, 0 otherwise. The third

channel encodes the initial belief over robot states, each pixel value corresponds to the probability of

the robot being in the corresponding state.

We construct a ground-truth POMDP model to obtain expert trajectories for training. It is important

to note that the learning agent has no access to the ground-truth POMDP models. In the ground-truth

model the robot receives a reward of �0.1 for each step, +20 for reaching the goal, and �10 for

bumping into an obstacle. We use QMDP to solve the POMDP model, and execute the QMDP

policy to obtain expert trajectories. We use 10, 000 random grids for training. Initial and goal states

are sampled from the free space uniformly. We exclude samples where there is no feasible path.

The initial belief is uniform over a random fraction of the free space which includes the underlying

initial state. More specifically, the number of non-zero values in the initial-belief are sampled from

{1, 2, . . . Nf/2, Nf} where Nf is the number of free cells in the grid. For each grid we generate 5

expert trajectories with different initial state, initial belief and goal. Note that we do not access the

true beliefs after the first step nor the underlying states along the trajectory.

We test on a set of 500 environments generated separately in equal conditions. We declare failure

after 10N steps without reaching the goal. Note that the expert policy is sub-optimal and it may fail

to reach the goal. We exclude these samples from the training set but include them in the test set.

We choose the structure of M(✓), the model in QMDP-net, to match the structure of the underlying

task. The transition function in the filter fT and the planner f 0
T are both 3⇥3 convolutions. While

they both represent the same transition function we do not tie their weights. We apply a softmax

function on the kernel matrix so its values sum to one. The reward function, fR, is a CNN with

two convolutional layers. The first has 3⇥3 kernel, 150 filters, ReLU activation. The second has

1⇥1 kernel, 5 filters and linear activation. The observation model, fZ , is a similar two-layer CNN.

The first convolution has a 3⇥3 kernel, 150 filters, linear activation. The second has 1⇥1 kernel, 17

filters and linear activation. The action mapping, fA, is a one-hot encoding function. The observation

mapping, fO, is a fully connected network with one hidden layer with 17 units and tanh activation. It

has 17 output units and softmax activation. The low-level policy function, f⇡, is a single softmax

layer. The state space mapping function, fB, is the identity function. Finally, we choose the number

of iterations in the planner module, K={30, 54, 90} for grids of size N={10, 18, 30} respectively.

The 3⇥3 convolutions in fT and fZ imply that T and O are spatially invariant and local. In the

underlying task the locality assumption holds but spatial invariance does not: transitions depend on

the arrangement of obstacles. Nevertheless, the additional flexibility in the model allows QMDP-net

to learn high-quality policies, e.g. by shaping the rewards and the observation function.

C.2 Maze Navigation

In the maze navigation task a differential drive robot has to navigate to a given goal. We generate

random mazes on N⇥N grids using Kruskal’s algorithm. The state space has 3 dimensions where

the third dimension represents 4 possible orientations of the robot. The goal configuration is invariant

to the orientation. The robot now has 4 actions: move forward, turn left, turn right and stay put. The

initial belief is chosen in a similar manner to the grid navigation case but in the 3-D space. The

observations are identical to grid navigation but they are relative to the robot’s orientation, which

significantly increases the difficulty of state estimation. The stochastic variant (denoted by -S) has

15

a motion and observation noise identical to the grid navigation. Training and test data is prepared

identically as well. We use K={76, 116} for mazes of size N={19, 29} respectively.

We use a model in QMDP-net with a 3-dimensional state space of size N⇥N⇥4 and an action space

with 4 actions. The components of the network are chosen identically to the previous case, except

that all CNN components operate on 3-D tensors of size N⇥N⇥4. While it would be possible to

use 3-D convolutions, we treat the third dimension as channels of a 2-D image instead, and use

conventional 2-D convolutions. If the output of the last convolutional layer is of size N⇥N⇥Nc

for the grid navigation task, it is of size N⇥N⇥4Nc for the maze navigation task. When necessary,

these tensors are transformed into a 4 dimensional form N⇥N⇥4⇥Nc and the max-pool or softmax

activation is computed along the last dimension.

C.3 Object Grasping

We consider a 2-D implementation of the grasping task based on the POMDP model proposed by

Hsiao et al. [13]. Hsiao et al. focused on the difficulty of planning with high uncertainty and solved

manually designed POMDPs for single objects. We phrase the problem as a learning task where we

have no access to a model and we do not know all objects in advance. In our setting the robot receives

an image of the target object and a feasible grasp point, but it does not know its pose relative to the

object. We aim to learn a policy on a set of object that generalizes to similar but unseen objects.

The object and the gripper are represented in a discrete grid. The workspace is a 14⇥14 grid, and

the gripper is a “U” shape in the grid. The gripper moves in the four canonical directions, unless it

reaches the boundaries of the workspace or it is touching the object. in which case it stays in place.

The gripper fails to move with probability 0.2. The gripper has two fingers with 3 touch sensors on

each finger. The touch sensors indicate contact with the object or reaching the limits of the workspace.

The sensors produce an incorrect reading with probability 0.1 independently for each sensor. In each

trial an object is placed on the bottom of the workspace at a random location. The initial gripper pose

is unknown; the belief over possible states is uniform over a random fraction of the upper half of the

workspace. The local observations, ot, are readings from the touch sensors. The task parameter ✓ is

an image with three channels. The first channel encodes the environment with an object; the second

channel encodes the position of the target grasping point; the third channel encodes the initial belief

over the gripper position.

We have 30 artificial objects of different sizes up to 6⇥6 grid cells. Each object has at least one cell

on its top that the gripper can grasp. For training we use 20 of the objects. We generate 500 expert

trajectories for each object in random configuration. We test the learned policies on 10 new objects

in 20 random configurations each. The expert trajectories are obtained by solving a ground-truth

POMDP model by the QMDP algorithm. In the ground-truth POMDP the robot receives a reward of

1 for reaching the grasp point and 0 for every other state.

In QMDP-net we choose a model with S = 14⇥ 14, |A| = 4 and |O| = 16. Note that the underlying

task has |O| = 64 possible observations. The network components are chosen similarly to the grid

navigation task, but the first convolution kernel in fZ is increased to 5⇥5 to account for more distant

observations. We set the number of iterations K=20.

C.4 Hallway2

The Hallway2 navigation problem was proposed by Littman et al. [18] and has been used as a

benchmark problem for POMDP planning [27]. It was specifically designed to expose the weakness

of the QMDP algorithm resulting from its myopic planning horizon. While QMDP-net embeds

the QMDP algorithm, through end-to-end training QMDP-net was able to learn a model that is

significantly more effective given the QMDP algorithm.

Hallway2 is a particular instance of the maze problem that involves more complex dynamics and

high noise. For details we refer to the original problem definition [18]. We train a QMDP-net on

random 8⇥8 grids generated similarly to the grid navigation case, but using transitions that match the

Hallway2 POMDP model. We then execute the learned policy on a particularly difficult instance of

this problem that embeds the Hallway2 layout in a 8⇥8 grid. The initial state is uniform over the

full state space. In each trial the robot starts from a random underlying state. The trial is deemed

unsuccessful after 251 steps.

16

C.5 Navigation on a Large LIDAR Map

We obtain real-world building layouts using 2-D laser data from the Robotics Data Set Repository [12].

More specifically, we use SLAM maps preprocessed to gray-scale images available online [33]. We

downscale the raw images to NxM and classify each pixel to be free or an obstacle by simple

thresholding. The resulting maps are shown in Fig. 10. We execute policies in simulation where a

grid is defined by the preprocessed map. The simulation employs the same dynamics as the grid

navigation domain. The initial state and initial belief are chosen identically to the grid navigation

case.

Fig. 10: Preprocessed N⇥M maps. A, Intel Research Lab, 100⇥101. B, Freiburg, building 079,

139⇥57. C, Belgioioso Castle, 151⇥35. D, western wing of the MIT CSAIL building, 41⇥83.

A QMDP-net policy is trained on the 30x30-D grid navigation task on randomly generated environ-

ments. For training we set K = 90 in the QMDP-net. We then execute the learned policy on the

LIDAR maps. To account for the larger grid size we increase the number of iterations to K = 450

when executing the policy.

C.6 Architectures for Comparison

We compare QMDP-net with two of its variants where we remove some of the POMDP priors

embedded in the network (Untied QMDP-net, LSTM QMDP-net). We also compare with two generic

network architectures that do not embed structural priors for decision making (CNN+LSTM, RNN).

We also considered additional architectures for comparison, including networks with GRU [7] and

ConvLSTM [36] cells. ConvLSTM is a variant of LSTM where the fully connected layers are

replaced by convolutions. These architectures performed worse than CNN+LSTM for most of our

task.

Untied QMDP-net. We obtain Untied QMDP-net by untying the kernel weights in the convolu-

tional layers that implement value iteration in the planner module of QMDP-net. We also remove

the softmax activation on the kernel weights. This is equivalent to allowing a different transition

model at each iteration of value iteration, and allowing transition probabilities that do not sum to

one. In principle, Untied QMDP-net can represent the same policy as QMDP-net and it has some

additional flexibility. However, Untied QMDP-net has more parameters to learn as K increases. The

training difficulty increases with more parameters, especially on complex domains or when training

with small amount of data.

LSTM QMDP-net. In LSTM QMDP-net we replace the filter module of QMDP-net with a generic

LSTM network but keep the value iteration implementation in the planner. The output of the LSTM

component is a belief estimate which is input to the planner module of QMDP-net. We first process

the task parameter input ✓, an image encoding the environment and goal, by a CNN. We separately

process the action at and observation ot input vectors by a two-layer fully connected component.

These processed inputs are concatenated into a single vector which is the input of the LSTM layer.

The size of the LSTM hidden state and output is chosen to match the number of states in the grid, e.g.

N2
for an N⇥N grid. We initialize the hidden state of the LSTM using the appropriate channel of

the input ✓ that encodes the initial belief.

17

CNN+LSTM. CNN+LSTM is a state-of-the-art deep convolutional network with LSTM cells.

It is similar in structure to DRQN [10], which was used for learning to play partially observable

Atari games in a reinforcement learning setting. Note that we train the networks in an imitation

learning setting using the same set of expert trajectories, and not using reinforcement learning, so

the comparison with QMDP-net is fair. The CNN+LSTM network has more structure to encode

a decision making policy compared to a vanilla RNN, and it is also more tailored to our input

representation. We process the image input, ✓, by a CNN component and the vector input, at and ot,
by a fully connected network component. The output of the CNN and the fully connected component

are then combined into a single vector and fed to the LSTM layer.

RNN. The considered RNN architecture is a vanilla recurrent neural network with 512 hidden

units and tanh activation. At each step inputs are transformed into a single concatenated vector. The

outputs are obtained by a fully connected layer with softmax activation.

We performed hyperparameter search on the number of layers and hidden units, and adjusted learning

rate and batch size for all alternative networks. In particular, we ran trials for the deterministic grid

navigation task. For each architecture we chose the best parametrization found. We then used the

same parametrization for all tasks.

C.7 Training Technique

We train all networks, QMDP-net and alternatives, in an imitation learning setting. The loss is defined

as the cross-entropy between predicted and demonstrated actions along the expert trajectories. We do

not receive supervision on the underlying ground-truth POMDP models.

We train the networks with backpropagation through time on mini-batches of 100. The networks

are implemented in Tensorflow [1]. We use RMSProp optimizer [35] with 0.9 decay rate and 0

momentum setting. The learning rate was set to 1 ⇥ 10

�3
for QMDP-net and 1 ⇥ 10

�4
for the

alternative networks. We limit the number of backpropagation steps to 4 for QMDP-net and its untied

variant; and to 6 for the other alternatives, which gave slightly better results. We used a combination

of early stopping with patience and exponential learning rate decay of 0.9. In particular, we started

to decrease the learning rate if the prediction error did not decrease for 30 consecutive epochs on a

validation set, 10% of the training data. We performed 15 iterations of learning rate decay.

We perform multiple rounds of the training method described above. In our partially observable

domains predictions are increasingly difficult along a trajectory, as they require multiple steps of

filtering, i.e. integrating information from a long sequence of observations. Therefore, for the

first round of training we limit the number of steps along the expert trajectories, for training both

QMDP-net and its alternatives. After convergence we perform a second round of training on the full

length trajectories. Let Lr be the number of steps along the expert trajectories for training round

r. We used two training rounds with L1 = 4 and L2 = 100 for training QMDP-net and its untied

variant. For training the other alternative networks we used L1 = 6 and L2 = 100, which gave better

results.

We trained policies for the grid navigation task when the grid is fixed, only the initial state and goal

vary. In this variant we found that a low Lr setting degrades the final performance for the alternative

networks. We used a single training round with L1 = 100 for this task.

18

	Introduction
	Background
	Planning under Uncertainty
	Related Work

	Overview
	QMDP-Net
	Experiments
	Experimental Setup
	Choosing QMDP-Net Components for a Task
	Results and Discussion

	Conclusion
	Supplementary Experiments
	Navigation on Large LIDAR Maps
	Learning ``Incorrect'' but Useful Models

	Visualizing the Learned Model
	Value Function
	Belief Propagation
	State-Transition Function
	Reward Function

	Implementation Details
	Grid-World Navigation
	Maze Navigation
	Object Grasping
	Hallway2
	Navigation on a Large LIDAR Map
	Architectures for Comparison
	Training Technique

