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Abstract

The Multiplicative Weights Update (MWU) method is a ubiquitous meta-algorithm
that works as follows: A distribution is maintained on a certain set, and at each
step the probability assigned to action γ is multiplied by (1− εC(γ)) > 0 where
C(γ) is the “cost" of action γ and then rescaled to ensure that the new values form
a distribution. We analyze MWU in congestion games where agents use arbitrary
admissible constants as learning rates ε and prove convergence to exact Nash
equilibria. Interestingly, this convergence result does not carry over to the nearly
homologous MWU variant where at each step the probability assigned to action γ
is multiplied by (1− ε)C(γ) even for the simplest case of two-agent, two-strategy
load balancing games, where such dynamics can provably lead to limit cycles or
even chaotic behavior.

1 Introduction

The Multiplicative Weights Update (MWU) is a ubiquitous meta-algorithm with numerous appli-
cations in different fields [2]. It is particularly useful in game theory due to its regret-minimizing
properties [24, 11]. It is typically introduced in two nearly identical variants, the one in which at
each step the probability assigned to action γ is multiplied by (1 − εC(γ)) and the one in which
it is multiplied by (1 − ε)C(γ) where C(γ) is the cost of action γ. We will refer to the first as the
linear variant, MWU`, and the second as the exponential, MWUe (also known as Hedge). In the
literature there is little distinction between these two variants as both carry the same advantageous
regret-minimizing property. It is also well known that in order to achieve sublinear regret, the learning
rate ε must be decreasing as time progresses. This constraint raises a natural question: Are there
interesting classes of games where MWU behaves well without the need to fine-tune its learning rate?

A natural setting to test the learning behavior of MWU with constant learning rates ε is the well-
studied class of congestion games. Unfortunately, even for the simplest instances of congestion
games MWUe fails to converge to equilibria. For example, even in the simplest case of two balls two
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bins games,4 MWUe with ε = 1− e−10 is shown to converge to a limit cycle of period 2 for infinitely
many initial conditions (Theorem 4.1). If the cost functions of the two edges are not identical then we
create instances of two player load balancing games such that MWUe has periodic orbits of length k
for all k > 0, as well as uncountable many initial conditions which never settle on any periodic orbit
but instead exhibit an irregular behavior known as Li-Yorke chaos (Theorem 4.2, see Corollary 4.3).

The source of these problems is exactly the large, fixed learning rate ε, e.g., ε ≈ 1 for costs in [0, 1].
Intuitively, the key aspect of the problem can be captured by (simultaneous) best response dynamics.
If both agents start from the same edge and best-respond simultaneously they will land on the second
edge which now has a load of two. In the next step they will both jump back to the first edge and this
motion will be continued perpetually. Naturally, MWUe dynamics are considerably more intricate as
they evolve over mixed strategies and allow for more complicated non-equilibrium behavior but the
key insight is correct. Each agent has the right goal, decrease his own cost and hence the potential of
the game, however, as they pursue this goal too aggressively they cancel each other’s gains and lead
to unpredictable non-converging behavior.

In a sense, the cautionary tales above agree with our intuition. Large, constant learning rates ε nullify
the known performance guarantees of MWU. We should expect erratic behavior in such cases. The
typical way to circumvent these problems is through careful monitoring and possibly successive
halving of the ε parameter, a standard technique in the MWU literature. In this paper, we explore an
alternative, cleaner, and surprisingly elegant solution to this problem. We show that applying MWU`,
the linear variant of MWU, suffices to guarantee convergence in all congestion games.

Our key contributions. Our key result is the proof of convergence of MWU` in congestion games.
The main technical contribution is a proof that the potential of the mixed state is always strictly
decreasing along any nontrivial trajectory (Theorem 3.1). This result holds for all congestion games,
irrespective of the number of agents or the size, topology of the strategy sets. Moreover, each agent i
may be applying different learning rates εi which will be constant along the dynamics (εi does not
depend on the number of iterations T of the dynamics and therefore is bounded away from zero as
T →∞; this is not the case for most of the results in the literature). The only restriction on the set
of allowable learning rates εi is that for each agent the multiplicative factor (1 − εiCi(s)) should
be positive for all strategy outcomes s.5 Arguing convergence to equilibria for all initial conditions
(Theorem 3.4) and further, convergence to Nash equilibria for all interior initial conditions (Theorem
3.8) follows. Proving that the potential always decreases (Theorem 3.1) hinges upon discovering a
novel interpretation of MWU dynamics. Specifically, we show that the class of dynamical systems
derived by applying MWU` in congestion games is a special case of a convergent class of dynamical
systems introduced by Baum and Eagon [5] (see Theorem 2.4). The most well known member of this
class is the classic Baum-Welch algorithm, the standard instantiation of the Expectation-Maximization
(EM) algorithm for hidden Markov models (HMM). Effectively, the proof of convergence of both
these systems boils down to a proof of membership to the same class of Baum-Eagon systems (see
section 2.3 for more details on these connections).

In the second part we provide simple congestion games where MWUe provably fails to converge. The
first main technical contribution of this section is proving convergence to a limit cycle, specifically a
periodic orbit of length two, for the simplest case of two balls two bins games for infinitely many initial
conditions (Theorem 4.1). Moreover, after normalizing costs to lie in [0, 1], i.e. c(x) = x/2, we prove
that almost all symmetric non-equilibrium initial conditions converge to a unique limit cycle when
both agents use learning rate ε = 1−e−10. In contrast, since 1−ε·C(s) ≥ 1−(1−e−10)1 = e−10 > 0,
MWU` successfully converges to equilibrium. In other words, for the same learning rates, MWUe
exhibits chaotic behavior whereas MWU` converges to Nash equilibrium. Establishing chaotic
behavior for the case of edges with different cost functions is rather straightforward in comparison
(Theorem 4.2). The key step is to exploit symmetries in the system to reduce it to a single dimensional
one and then establish the existence of a periodic orbit of length three. The existence of periodic
orbits of any length as well as chaotic orbits then follows from the Li-Yorke theorem 2.3 [30] (see
section 2.2 for background on chaos and dynamical systems). Finally, for any learning rate 1 > ε > 0,
we construct n-player games so that MWUe has chaotic behavior for uncountably many starting
points.

4n balls n bin games are symmetric load balancing games with n agent and n edges/elements each with a
cost function of c(x)=x. We normalize costs equal to c(x) = x/n so that they lie in [0, 1].

5This is an absolutely minimal restriction so that the denominator of MWU` cannot become equal to zero.
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Related work and Extensions/Implications of our results.

Connections to learning in games and price of anarchy: Several recent papers, e.g., [40, 22] focus
on proving welfare guarantees of no-regret dynamics in games exploiting connections to (robust)
price of anarchy literature [37] by establishing fast convergence of the time average behavior to
(approximate) coarse correlate equilibria. Although these approaches are rather powerful they are
not always applicable. For example, it is well known that when we consider the makespan (i.e. the
load of the most congested machine) instead of the social/total cost there can be an exponential gap
between the performance of coarse correlated equilibria and Nash equilibria. For example the price
of anarchy for the makespan objective for n balls n bins games is O(log(n)/ log log(n)) whereas for
the worst no regret algorithm it can be Ω(

√
n) [9]. Moreover, even if we focus on the social cost, the

price of anarchy guarantees do not carry over if we perform affine transformation to the cost functions
(e.g. if there exist users of different tiers/types that the system designer wants to account for in a
differential manner). In contrast, our convergence results are robust to any affine cost transformation.
In fact, our results apply for all weighted potential games [32] (Remark 3.5).

Connections to distributed computation and adversarial agent scheduling: A rather realistic
concern about results on learning in games has to do with their sensitivity to the ordering of the moves
of the agent dynamics. For example, better-response dynamics in congestion games are guaranteed to
converge only if in every round, exactly one agent deviates to a better strategy. A series of recent
papers has established strong non-termination (cycling) results for large classes of bounded recall
dynamics with a wide variety of interesting and timely applications: game theory, circuit design,
social networks, routing and congestion control [26, 19, 34, 25]. In the case of games, these results
translate to corollaries such as: “If there are two or more pure Nash equilibria in a game with unique
best responses, then all bounded-recall self-independent dynamics6 for which those equilibria are
fixed points can fail to converge in asynchronous environments." Even the simplest 2 balls 2 bins
game satisfies these properties (two pure Nash and unique best responses) which shows the strength
of this impossibility result. In contrast, our convergence result holds for any adversarial scheduling
with the minimal fairness assumption that given any mixed state at least one agent who is not best
responding eventually will be given the possibility to update their behavior, answering open questions
in [26, 25]. In fact, our convergence result is in a sense the strongest possible, no matter how many
agents get to update their behavior (as long as one of them does) then the potential of the game will
strictly decrease (Corollary 3.6).

Connections to complexity theory: Whereas the complexity of computing both mixed Nash equilib-
ria in general games (PPAD-complete [17]) as well as the complexity of finding pure Nash equilibria
in congestion games (PLS-complete [20]) have both been completely characterized and are thus
unlikely to admit an efficient time algorithm, the complexity of computing mixed Nash equilibria
in congestion games has withstood so far an exhaustive characterization. Naturally, it lies on the
intersection of both PPAD and PLS, known as CLS [18]. Such an equilibrium can be found both via
an end-of-line type of argument as well as a local search type of argument, but it is still not known
if it is CLS-complete. Given the active interest for producing CLS-complete problems [16, 21] our
constructive/convergence proof may help shed light on this open question.

Chaos for arbitrary small learning rates ε: Although our example of chaotic behavior uses a very
high learning rate ε = 1− e−10, it should be noted that for any learning rate ε (e.g. ε = e−10), as
well as for any number of agents n, we can create congestion games with n agents where MWUe
exhibits chaotic behavior (Corollary 4.3).

Congestion/potential games: Congestion games are amongst the most well known and thoroughly
studied class of games. Proposed in [36] and isomorphic to potential games [32], they have been
successfully employed in myriad modeling problems. Despite the numerous positive convergence
results for concurrent dynamics in congestion games, e.g., [33, 23, 7, 1, 6, 28, 10, 13, 12, 31], we
know of no prior work establishing such a deterministic convergence result of the day-to-day agent
behavior to exact Nash equilibria for general atomic congestion games. MWU has also been studied
in congestion games. In [29] randomized variants of the exponential version of the MWU are shown
to converge w.h.p. to pure Nash equilibria as long as the learning rate ε is small enough. In contrast
our positive results for linear MWU` hold deterministically and for all learning rates. Recently, [14]
showed that if the Hedge algorithm is run with a suitably decreasing learning factor ε, the sequence

6A dynamic is called self-independent if the agent’s response does not depend on his actions.
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of play converges to a Nash equilibrium with probability 1 (in the bandit case). The result and the
techniques are orthogonal to ours, since we assume fixed learning rates.

Non-convergent dynamics: Outside the class of congestion games, there exist several negative
results in the literature concerning the non-convergence of MWU and variants thereof. In particular,
in [15] it was shown that the multiplicative updates algorithm fails to find the unique Nash equilibrium
of the 3× 3 Shapley game. Similar non-convergent results have been proven for perturbed zero-sum
games [4], as well as for the continuous time version of MWU, the replicator dynamics [27, 35]. The
possibility of applying Li-Yorke type arguments for MWU in congestion games with two agents
was inspired by a remark in [3] for the case of continuum of agents. Our paper is the first to our
knowledge where non-convergent MWU behavior in congestion games is formally proven capturing
both limit cycles and chaos and we do so in the minimal case of two balls two bin games.

2 Preliminaries

Notation. We use boldface letters, e.g., x, to denote column vectors (points). For a function
f : Rm → Rm, by fn we denote the composition of f with itself n times, namely f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n times

.

2.1 Congestion Games

A congestion game [36] is defined by the tuple (N ;E; (Si)i∈N ; (ce)e∈E) where N is the set of
agents, N = |N |, E is a set of resources (also known as edges or bins or facilities) and each player i
has a set Si of subsets of E (Si ⊆ 2E) and |Si| ≥ 1. Each strategy si ∈ Si is a set of edges and ce is
a positive cost (latency) function associated with facility e. We use small greek characters like γ, δ
to denote different strategies/paths. For a strategy profile s = (s1, s2, . . . , sN ), the cost of player i
is given by ci(s) =

∑
e∈si ce(`e(s)), where `e(s) is the number of players using e in s (the load of

edge e). The potential function is defined to be Φ(s) =
∑
e∈E

∑`e(s)
j=1 ce(j).

For each i ∈ N and γ ∈ Si, piγ denotes the probability player i chooses strategy γ. We denote
by ∆(Si) = {p ≥ 0 :

∑
γ piγ = 1} the set of mixed (randomized) strategies of player i and

∆ = ×i∆(Si) the set of mixed strategies of all players. We use ciγ = Es−i∼p−ici(γ, s−i) to denote
the expected cost of player i given that he chooses strategy γ and ĉi =

∑
δ∈Si piδciδ to denote his

expected cost.

2.2 Dynamical Systems and Chaos

Let x(t+1) = f(x(t)) be a discrete time dynamical system with update rule f : Rm → Rm. The
point z is called a fixed point of f if f(z) = z. A sequence (f t(x(0)))t∈N is called a trajectory or
orbit of the dynamics with x(0) as starting point. A common technique to show that a dynamical
system converges to a fixed point is to construct a function P : Rm → R such that P (f(x)) > P (x)
unless x is a fixed point. We call P a Lyapunov or potential function.
Definition 2.1. C = {z1, . . . , zk} is called a periodic orbit of length k if zi+1 = f(zi) for 1 ≤ i ≤
k − 1 and f(zk) = z1. Each point z1, . . . , zk is called periodic point of period k. If the dynamics
converges to some periodic orbit, we also use the term limit cycle.

Some dynamical systems converge and their behavior can be fully understood and some others
have strange, chaotic behavior. There are many different definitions for what chaotic behavior and
chaos means. In this paper we follow the definition of chaos by Li and Yorke. Let us first give
the definition of a scrambled set. Given a dynamical system with update rule f , a pair x and y is
called “scrambled" if limn→∞ inf |fn(x) − fn(y)| = 0 (the trajectories get arbitrarily close) and
also limn→∞ sup |fn(x)− fn(y)| > 0 (the trajectories move apart). A set S is called “scrambled"
if ∀x, y ∈ S, the pair is “scrambled".
Definition 2.2 (Li and Yorke). A discrete time dynamical system with update rule f , f : X → X
continuous on a compact set X ⊂ R is called chaotic if (a) for each k ∈ Z+, there exists a periodic
point p ∈ X of period k and (b) there is an uncountably infinite set S ⊆ X that is “scrambled".

Li and Yorke proved the following theorem [30] (there is another theorem of similar flavor due to
Sharkovskii [38]):
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Theorem 2.3 (Period three implies chaos). Let J be an interval and let F : J → J be continuous.
Assume there is a point a ∈ J for which the points b = F (a), c = F 2(a) and d = F 3(a), satisfy

d ≤ a < b < c (or d ≥ a > b > c).

Then

1. For every k = 1, 2, . . . there is a periodic point in J having period k.

2. There is an uncountable set S ⊂ J (containing no periodic points), which satisfies the
following conditions:

• For every p, q ∈ S with p 6= q,

lim
n→∞

sup |Fn(p)− Fn(q)| > 0 and lim
n→∞

inf |Fn(p)− Fn(q)| = 0.

• For every point p ∈ S and periodic point q ∈ J ,

lim
n→∞

sup |Fn(p)− Fn(q)| > 0.

Notice that if there is a periodic point with period 3, then the hypothesis of the theorem will be
satisfied.

2.3 Baum-Eagon Inequality, Baum-Welch and EM

We start this subsection by stating the Baum-Eagon inequality. This inequality will be used to show
that MWU` converges to fixed points and more specifically Nash equilibria for congestion games.

Theorem 2.4 (Baum-Eagon inequality [5]). Let P (x) = P ({xij}) be a polynomial with nonnegative
coefficients homogeneous of degree d in its variables {xij}. Let x = {xij} be any point of the
domain D : xij ≥ 0,

∑qi
j=1 xij = 1, i = 1, 2, ..., p, j = 1, 2, ..., qi. For x = {xij} ∈ D let

=(x) = ={xij} denote the point of D whose i, j coordinate is

=(x)ij =

(
xij

∂P

∂xij

∣∣∣∣
(x)

)/
qi∑
j′=1

xij′
∂P

∂xij′

∣∣∣∣
(x)

Then P (=(x)) > P (x) unless =(x) = x.

The Baum-Welch algorithm is a classic technique used to find the unknown parameters of a hidden
Markov model (HMM). A HMM describes the joint probability of a collection of “hidden" and
observed discrete random variables. It relies on the assumption that the i-th hidden variable given the
(i− 1)-th hidden variable is independent of previous hidden variables, and the current observation
variables depend only on the current hidden state. The Baum-Welch algorithm uses the well known
EM algorithm to find the maximum likelihood estimate of the parameters of a hidden Markov model
given a set of observed feature vectors. More detailed exposition of these ideas can be found here
[8]. The probability of making a specific time series of observations of length T can be shown to
be a homogeneous polynomial P of degree T with nonnegative (integer) coefficients of the model
parameters. Baum-Welch algorithm is homologous to the iterative process derived by applying the
Baum-Eagon theorem to polynomial P [5, 41].

In a nutshell, both Baum-Welch and MWU` in congestion games are special cases of the Baum-Eagon
iterative process (for different polynomials P ).

2.4 Multiplicative Weights Update

In this section, we describe the MWU dynamics (both the linear MWU`, and the exponential
MWUe variants) applied in congestion games. The update rule (function) ξ : ∆ → ∆ (where
p(t+ 1) = ξ(p(t))) for the linear variant MWU` is as follows:

piγ(t+ 1) = (ξ(p(t)))iγ = piγ(t)
1− εiciγ(t)

1− εiĉi(t)
, ∀i ∈ N ,∀γ ∈ Si, (1)
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where εi is a constant (can depend on player i but not on p) so that both enumerator and denominator
of the fraction in (1) are positive (and thus the fraction is well defined). Under the assumption that
1/εi >

1
β

def
= supi,p∈∆,γ∈Si {ciγ}, it follows that 1/εi > ciγ for all i, γ and hence 1/εi > ĉi.

The update rule (function) η : ∆ → ∆ (where p(t + 1) = η(p(t))) for the exponential variant
MWUe is as follows:

piγ(t+ 1) = (η(p(t)))iγ = piγ(t)
(1− εi)ciγ(t)∑

γ′∈Si piγ′(t)(1− εi)
ciγ′ (t)

, ∀i ∈ N ,∀γ ∈ Si, (2)

where εi < 1 is a constant (can depend on player i but not on p). Note that εi can be small when the
number of agents N is large enough.

Remark 2.5. Observe that ∆ is invariant under the discrete dynamics (1), (2) defined above. If
piγ = 0 then piγ remains zero, and if it is positive, it remains positive (both numerator and
denominator are positive) and also is true that

∑
γ∈Si piγ = 1 for all agents i. A point p∗ is called

a fixed point if it stays invariant under the update rule of the dynamics, namely ξ(p∗) = p∗ or
η(p∗) = p∗. A point p∗ is a fixed point of (1), (2) if for all i, γ with p∗iγ > 0 we have that ciγ = ĉi.
To see why, observe that if p∗iγ , p

∗
iγ′ > 0, then ciγ = ciγ′ and thus ciγ = ĉi. We conclude that the set

of fixed points of both dynamics (1), (2) coincide and are supersets of the set of Nash equilibria of the
corresponding congestion game.

3 Convergence of MWU` to Nash Equilibria

We first prove that MWU` (1) converges to fixed points7. Technically, we establish that function
Ψ

def
= Es∼p [Φ(s)] is strictly decreasing along any nontrivial (i.e. nonequilibrium) trajectory, where

Φ is the potential function of the congestion game as defined in Section 2. Formally we show the
following theorem:

Theorem 3.1 (Ψ is decreasing). Function Ψ is decreasing w.r.t. time, i.e., Ψ(p(t+ 1)) ≤ Ψ(p(t))
where equality Ψ(p(t+ 1)) = Ψ(p(t)) holds only at fixed points.

We define the function

Q(p)
def
=
∑
i∈N

(1/εi − 1/β) ·
∑
γ∈Si

piγ

+ 1/β ·
∏
i∈N

∑
γ∈Si

piγ


︸ ︷︷ ︸

constant term

−Ψ(p), (3)

and show that Q(p) is strictly increasing w.r.t time, unless p is a fixed point. Observe that∑
γ∈Si piγ = 1 since p lies in ∆, but we include this terms in Q for technical reasons that will be

made clear later in the section. By showing that Q is increasing with time, Theorem 3.1 trivially
follows since Q = const − Ψ where const =

∑
i∈N 1/εi − 1/β(N − 1). To show that Q(p) is

strictly increasing w.r.t time, unless p is a fixed point, we use a generalization of an inequality by
Baum and Eagon [5] on function Q.

Corollary 3.2 (Generalization of Baum-Eagon). Theorem 2.4 holds even if P is non-homogeneous.

We want to apply Corollary 3.2 on Q. To do so, it suffices to show that Q(p) is a polynomial with
nonnegative coefficients.

Lemma 3.3. Q(p) is a polynomial with respect to piγ and has nonnegative coefficients.

Using Lemma 3.3 and Corollary 3.2 we show the following:

Theorem 3.4. Let Q be the function defined in (3). Let also p(t) ∈ ∆ be the point MWU` (1)
outputs at time t with update rule ξ. It holds that Q(p(t + 1))

def
= Q(ξ(p(t))) > Q(p(t)) unless

ξ(p(t)) = p(t) (fixed point). Namely Q is strictly increasing with respect to the number of iterations
t unless MWU` is at a fixed point.

7All missing proofs can be found in the full version of this paper http://arxiv.org/abs/1703.01138.
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Remark 3.5 (Weighted potential games). A congestion game is a potential game because if a player
deviates, the difference he experiences in his cost is exactly captured by the deviation of the global
(same for all players) function Φ =

∑
e∈E

∑`e(s)
j=1 ce(j). In a weighted potential game, it holds that

ci(si, s−i)− ci(s′i, s−i) = wi(Φ(si, s−i)− Φ(s′i, s−i)), where wi is some constant not necessarily
1 (as in the potential games case) and vector s−i captures the strategies of all players but i. It
is not hard to see that Lemma 3.3 and thus Theorems 3.4 and 3.1 hold in this particular class of
games (which is a generalization of congestion games), and so do the rest of the theorems of the
section. Effectively, in terms of the weighted potential games analysis, it is possible to reduce it to
the standard potential games analysis as follows: Consider the system with learning rates εi and
cost functions wici so that the game with cost functions ci is a potential game. The only necessary
condition that we ask of this system is that εiwici(s) < 1 for all i (as in the standard case) so that
the enumerators/denominators are positive.

By reduction, we can show that for every round T , even if a subset (that depends on the round T )
of the players update their strategy according to MWU` and the rest remain fixed, the potential still
decreases.
Corollary 3.6 (Any subset). Assume that at time t we partition the players in two sets St, S′t so that
we allow only players in St to apply MWU` dynamics, whereas the players in S′t remain fixed. It
holds that the expected potential function of the game at time t decreases.

As stated earlier in the section, if Q(p(t)) is strictly increasing with respect to time t unless p(t) is
a fixed point, it follows that the expected potential function Ψ(p(t)) = const−Q(p(t)) is strictly
decreasing unless p(t) is a fixed point and Theorem 3.1 is proved. Moreover, we can derive the fact
that our dynamics converges to fixed points as a corollary of Theorem 3.1.
Theorem 3.7 (Convergence to fixed points). MWU` dynamics (1) converges to fixed points.

We conclude the section by strengthening the convergence result (i.e., Theorem 3.7). We show that if
the initial distribution p is in the interior of ∆ then we have convergence to Nash equilibria.
Theorem 3.8 (Convergence to Nash equilibria). Assume that the fixed points of (1) are isolated. Let
p(0) be a point in the interior of ∆. It follows that limt→∞ p(t) = p∗ is a Nash equilibrium.

Proof. We showed in Theorem 3.7 that MWU` dynamics (1) converges, hence limt→∞ p(t) exists
(under the assumption that the fixed points are isolated) and is equal to a fixed point of the dynamics
p∗. Also it is clear from the dynamics that ∆ is invariant, i.e.,

∑
δ∈Sj pjδ(t) = 1, pjδ(t) > 0 for all

j and t ≥ 0 since p(0) is in the interior of ∆.

Assume that p∗ is not a Nash equilibrium, then there exists a player i and a strategy γ ∈ Si so that
ciγ(p∗) < ĉi(p

∗) (on mixed strategies p∗) and p∗iγ = 0. Fix a ζ > 0 and let Uζ = {p : ciγ(p) <
ĉi(p)− ζ}. By continuity we have that Uζ is open. It is also true that p∗ ∈ Uζ for ζ small enough.

Since p(t) converges to p∗ as t → ∞, there exists a time t0 so that for all t′ ≥ t0 we have that
p(t′) ∈ Uζ . However, from MWU` dynamics (1) we get that if p(t′) ∈ Uζ then 1 − εiciγ(t′) >

1 − εiĉi(t′) and hence piγ(t′ + 1) = piγ(t′)
1−εiciγ(t′)
1−εiĉi(t′) ≥ piγ(t′) > 0, i.e., piγ(t′) is positive and

increasing with t′ ≥ t0. We reached a contradiction since piγ(t) → p∗iγ = 0, thus p∗ is a Nash
equilibrium.

4 Non-Convergence of MWUe: Limit Cycle and Chaos

We consider a symmetric two agent congestion game with two edges e1, e2. Both agents have the
same two available strategies γ1 = {e1} and γ2 = {e2}. We denote x, y the probability that the first
and the second agent respectively choose strategy γ1.

For the first example, we assume that ce1(l) = 1
2 · l and ce2(l) = 1

2 · l. Computing the expected
costs we get that c1γ1 = 1+y

2 , c1γ2 = 2−y
2 , c2γ1 = 1+x

2 , c2γ2 = 2−x
2 . MWUe then becomes xt+1 =

xt
(1−ε1)

(yt+1)
2

xt(1−ε1)
yt+1

2 +(1−xt)(1−ε1)
2−yt

2

(first player) and yt+1 = yt
(1−ε2)

xt+1
2

yt(1−ε2)
xt+1

2 +(1−yt)(1−ε2)
2−xt

2

(sec-

ond player). We assume that ε1 = ε2 and also that x0 = y0 (players start with the same mixed
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(a) Exponential MWUe: Plot of function G (blue)
and its iterated versions G2 (red), G3 (yellow).
Function y(x) = x is also included.

(b) Linear MWU`: Plot of function G` (blue) and
its iterated versions G2

` (red) and G3
` (yellow). Func-

tion y(x) = x is also included.

(c) Exponential MWUe: Plot of function G10.
Function y(x) = x is also included.

(d) Linear MWU`: Plot of function G10
` . Function

y(x) = x is also included.

Figure 1: We compare and contrast MWUe (left) and MWU` (right) in the same two agent two
strategy/edges congestion game with ce1(l) = 1

4 · l and ce2(l) = 1.4
4 · l and same learning rate

ε = 1− e−40. MWUe exhibits sensitivity to initial conditions whereas MWU` equilibrates. Function
y(x) = x is also included in the graphs to help identify fixed points and periodic points.

strategy. Due to symmetry, it follows that xt = yt for all t ∈ N, thus it suffices to keep track only of
one variable (we have reduced the number of variables of the update rule of the dynamics to one) and

the dynamics becomes xt+1 = xt
(1−ε)

xt+1
2

xt(1−ε)
xt+1

2 +(1−xt)(1−ε)
2−xt

2

. Finally, we choose ε = 1 − e−10

and we get

xt+1 = H(xt) = xt
e−5(xt+1)

xte−5(xt+1) + (1− xt)e−5(2−xt)
,

i.e., we denote H(x) = xe−5(x+1)

xe−5(x+1)+(1−x)e−5(2−x) .

For the second example, we assume that ce1(l) = 1
4 · l and ce2(l) = 1.4

4 · l. Computing
the expected costs we get that c1γ1 = 1+y

4 , c1γ2 = 1.4(2−y)
4 , c2γ1 = 1+x

4 , c2γ2 = 1.4(2−x)
4 .

MWUe then becomes xt+1 = xt
(1−ε1)

(yt+1)
4

xt(1−ε1)
yt+1

4 +(1−xt)(1−ε1)
1.4(2−yt)

4

(first player) and yt+1 =

yt
(1−ε2)

xt+1
4

yt(1−ε2)
xt+1

4 +(1−yt)(1−ε2)
1.4(2−xt)

4

(second player). We assume that ε1 = ε2 and also that x0 = y0

(players start with the same mixed strategy. Similarly, due to symmetry, it follows that xt = yt
for all t ∈ N, thus it suffices to keep track only of one variable and the dynamics becomes
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xt+1 = xt
(1−ε)

xt+1
4

xt(1−ε)
xt+1

4 +(1−xt)(1−ε)
1.4(2−xt)

4

. Finally, we choose ε = 1− e−40 and we get

xt+1 = G(xt) = xt
e−10(xt+1)

xte−10(xt+1) + (1− xt)e−14(2−xt)
,

i.e., we denote G(x) = xe−10(x+1)

xe−10(x+1)+(1−x)e−14(2−x) .

We show the following three statements, the proofs of which can be found in the full version.

Theorem 4.1. For all but a measure zero set S of x ∈ (0, 1) we get that limt→∞H2t(x) = ρ1 or ρ2.
Moreover, H(ρ1) = ρ2 and H(ρ2) = ρ1, i.e., {ρ1, ρ2} is a periodic orbit. Thus, all but a measure
zero set S of initial conditions converge to the limit cycle {ρ1, ρ2}. Finally, the initial points in S
converge to the equilibrium 1

2 .

Theorem 4.2. There exist two player two strategy symmetric congestion games such that MWUe has
periodic orbits of length n for any natural number n > 0 and as well as an uncountably infinite set
of “scrambled" initial conditions (Li-Yorke chaos).

Using Theorem 4.2, we conclude with the following corollary.

Corollary 4.3. For any 1 > ε > 0 and n, there exists a n-player congestion game G(ε) (depending
on ε) so that MWUe dynamics exhibits Li-Yorke chaos for uncountably many starting points.

5 Conclusion and Future Work

We have analyzed MWU` in congestion games where agents use arbitrary admissible constants as
learning rates ε and showed convergence to exact Nash equilibria. We have also shown that this
result is not true for the nearly homologous exponential variant MWUe even for the simplest case of
two-agent, two-strategy load balancing games. There we prove that such dynamics can provably lead
to limit cycles or even chaotic behavior.

For a small enough learning rate ε the behavior of MWUe approaches that of its smooth variant,
replicator dynamics, and hence convergence is once again guaranteed [29]. This means that as we
increase the learning rate ε from near zero values we start off with a convergent system and we
end up with a chaotic one. Numerical experiments establish that between the convergent region
and the chaotic region there exists a range of values for ε for which the system exhibits periodic
behavior. Period doubling is known as standard route for 1-dimensional chaos (e.g. logistic map) and
is characterized by unexpected regularities such as the Feigenbaum constant [39]. Elucidating these
connections is an interesting open problem. More generally, what other type of regularities can be
established in these non-equilibrium systems?

Another interesting question has to do with developing a better understanding of the set of conditions
that result to non-converging trajectories. So far, it has been critical for our non-convergent examples
that the system starts from a symmetric initial condition. Whether such irregular MWUe trajectories
can be constructed for generic initial conditions, possibly in larger congestion games, is not known.
Nevertheless, the non-convergent results, despite their non-generic nature are rather useful since
they imply that we cannot hope to leverage the power of Baum-Eagon techniques for MWUe. In
conclusion, establishing generic (non)convergence results (e.g. for most initial conditions, most
congestion games) for MWUe with constant step size is an interesting future direction.
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