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Abstract

The predictive learning of spatiotemporal sequences aims to generate future images
by learning from the historical frames, where spatial appearances and temporal vari-
ations are two crucial structures. This paper models these structures by presenting a
predictive recurrent neural network (PredRNN). This architecture is enlightened by
the idea that spatiotemporal predictive learning should memorize both spatial ap-
pearances and temporal variations in a unified memory pool. Concretely, memory
states are no longer constrained inside each LSTM unit. Instead, they are allowed
to zigzag in two directions: across stacked RNN layers vertically and through all
RNN states horizontally. The core of this network is a new Spatiotemporal LSTM
(ST-LSTM) unit that extracts and memorizes spatial and temporal representations
simultaneously. PredRNN achieves the state-of-the-art prediction performance on
three video prediction datasets and is a more general framework, that can be easily
extended to other predictive learning tasks by integrating with other architectures.

1 Introduction

As a key application of predictive learning, generating images conditioned on given consecutive
frames has received growing interests in machine learning and computer vision communities. To
learn representations of spatiotemporal sequences, recurrent neural networks (RNN) [17, 27] with
the Long Short-Term Memory (LSTM) [9] have been recently extended from supervised sequence
learning tasks, such as machine translation [22, 2], speech recognition [8], action recognition [28, 5]
and video captioning [5], to this spatiotemporal predictive learning scenario [21, 16, 19, 6, 25, 12].

1.1 Why spatiotemporal memory?

In spatiotemporal predictive learning, there are two crucial aspects: spatial correlations and temporal
dynamics. The performance of a prediction system depends on whether it is able to memorize
relevant structures. However, to the best of our knowledge, the state-of-the-art RNN/LSTM predictive
learning methods [19, 21, 6, 12, 25] focus more on modeling temporal variations (such as the object
moving trajectories), with memory states being updated repeatedly over time inside each LSTM unit.
Admittedly, the stacked LSTM architecture is proved powerful for supervised spatiotemporal learning
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(such as video action recognition [5, 28]). Two conditions are met in this scenario: (1) Temporal
features are strong enough for classification tasks. In contrast, fine-grained spatial appearances prove
to be less significant; (2) There are no complex visual structures to be modeled in the expected
outputs so that spatial representations can be highly abstracted. However, spatiotemporal predictive
leaning does not satisfy these conditions. Here, spatial deformations and temporal dynamics are
equally significant to generating future frames. A straightforward idea is that if we hope to foretell
the future, we need to memorize as many historical details as possible. When we recall something
happened before, we do not just recall object movements, but also recollect visual appearances from
coarse to fine. Motivated by this, we present a new recurrent architecture called Predictive RNN
(PredRNN), which allows memory states belonging to different LSTMs to interact across layers (in
conventional RNNs, they are mutually independent). As the key component of PredRNN, we design
a novel Spatiotemporal LSTM (ST-LSTM) unit. It models spatial and temporal representations in a
unified memory cell and convey the memory both vertically across layers and horizontally over states.
PredRNN achieves the state-of-the-art prediction results on three video datasets. It is a general and
modular framework for predictive learning and is not limited to video prediction.

1.2 Related work

Recent advances in recurrent neural network models provide some useful insights on how to predict
future visual sequences based on historical observations. Ranzato et al. [16] defined a RNN
architecture inspired from language modeling, predicting the frames in a discrete space of patch
clusters. Srivastava et al. [21] adapted the sequence to sequence LSTM framework. Shi et al. [19]
extended this model to further extract visual representations by exploiting convolutions in both
input-to-state and state-to-state transitions. This Convolutional LSTM (ConvLSTM) model has
become a seminal work in this area. Subsequently, Finn et al. [6] constructed a network based on
ConvLSTMs that predicts transformations on the input pixels for next-frame prediction. Lotter et al.
[12] presented a deep predictive coding network where each ConvLSTM layer outputs a layer-specific
prediction at each time step and produces an error term, which is then propagated laterally and
vertically in the network. However, in their settings, the predicted next frame always bases on the
whole previous ground truth sequence. By contrast, we predict sequence from sequence, which is
obviously more challenging. Patraucean et al. [15] and Villegas et al. [25] brought optical flow
into RNNs to model short-term temporal dynamics, which is inspired by the two-stream CNNs [20]
designed for action recognition. However, the optical flow images are hard to use since they would
bring in high additional computational costs and reduce the prediction efficiency. Kalchbrenner
et al. [10] proposed a Video Pixel Network (VPN) that estimates the discrete joint distribution
of the raw pixel values in a video using the well-established PixelCNNs [24]. But it suffers from
high computational complexity. Besides the above RNN architectures, other deep architectures are
involved to solve the visual predictive learning problem. Oh et al. [14] defined a CNN-based action
conditional autoencoder model to predict next frames in Atari games. Mathieu et al. [13] successfully
employed generative adversarial networks [7, 4] to preserve the sharpness of the predicted frames.

In summary, these existing visual prediction models yield different shortcomings due to different
causes. The RNN-based architectures [21, 16, 19, 6, 25, 12] model temporal structures with LSTMs,
but their predicted images tend to blur due to a loss of fine-grained visual appearances. In contrast,
CNN-based networks [13, 14] predict one frame at a time and generate future images recursively,
which are prone to focus on spatial appearances and relatively weak in capturing long-term motions.
In this paper, we explore a new RNN framework for predictive learning and present a novel LSTM
unit for memorizing spatiotemporal information simultaneously.

2 Preliminaries

2.1 Spatiotemporal predictive learning

Suppose we are monitoring a dynamical system (e.g. a video clip) of P measurements over time,
where each measurement (e.g. a RGB channel) is recorded at all locations in a spatial region
represented by an M ×N grid (e.g. video frames). From the spatial view, the observation of these P
measurements at any time can be represented by a tensor X ∈ RP×M×N . From the temporal view,
the observations over T time steps form a sequence of tensors X1,X2, . . . ,XT . The spatiotemporal
predictive learning problem is to predict the most probable length-K sequence in the future given the
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previous length-J sequence including the current observation:

X̂t+1, . . . , X̂t+K = argmax
Xt+1,...,Xt+K

p (Xt+1, . . . ,Xt+K |Xt−J+1, . . . ,Xt) . (1)

Spatiotemporal predictive learning is an important problem, which could find crucial and high-impact
applications in various domains: video prediction and surveillance, meteorological and environmental
forecasting, energy and smart grid management, economics and finance prediction, etc. Taking video
prediction as an example, the measurements are the three RGB channels, and the observation at
each time step is a 3D video frame of RGB image. Another example is radar-based precipitation
forecasting, where the measurement is radar echo values and the observation at every time step is a
2D radar echo map that can be visualized as an RGB image.

2.2 Convolutional LSTM

Compared with standard LSTMs, the convolutional LSTM (ConvLSTM) [19] is able to model the
spatiotemporal structures simultaneously by explicitly encoding the spatial information into tensors,
overcoming the limitation of vector-variate representations in standard LSTM where the spatial
information is lost. In ConvLSTM, all the inputs X1, . . . ,Xt, cell outputs C1, . . . , Ct, hidden state
H1, . . . ,Ht, and gates it, ft, gt, ot are 3D tensors in RP×M×N , where the first dimension is either the
number of measurement (for inputs) or the number of feature maps (for intermediate representations),
and the last two dimensions are spatial dimensions (M rows and N columns). To get a better picture
of the inputs and states, we may imagine them as vectors standing on a spatial grid. ConvLSTM
determines the future state of a certain cell in the M × N grid by the inputs and past states of its
local neighbors. This can easily be achieved by using convolution operators in the state-to-state and
input-to-state transitions. The key equations of ConvLSTM are shown as follows:

gt = tanh(Wxg ∗ Xt +Whg ∗ Ht−1 + bg)

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci � Ct−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf � Ct−1 + bf )

Ct = ft � Ct−1 + it � gt
ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco � Ct + bo)

Ht = ot � tanh(Ct),

(2)

where σ is sigmoid activation function, ∗ and � denote the convolution operator and the Hadamard
product respectively. If the states are viewed as the hidden representations of moving objects, then a
ConvLSTM with a larger transitional kernel should be able to capture faster motions while one with a
smaller kernel can capture slower motions [19]. The use of the input gate it, forget gate ft, output
gate ot, and input-modulation gate gt controls information flow across the memory cell Ct. In this
way, the gradient will be prevented from vanishing quickly by being trapped in the memory.

The ConvLSTM network adopts the encoder-decoder RNN architecture that is proposed in [23] and
extended to video prediction in [21]. For a 4-layer ConvLSTM encoder-decoder network, input
frames are fed into the the first layer and future video sequence is generated at the fourth one. In this
process, spatial representations are encoded layer-by-layer, with hidden states being delivered from
bottom to top. However, the memory cells that belong to these four layers are mutually independent
and updated merely in time domain. Under these circumstances, the bottom layer would totally ignore
what had been memorized by the top layer at the previous time step. Overcoming these drawbacks of
this layer-independent memory mechanism is important to the predictive learning of video sequences.

3 PredRNN

In this section, we give detailed descriptions of the predictive recurrent neural network (PredRNN).
Initially, this architecture is enlightened by the idea that a predictive learning system should memorize
both spatial appearances and temporal variations in a unified memory pool. By doing this, we make
the memory states flow through the whole network along a zigzag direction. Then, we would like
to go a step further to see how to make the spatiotemporal memory interact with the original long
short-term memory. Thus we make explorations on the memory cell, memory gate and memory
fusion mechanisms inside LSTMs/ConvLSTMs. We finally derive a novel Spatiotemporal LSTM
(ST-LSTM) unit for PredRNN, which is able to deliver memory states both vertically and horizontally.
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3.1 Spatiotemporal memory flow
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Figure 1: Left: The convolutional LSTM network with a spatiotemporal memory flow. Right: The
conventional ConvLSTM architecture. The orange arrows denote the memory flow direction for all
memory cells.

For generating spatiotemporal predictions, we initially exploit convolutional LSTMs (ConvLSTM)
[19] as basic building blocks. Stacked ConvLSTMs extract highly abstract features layer-by-layer
and then make predictions by mapping them back to the pixel value space. In the conventional
ConvLSTM architecture, as illustrated in Figure 1 (right), the cell states are constrained inside each
ConvLSTM layer and be updated only horizontally. Information is conveyed upwards only by hidden
states. Such a temporal memory flow is reasonable in supervised learning, because according to the
study of the stacked convolutional layers, the hidden representations can be more and more abstract
and class-specific from the bottom layer upwards. However, we suppose in predictive learning,
detailed information in raw input sequence should be maintained. If we want to see into the future,
we need to learn from representations extracted at different-level convolutional layers. Thus, we
apply a unified spatiotemporal memory pool and alter RNN connections as illustrated in Figure 1
(left). The orange arrows denote the feed-forward directions of LSTM memory cells. In the left
figure, a unified memory is shared by all LSTMs which is updated along a zigzag direction. The key
equations of the convolutional LSTM unit with a spatiotemporal memory flow are shown as follows:

gt = tanh(Wxg ∗ Xt1{l=1} +Whg ∗ Hl−1
t + bg)

it = σ(Wxi ∗ Xt1{l=1} +Whi ∗ Hl−1
t +Wmi �Ml−1

t + bi)

ft = σ(Wxf ∗ Xt1{l=1} +Whf ∗ Hl−1
t +Wmf �Ml−1

t + bf )

Ml
t = ft �Ml−1

t + it � gt
ot = σ(Wxo ∗ Xt1{l=1} +Who ∗ Hl−1

t +Wmo �Ml
t + bo)

Hl
t = ot � tanh(Ml

t).

(3)

The input gate, input modulation gate, forget gate and output gate no longer depend on the hidden
states and cell states from the previous time step at the same layer. Instead, as illustrated in Figure
1 (left), they rely on hidden states Hl−1

t and cell statesMl−1
t (l ∈ {1, ..., L}) that are updated by

the previous layer at current time step. Specifically, the bottom LSTM unit receives state values
from the top layer at the previous time step: for l = 1, Hl−1

t = HL
t−1,Ml−1

t =ML
t−1. The four

layers in this figure have different sets of input-to-state and state-to-state convolutional parameters,
while they maintain a spatiotemporal memory cell and update its states separately and repeatedly
as the information flows through the current node. Note that in the revised ConvLSTM network
with a spatiotemporal memory in Figure 1, we replace the notation for memory cell from C toM to
emphasize that it flows in the zigzag direction instead of the horizontal direction.
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3.2 Spatiotemporal LSTM
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Figure 2: ST-LSTM (left) and PredRNN (right). The orange circles in the ST-LSTM unit denotes the
differences compared with the conventional ConvLSTM. The orange arrows in PredRNN denote the
spatiotemporal memory flow, namely the transition path of spatiotemporal memoryMl

t in the left.

However, dropping the temporal flow in the horizontal direction is prone to sacrificing temporal
coherency. In this section, we present the predictive recurrent neural network (PredRNN), by
replacing convolutional LSTMs with a novel spatiotemporal long short-term memory (ST-LSTM)
unit (see Figure 2). In the architecture presented in the previous subsection, the spatiotemporal
memory cells are updated in a zigzag direction, and information is delivered first upwards across
layers then forwards over time. This enables efficient flow of spatial information, but is prone to
vanishing gradient since the memory needs to flow a longer path between distant states. With the aid
of ST-LSTMs, our PredRNN model in Figure 2 enables simultaneous flows of both standard temporal
memory and the proposed spatiotemporal memory. The equations of ST-LSTM are shown as follows:

gt = tanh(Wxg ∗ Xt +Whg ∗ Hl
t−1 + bg)

it = σ(Wxi ∗ Xt +Whi ∗ Hl
t−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗ Hl
t−1 + bf )

Clt = ft � Clt−1 + it � gt
g′t = tanh(W ′xg ∗ Xt +Wmg ∗Ml−1

t + b′g)

i′t = σ(W ′xi ∗ Xt +Wmi ∗Ml−1
t + b′i)

f ′t = σ(W ′xf ∗ Xt +Wmf ∗Ml−1
t + b′f )

Ml
t = f ′t �Ml−1

t + i′t � g′t
ot = σ(Wxo ∗ Xt +Who ∗ Hl

t−1 +Wco ∗ Clt +Wmo ∗Ml
t + bo)

Hl
t = ot � tanh(W1×1 ∗ [Clt,Ml

t]).

(4)

Two memory cells are maintained: Clt is the standard temporal cell that is delivered from the previous
node at t− 1 to the current time step within each LSTM unit. Ml

t is the spatiotemporal memory we
described in the current section, which is conveyed vertically from the l − 1 layer to the current node
at the same time step. For the bottom ST-LSTM layer where l = 1,Ml−1

t =ML
t−1, as described in

the previous subsection. We construct another set of gate structures forMl
t, while maintaining the

original gates for Clt in standard LSTMs. At last, the final hidden states of this node rely on the fused
spatiotemporal memory. We concatenate these memory derived from different directions together and
then apply a 1× 1 convolution layer for dimension reduction, which makes the hidden stateHl

t of the
same dimensions as the memory cells. Different from simple memory concatenation, the ST-LSTM
unit uses a shared output gate for both memory types to enable seamless memory fusion, which can
effectively model the shape deformations and motion trajectories in the spatiotemporal sequences.
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