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This document collects some supplementary materials in Convergence of Gradient EM on Multi-
component Mixture of Gaussians, including the proofs for the lemmas and theorems presented in
that paper.

A Accompanying Lemmas

In this subsection, we collect some lemmas on Gaussian distribution and basic properties of Gaussian
mixture model. Most of them can be derived with fundamental analysis techniques. The following
lemma from [7] bounds the covering number of a unit sphere.

Lemma A.1 (Lemma 5.2 [7]). Let S"~! be the unit Euclidean sphere equipped with Euclidean
metric. Denote N'(S"~1, €) as the covering number with e-net, then

NS e < <1 + i) /

Specifically, when e = 1/2, we have

NS, 5) < exp(2n)

The following lemma is useful while carrying out spherical coordinate transformation.
d
Lemma A.2. (1) The volume for a d-dimensional r-ball is —">—19;

r(¢r1)"

k+1
2 [y sin®(z)de = ‘F(F(H)), and

rTT T 2
/ / / sin=2(0,) -+ -sin(0a_2)d0; - - dfy_ = ——
0a-1=0J04 s=0  Jo,=0 r(3)

(3) If X ~ N (u,021,), then

m\& l\?‘+
v

Ex||X —p|P =25 —~—2 (
x| X = I
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Proof. (1, 2) can be proven by elementary integration. Now we prove (3). By spherical coordinate
e ot

transformation,
r p+d
2y ¢ fd—1 -2 2
Ex||X — p|? =(270°)" 2 u? e 2 du—rr =27 ———
u

~0 r(s) r(s)

(NS}

oP

Lemma A.3 (Gamma tail bound [3]). If X ~ Gamma(v,c), then P(X > \/2vt + ct) < e~'. Or

equivalently,
t 2ct
P(X >t) < exp (_712 <1+C—\/1+C>)
c v v
v Jct vt
P(X >t) <exp <021/v> = exp < c3>

Lemma A4. ForVd > 0, if r > 2/d + 1, then

*° d+1
/ ude” 2du<2 F<;>exp<; dJrl)

Forp € {0,1,2}, whenr > 2\/d + p,

/:O(u—i—x) d-le=% du<2§_1F (g) (x + d)? exp (—g\/(})

In particular, i % >4,

Proof. By changing of variables v = “72 and integration by parts, we have

o d uw? d—1 g
ue” 2z du =2 2 2v2e"dv
r r=

2

d—1 d+1 r2
=272I'(——|P —
2 ( 5 ) (V> 5 )
where V' ~ Gamma(4tL, 1). By Lemma if 2 > 4(1 + d),

P(v>5) e (-pvas)

Hence we have the first inequality. For the second, when p = 0, it follows directly from first part.
Whenp =1,

0 2 o0 2 Rl 2
/ (u—l—sc)pud_le_Tdu:/ ude_Tdu—&—x/ ul~le™ T du
T r r

where we use I' (i) <TI ( + 1) = %I‘ (%) and exp (f%\/dJr ) < exp (,g\/g) in the last
step.



When p = 2,

2

(o) u2 o0 u2 o0 “
/ (u—i—x)Zud_le_Tdu:/ udHe_Tdu—l—Zx/ ule™ T du
T o “2 T I
+x2/ w e T du
T
d d r d—1 d+1 r 9nd_1
<22T §—|—1 exp(—ix/d+2>+23:-2 2 — exp(—ivd—i—l)—km 2270 | = exp(

2 2
<(z +d)2287'T (g) exp (—g\/&)

g@ﬁ+v6dx4-x%25—ﬁ‘<d>exp(—rv@)

O
Using Lemma[A-4] we can get an easy to use tail bound for Euclidean norm of a Gaussian vector.
Lemma A.5. If X ~ N(0, 1), for r > 2V/d, we have
rvd
P(IX] > 1) < exp(~"2%)
Proof. By spherical coordinate transformation,
PAIX] = 7) = [ (2m) 9 exp(— o] /2)do
2 o0
=(2 >7d/227Td/ / d-1,-r%/2
r(3) Jr
<exp (—g\/@
O

Lemma A.6. If X ~ GMM(r,u*,0%1,), then X is a sub-gaussian random vector with sub-
gaussian norm o + Zf\il |l )

Proof. For any unit vector u, consider the random variable X,, = (X, u). By the definition in [7], it
suffices to show that X, has a sub-gaussian norm upper bounded by o + Zﬁl |l

1 Xullg, = sup(E|X,[P)"/7
p>1

For any p > 1, let Z be the latent variable in the mixture model, we have

M 1/p
p71/2 (E|Xu\p)1/p :p71/2 (Z E[|X.?|Z =1i]- P(Z = z))
i=1
M
<p 2w (X2 = i)
i=1
(i) M

<p 23w (BIX — i 1Z = 07+ )

=1

M M
<p 2 (Z mip'/ o + |ur||> <o+ mlluil
i=1 =1

where (%) follows from Minkovski’s inequality. O



The following lemma characterize the relation between ||, || and Rax.
Lemma A.7. If X ~ GMM(m, p*,0%1;) with EX = 0, let |p},,.. || = max; | p?

||/J’;knaxH S Rmax § QHH‘;ax”

, then

Proof. We first prove || g .. || < Rmax by contradiction. Assume ||} .. || > Rmax, by definition of
Rnax, all the cluster centers lies in the ball B(||ze% |/, Rmax), but the origin is outside of the ball,
which contradicts the fact that EX = . mu) = 0.

The second inequality follows from triangle inequality, assume [?,,,x is achieved at I2;;, then

Rmax <[l 11+ 1511 < 2] sl
O

Lemma A.8. A function f : R™ — R is \/nL Lipschitz if there exists a constant L such that the
restriction of f on a certain coordinate is L-Lipschitz.

Proof. We first relax the norm of difference via a chain of triangle inequalities where each pair of
terms only vary on one dimension.

|f(331,(E2,"' ,J]n) _f(yhyQa"' >$n)|

n
§Z|f(y17y27"' s Yi—1,Tq, Tjp1, " 7-1'11) _f(ylay27"' s Yi—1,Yiy Tig1, """ ,J;n)|
=1

SZLW —yil <VnL|z —y]

i=1

B Proofs in Section 4|

Proof of Lemmal[l] By @), V,,q(p) = Exw;(X; pu*)(X — p;). Without loss of generality, we
only show the claim for ¢ = 1. That is equivalent of saying, if X ~ GMM(mx, u*), we have
Elwy (X; u*)(X — p})] = 0. Denote N (e}, %) as N and its distribution as ¢;(X). Decompose
the left hand side with respect to the mixture components, we have

Elw (X)X] = Z TiEx o, (w1 (X) X]

N ‘ m1¢1(X) -
_Z l/@(X)Zk Wkébk(X)Xd

:7T1]EXNN1X = 7T1/1,>{

Similarly E[w; (X)] = 7. Hence V,, q(p) = Exw (X; ") (X — p1) = mi(p] — p).
This completes the proof. O

Proof of Theorem 3] Define By Lemmal[I] the GS condition is equivalent to

[VQ(kln®) = Va(u)|| < vllu" — |
By triangle inequality,

i = pi|| =t — i+ sVQulu) ||
<||uf — w1+ sVa(w)|| + 5| VQ(u|p") — Va(p)||

Tmax — Tmin || ¢ *|

< i 1

" Tmax + Tmin
< Tmax — TTmin + 27

Tmax T Tmin

_’_# H t ok
7Tmax+7rmin7 H H

i — ey



To see why the last inequality hold, notice that ¢(u) has largest eigenvalue —my,i, and smallest
eigenvalue —max. Apply the classical result for gradient descent, with step size s = ﬁ
guarantees

Tmax — Tmin t *
— HN1 - M1
Tmax T Tmin

|1f — i+ sVa(p)|| <

B.1 Proofs of TheoremM

We start with two lemmas.
Lemma B.1. For X ~ GMM (7, u*, Iy), if Ruin = Q(Vd), and p; € B(u?, a),¥i € [M] where

a< % — Vdmax(4/2[10g(Rmin /4)]+, 8V/3).

Then for p = 0,1,2 and Vi € [M], we have

Excwr (X; ) (1 — wi(X; )| X — puelP < 2M @Rmax n d)pexp (— (R‘; - ) x/&/s)

Using the same techniques, for the cross terms, we have the following lemma.

Lemma B.2. Assume X ~ GMM(w,p*,13), and p; € B(uf, a),Vi € [M]. Under the same
conditions as in LemmalB.1| we have for Vi # j € [M],

Exlus X )y (X)X gl -1 = 1] <04 26) (§ B4 ) e (— (F5= - ) ﬁ/s)

Proof of Lemma|B.1} Without loss of generality, we prove the claim for ¢ = 1. Recall the definition
of w;(X; p) from Equation[I] For p € {0, 1,2},
Exwi (X; ) (1 = wi (X5 ) | X = pa [P

= mExenunwi (X ) (1= wi (X; )| X — oo ||P
1€[M]

< Ex () w1 (X5 ) (1= w1 (X5 )| X = P+ miBxonunywi (X )| X — pa||P
i#1
(B.1)

First let us look at the first term. Define event £ = {X : X ~ N(p}); |IX — pi|| < r}for some

r > 0. We will see later that we need r < Rg““ — a. Then for X € Sr(l) using triangle inequality,
we have
<X —pill 4+ [[uf —pil <7 +a i=1

IXuiII{

> lpi = il = X = pill = ] — pill = [[1f = pill =7 = Ruin =7 —a i #1
(B.2)
Exon gy wi (X5 p) (1 — wi (X)) [ X — paa ||

=E[w1 (X; p) (1 — w1 (X; )| X — g |[P[ED]P(ED)
+ Efwy (X5 p) (1 — wy (X5 )| X — pa||P|EDP(EN*)



In view of the fact that w; (X; ) is monotonically decreasing w.r.t. | X — p;|| and increasing w.r.t.
|| X — 1], we have

(1 —m)exp (_W)

T €Xp (—%) + (1 —m)exp @M)

1-m 1
< _7Rmin Rmin —2r—2
< exp ( 5 ( r a))

I —w(X;p) <

Also notice that wy (X; p) < 1, we have
E[wy (X p) (1 — w1 (X; )| X — pua|P[EM]P(ED)

1-— 1
< m exp (—Rmin(Rmin —2r — 2a)) (r+a)?
1 2

For £, note wi (X p)(1 —wi(X;p)) < 3, wehave forp =1,
Efw; (X; p)(1 = w1 (X5 )| X — pa[[|EV]P(E°)

d
2

o0 2
gi/u (u+a)(27r)*%exp <UQ> . F27(T‘21)Udldu

00 u2
)/ (u+ a)exp (—2> ulldu

e (5

The inequality (i) follows from Lemma when r > 2+/d + 1. Similarly, for p = 2,
Efwy (X; p)(1 = w1 (X; )| X — pa|*[EVTP(EM)

9—3-1 [ W2 () d)?

The inequality (ii) follows from Lemmawhen r > 2v/d+ 1 and p = 2. Therefore for the first
mixture we have,

1 _
§1(27T)

T1Ex o (un) w1 (X5 p) (1 — w1 (X5 )| X — pa [P

<(1 —m)(r+a)?exp (;Rmin(Rmin —2r — 2a)> + m% exp (,g\/g) (B.3)

Next we bound E sy w1 (X5 p) || X — pr||P for i # 1. For some 0 < r < £ — a, we have

TEx A (ury w1 (X5 )| X — pa [P

Xipn) - mid(X;
:/ ’/Tl¢( ,“1) 7T¢( ll’z)HX_ulude
x o 2 mo(Xs )
X A (Xt X: - o( Xt
:/ 771¢( a“l) 7Tz.(b( 7/1’1)||X_M1||de+/ 7T1¢( 7“1) ﬂ-llqs( 1/1'2)||X_“1||de
XeEB(p},r) > mio(Xs 1) XgB(ut.r) >0 (X5 1)
I{p) Iép)
B.4)
When | X — pf|| < r, since by assumption ||p; — pf|| < a,
AXspi) _ (X—mll2 B IIX—Mfz)
(X5 i) 2 2
b T (B.5)
exp<<x ) (mui‘))



Since by Cauchy-Schwarz we have |(X — %“:)T(ui —uH)| = (X —pi+ %)T(ul —pi)| <
(r + a/2)a, we have:

< exp ((r n g)a) (B.6)

For such X, ¢(X; p1) < (27) "2 exp <7M) and we have

X g )i (X o
00— [ ORI
XeB(urr) 2oy (X py)

</ m1o(X; p1)mid( X5 i) exp ((r+%)a)
XeB(pu),r) Zj ’/TJQS(X’H])
a

<mexp ((r+ 5)a) O )| X — pur |PdX
27 xenuin

X — pa|[PdX

Rmin - = 2 d/2
§7T1(27T)_d/2 exp ((7‘ + g)a) (Rumax +a+1)P exp <_( QT 2 ) p(z + 1)Td
2

7T.12—cl/2

(Rpin — 7 — a)?
Sdi - 4
(g +1)

exXp ((T + %)a o 2 ) (Rmax +a+ T)prd

Rmin
§77121_d €xXp (Rmin (a - T(l - T/Rmin)2>> (Rmax +a+ r)p,r,d

The last inequality follows from the fact that I' (£ +1) > ([])! > 25=1_ On the other hand, for
I, since wy (X; pu) < 1, taking spherical coordinate transformation we have,

I < / (X3 p)||IX — pa|PdX
[ X—pil|>r
X — pt|?
< | (2m) 2 exp(— X BTy ki
1X — || >r 2

7r_217d/2 oo J U2
<= wile —— ) (4 + Rmax + a)Pdu
< L (- )
Apply Lemma when r > 2v/d + 2, forp € {0, 1,2}

12(1)) <7 (Rmax + a + d)* exp (—g\/g) (B.7)

Summing up I; and I5, for any 0 < r < Ryin/2, from we get:

TEx A (w1 (X )| X — pa [P

Sﬂ—121_d €Xp (Rmin <a - %(1 - T/Rmin)2>) (Rmax +a+ r)p,rd + m; (Rmax +a+ d)p exp (_i\/g>

2
(B.8)



Now plugging Eq. (B3) and Eq. (B.8) into Eq. (B.I) gives,

Exw (X5 p)(1 = wi (X5 p)[| X — pa [P
p

<(1—m)(r +a)?exp (_;Rmin(Rmin —2r — 2a)) +m (a —zd) exp (—g\/&)

+ (M — 1)21*‘{ exp (Rmin (a - %

(1- T/Rmin)2)> (Rumax + a +1)Pr?
+ (1 =) (Rmax + a+d)” exp (—gﬁ)

<(1—m)(r+a)? exp (;Rnlin(ijn —2r — 2a)) + (Rmax + a+ d)’ exp (fg\/ﬁ)

o0 (B)

+om (M~ 1)exp (Rmm ( _ Sminy T/Rmin)Q) ; dlog(r/m) (R a4 1)

(@)

Note that in order to have a negative term inside exponential of (A), we require r + a < %. In
order to ensure the same for (C), we need:

Rmin T ?
1-— B.
a < 5 ( Rmin) (B.9)

If 72 > 2dlog(r/2), then we have:

exp (Rmin (a — R;m 1—7/Rmin) ) + dlog(r/2) ) < exp (Rmin (a —
r?
2

RQ
S exp Rmina - T - TRmm + = + 2

= exp <_;Rmin(Rmin —2r — Qa))

%(1 — r/Rmin)Q) + T2/2>

Therefore, (A) + (C) < (1 —m1 +2m (M — 1)) (Riax + a+1)? exp (— 2 Rinin (Rimin — 2r — 2a))

Finally, if r < Rmmﬁ% we have:

exp (—;Rmin(Rmin —2r — 2a)> < exp(—i\/(;)

2
Hence,
3 P T
(4)+ (B) +(C) <2 = m +2m(M = 1) ( 5 Runax +d ) exp (—5\/&)

<221 (2 R+ ) exp (<2 V)

— 2 max eXp 2
Set

I%min/2 —a Rmin
= — < B.l
r 1 , A — (B.10)

then Eq anda +7r < % are automatically satisfied. When Ry, > %, we have r <
RminR“““i/z_“. Finally in order to meet the constraints

Ruin+Vd/2
r>2V/d+2<r>3Vd (B.11)
r? > 2dlogr/2 (B.12)



we need
Rmin/2 —a
4

> max(y/2d[10g( Ruin/4)]+, 2V/3Vd)
a < % — Vdmax(4v/2[log(Rmin /4)] +, 8V/3)

The right hand side of last inequality is non-negative when Ry = Q(\/ﬁ) Under these conditions,
with Eq. plugged in, we have

3 P Rmin 2
Exws (X 1)(1 — w1 (X: )X — | < 20 (QRW n d) exp (— (2 - ) ﬁ/s)

O
Proof of Lemma[B.2] Forany r < fmin — g define & = {X : 3i, such that Zx =14, || X — p]|| >
rrand & = {X : Zx =k, [|X —ppl <}
Ex [wi(X; w)w; (X5 )| X — gl [1X = pa]
SEx [wi(X; p)w; (X5 )| X — pual[[| X — p51|| €] P(Eo)
I

+ ) mBx () [wi (X5 m)w; (X5 ) | X = pil[l|X = pi 11X = gl < 7]
ke[M]

I,

First we look at I, this again can be decomposed as the sum over mixtures. Similarly as in Eq. (B.7),
we have

Io < (Ruax +a + d)* exp (—g\/&)

For I}, by Eq. (B-6),
I, :/ T p(X5 i) T (X g ) me (X py)
X (2, med (X pe))?
- / mi¢( X5 i) T (X5 g ) e (X pe) exp((r + a/2)a)
X (D0 med (X5 pe))?

X = gl - |1 X = [ldX

X = gl - [ X = pjlldX

d R(min —-r—= a)2 2 /2 d
oo b esep( Lmin =T = @) +0/2)a) (Runa + 7 + )
<rkmE2m~ 2 exp( 9 )exp((r +a/2)a)( T+ a) T (% n 1)7" (B.13)
1 (Rpin — 7 — a)?
T L ——— ( +a/2 —”““) Ruax + 7+ a)?
<MRpk - (% - 1)7" exp [ (r+a/2)a 5 ( )

Rmin 2
<27k exp <Rmin <a - (1 - Rr‘ ) ) + dlog(r/2)> (Rmax + 7+ a)2

Adding up Ij’s and I, we have
Ex [wi(X; p)w; (X5 ) [ X = pi[[| X — ]
< (Rumax + a4 d)” exp (—g\/g)

2
+ 2K exp (Rmin (a - R;m (1 - RT_ ) ) + dlog(r/2)> (Rmax + 7 +a)?

2
Take r = 1 (£2i» — ), we have Ry (a — Huin (1 - R;;n) ) + dlog(r/2) < —5+/d. There-

fore,
Ex [w; (X5 p)w; (X5 )| X — gl - | X — ]

<(1+2k) (‘;’Rmax + d)2exp (— (R‘;“ - a)2 \/ﬁ/8>



Proof of Theoremd] Consider the difference of the gradient corresponding to pt;, without loss of
generality, assume ¢ = 1.

Vi Q' [p') = Va(p') =E(wi (X; p') — wi (X5 ) (X — pi) (B.14)

For any given X, consider the function gt — wq(X; p), we have

w (X5 ) (1 — w1 (X5 1)) (X — pg) T

—w1(X; p)wa (X; — 2)”
¥y (X ) = (X; ) 2().( ) (X — po)

‘ (B.15)
(X pwnr (X ) (X — paar) T

Let p* = p* +u(p' — p*),Yu € [0,1], obviously p* € @M, B(p;, ||} — p ) € @M, B(u}, a).
By Taylor’s theorem,

B (X 1) — w1 (X5 1)) (X — i) = HE [ / Vo (X; ) du(X —uiﬂ H

/ B (X)L (X)) (X — ) ()X — g

) (B.16)
= / Eaoy (X s (X3 1)) (X — )T (i — ) (X — pat )l
i1 Y u=0
<Ur[lph — pille + D Uillh — w2
i#£1

where

Uy = sup [Ews (X5 1) (1 = wi (X5 ) (X = ) (X = pf) " [lop
ue|0,

U; = sup [Ew (X5 1w (X o) (X — ) (X = p3) " [lop
ue|0,

For U; by triangle inequality we have,

Ur < sup [[Ewi(X; pu")(1 = wi (X5 1) (X = pi)(X = p3) " lop

u€(0,1]
+ wp ([Bawy (X5 ) (1 — wy (X5 1)) (1 — i) (X = 1) lop
ue |0,
< 81[10101] [Ewy (X3 ) (1 — wi(X; ) (X = pi)(X = p)" | op
ue|0,
+a sup [Ew: (X5 p") (1 — w1 (X5 ") (X — i)l (B.17)
u€e(0,1

We now develop an uniform bound for the operator norm. For any u € [0, 1], there exists a ro-
tation matrix O, such that all Ru¥,i € [M] have non-zero entries in the leading min{d, M}
coordinates, and zeros for the remaining [d — M] coordinates. Denote X := OX, then
X|Z =i~ N(Opf,1,). Let

Opl = [3Y,0p_pr, ] and Opf = [p BN pld=Mlv) = pu ¢ gumin{d. M}

For ease of notation, we assume d > M for now, the other case can be derived without much
modification. We can rewrite

XM _ ;Z“)(XM _ /J:“)T (XM _ p':u)(Xd—M)T
(X—[,Lu)(X—/.Lu)T:OT( _ 1/\ ~u1 - 1~_
1 1 (Xd M)(XM_Hl)T (Xd M)(Xd M)T
Note by the rotation, w; (X ; i) only depend on the first M coordinates. And by isotropicity, XM and
X9=M are independent. By EX 9~ = () (since we assume that the centroid of the means is at zero,

and a rotation does not change that) and EX4~M (X4MT = 1,/ + 35 7, (vf =) (04T we
have,

10



B (X )1 ()X~ )X = = |35

<max{|| D1 op, [| D2]op}
D, and D5 are defined below. Applying Lemma with dimension min{d, M}, when Ry =

Q(y/min{d, M}),

1D llop = By (X5 a") (1 — wi (X5 o)) (X™HEM — gy (Xm0 — T,

<2M ( Rinax + min{d, M}>2exp (— (R“““ ) v/min{d, M} /8)

op

For D5, by independence and Lemma when Ryin = Q(y/min{d, M }),

Euy (X; 4")(1 = w1 (X; 4")) (I[d Ml +Zm - ><v£d‘M“>T>

1 Dallop =

op

= H (Ej(min{d‘M}wl(Xmin{d,]\/I}; 1) (1 = w1 (Xminga, a3 ﬁu)))

d—M d—M
ExX i, (I[d_M]+ + Zﬂ-’i(vz[ H)(Ul[ ]+)T>

(R, + 1)2M exp (— (T ) /min{d, M} /8)

Combining the two and plugging in Eq. (B:17)),

Uy <2M exp <_ (Rmm ) m/s;)

moe ] (3R 4 minfd 00} (B2 4 DY o (B R+ min{d, M)
(] & ) (s ))

<2M (2Rpmax + min{d, M})? exp <— (Rmm > v/min{d, M} /8)

The max will always be achieved at the first term as min{d, M} > 1. Similarly, with the same
rotation, for U;, 7 # 1,

Ui < sup [|Ewy (X5 p")wi(X; p*) (X — i) (X = 1) lop + all By (X5 " )wi (X p*) (X — )|

By Lemma when Ry, = Q(y/min{d, M }), we have
Ui <exp ( <Rmm ) v/min{d, M} /8)

op

<max {(1 + 2k) @Rmax + min{d, M}) : M(RZ,. + )} +2Ma (ngx + min{d, M}))
N R = [y
: (max{(l +2k),2M} (3 max + min{d, M}) + 2Ma)

<exp (— (Rmm ) \/Wm) < Ruax + min{d, M}>2 -max{3M, M + 2x + 1}

<M (2k +4) <3Rmax + min{d, M})2exp <— (Rmm > mﬁ)

11



The second inequality is because R2, + 1 < (%Rmax + min{d, M })2 and the third inequality is

‘Eecause 2a < 2 Ryax + min{d, M}. Taking back to Eq. (B-I6), and summing over i € [M], we
ave

IV Q") = Vg ()|

2 M
<M (2 + 4) (2B + min{d, M})? exp ( (R‘; - ) Vmin{d M}/s) S it — i
=1

This completes the proof. O

B.2 Proof of Theorem /[

Proof of Theorem[l) By Theorem [] and Theorem [3] it suffices to check v < mpmin. Solving the
inequality we have

- Puin 2V2 <M2(2/€ + 4)(2Rumax + min{d, M})2)

a — 0
-2 v/min{d, M} 5

Combined with the condition in Theorem 4] we have
min 2V/2 (M2(2/<a + 4)(2Rumax + min{d, M})2)
a < — max log ,
2 \4/ min{d, M} Tmin
/min{d, M} max(4y/2[log(Rumin /4] 1, 8\/5)}

:R;in — /min{d, M}o(Ruin)

because

M2
max C\/log(c1 "o log (2Rmax + min{d, M}), /min{d, M} max{co/log(Rmin/4)+,8V3}

Tmin

min

min

M2
< max C\/log(61 . o Rmax + csmin{d, M}), ¢ /min{d, M} \/1og( Ryax + €)

min

o [ i)

The condition in Theorem [ can be rewritten as

) 2
a < % — +/min{d, M}O <\/log (max {]\M, Riyax, min{d, M]’}))
Vis

min

C Proofs for sample-based gradient EM

In this section we develop the error bound for sample-based gradient EM. Our proof is based on the
Rademacher complexity theory and some new tools for contraction result. In [5], Maurer has the
following contraction result for the complexity defined over countable sets.

Lemma C.1 (Theorem 3 [3]]). Let X be nontrivial, symmetric and sub-gaussian. Then there exists
a constant C < oo, depending only on the distribution of X, such that for any countable set S and
functionh; : S =R, f; : S — R¥, i € [n] satisfying Vs, s' € S, |hi(s)—hi(s")| < L|| f(s)—f(s")]].

If €;1, is an independent doubly indexed Rademacher sequence, we have,

EsupZeihi(s) < EV2L s;llpz:el-;ﬁ)”l-(s);€7
sES i SES ik

where [;(s) is the k-th component of f;(s).

12



We prove Lemma 3| by generalizing this result to any subset of separable Banach space.

Proof of Lemma[3] First note that a subset of a separable subspace is separable, and has a dense
countable subset; lets call this Sy. Now note that if the Lipschitz condition holds for s, s’ € S, then
it also holds for s, s € 8. Now applying Lemma|C.1] we see that

E sup ZEZ i <E\fL sup Zézkfz

s€So i s€So ik

All we need to prove is that the two supremas over Sy on the LHS and RHS of the above equation
can be replaced by supremum over S. We will only show this for the LHS. The argument for the
RHS is identical. In order to show this, we need to also make sure that g(s) := > . €;h;(s) over S
is measurable. We show this using standard tools from measure theory.

‘We want to show that:

sup g(s) = sup g(s). (C.1)
seS s€So
Since g(s) is continuous, its also measurable for all s € S. The above statement, once proven,
essentially implies that the sup over S is the same as the sup over a countable set Sy. Since pointwise
sup over measurable functions is measurable, we are done. We now prove Eq. (CI). It is clear that,
SUPges 9(5) > supes, 9(s). So all we need is to prove that for all € > 0.

sup g(s) < sup g(s) + € (C2)
seS s€Sy

Since g(s) is continuous, let D1 (s) = {s’ € S : |g(s) — g(s’)| < €}. Furthermore, since Sy is dense
in S, we also have Dy(s,¢€) := D1(s) NSy # ¢. So foreach s € S, and € > 0, Is' € Sy (to be
precise, s’ € Da(s,€)) such that g(s) < g(s’) + e. Taking a sup over the LHS over S and a sup of
RHS over Sy, we get Eq. (C.2). This completes the proof. O

Proof of Proposition[l] For any unit vector u, the Rademacher complexity of F is

Ry (F) =ExE, sup — Zezwl (Xi; p)(Xi — p1, )

pneA N
(C.3)
<ExE. sup — Z€1w1 XZ7H’)<XHU>+EX}E Sup — Z€7w1 lep’)<u15 >
pncA pucA
(D) ()

R]\/Id

We bound the two terms separately. Define n; (u) : — RM to be a vector valued function with

the k-th coordinate

2 2
Yy
sl = 1= P s ) 10 ()

2
We claim
w1 (X5 ) — wi (X5 )] < W 5 (he) = 3 ()| (C4)
This vectorized Lipschitz condition simply follows from the fact that
w1 (X, p) = i .
14> g exp([n; ()]k)
Owy (X, ) _ exp([n; (1)]k) <L

Ol (1+ 0L, exp(fny (w)k))? ~ 4

so w1 (X, p) is $-Lipschitz continuous w.r.t. [n;(p)]5.. By Lemma wi (X, p)is @ Lipschitz
w.rt n;(p). Now let ¢, (p) = w1 (X5 p) (X, u

13



With Lipschitz property (C.4) and by Lemma|C.T] we have

n M
1 1 VoM
E |sup — E ejwi (X p)(Xj,u)| <E|—sup E E €i[n; ()]k (Xj,u)
neA TSy " ped T ko 4

\/iM% n M 2 2 T
=E sup > Y ek M—MJMXJ‘,M—HDJFIO%(;T) (Xj,u)

i 4dn neh 1 2 2
VAN S (el el Cs
B | e | g - T +los () | (X w (€5

j=1k=1
(D.1)
+E | = sup » > € (X, e — 1) (X, u)
T e
(D.2)

To bound (D.1), note that the sum over k = 1, --- , M can be considered as an inner product of two

vectors in R*. The supremum of ||| can be bounded as max,cp [t ]| < ||phaxll + @ < 3 Rinax-

2 2 T n
- HIL21H _HHQlH +log(%) %Zj:1€j1<Xj7u>

(D.1) = 1 Sup : :
pEA n
HN21H2 _ ||I—Ué4|\2 _i_log(%) %Zj:l GjM<Xj7’U,>
5 2 61X, w)
<cM(9RZ,. /4 +log(k))E : (C.6)

& 2 € (X, u)

By Lemmal[A.6] and ||u|| = 1, we know (X, u) is sub-Gaussian with parameter upper bounded by
1 + Rpax- So each element of the vector in Equation @] is the average of n independent mean 0
sub-Gaussian random variables with sub-gaussian norm upper bounded by 1 + R,,.x (since w.l.o.g
we have assumed that o = 1 and max; ||p|| < Rmax, by Lemma[A.7). Consequently, Vk € [M],

E|L Z;;l €k X, u1>’ < ¢(1 4 Rmax)/+/n for some global constant ¢ [7]], and

n

< eMP?(1 4 Rupax)® max{1,log(r)} !

(D.1) < eM¥2(OR2, . /4 +10g(k)) (1 + Runa) N

1
vn
On the other hand, for (D.2), we have

(D.2) =E an Sup €k (X5, e — ) (X5, w)
T e
M n
2M
=E sup Z(u’k *p‘l)T ZijX]XJ U
" oneAl T j=1

(C.7)

n

M
VAN L
<D B | sup e — | = D e XX
nEA n

=1

op
M TM 1 n .
gZTHI’/maX”E EZijXij
k=1 j=1 op

For each k € [M], the operator norm ||1 > i €jX; X ||op can be bounded by the same dis-
cretization technique with the 1/2-covering of the unit sphere. To be specific, since for any matrix

14



A, [[Allop = supyesa-r [ Aul,
1
Vu, Juj 5.t [|Aul| < A + [[Allop u — ujl| < max || Aus]| + 5l Aflop

Taking sup,cga—1 on the left side, we get [|All,, <  2max; ||Au;||. Therefore

H%Z;Z:l €k Xi X[ lop < Qman%Z;;l €jx{X;,ur)?. The square of sub-gaussian random
variable (X, up) is sub-exponential, from Lemma 5.14 in [7] we know

1 & cat? (14 Rpax)?

E — X u)it] | < -

exp n;€jk< D) _exp( -
With the 1/2-covering number of S¢~! bounded by exp(2d), we have

1O t2(1 + Runax)*
E [exp t«||ﬁZeijijT||op <exp (2d+c5(+R))

; n
J=1
Hence,
1< 1 1
E gZeﬁkaXjT =~ log | exp | (E Ezejkxjxf , Vt>0
j=1 op j=1 op
1 1 n
T
S;log E |exp |t ﬁZeijij
Jj=1 op
S27d n ct(1 + Rupax)?
n
Takingtzc%,

1 & d
E|||= X XT < \/>1 Riax)?
n;GJk Y =¢ n( + )

op
Plugging back to Eq. (C.7), and use sup, ¢ [|pe]| < supy, [[py| +a < 3 Rinax, we have
cM (1 + Rmax)?Vd

vn

(D.2) <

Plugging the bound back to Eq. (C.3)), we have
(D) < eM3/%(1 + Rmax)‘g\/amax{l, log(k)}
< G
Apply Lemma|C.1]on the (E) term in Eq. (C:3), we have

1 n
(E) =E |sup — Zejwi(Xj;u)<m7u>
ueAnjzl
<E-V2Msu zn:ie M,MJFQ(. — )+ log(TEY ) (i, )
< in “’e{;jzlkzl ik 5 B jr Mk — K1 g o Hi,
VZM N 2 17—t
<——E. — j - log — i
=7 iléﬁnz; 2R s (k)
J=1k=1
E.1
NGYi 1 X
+ = Exe |sup DX, ke — ) (i, u)
neA M T




We will now bound (E.1) and (E.2).

o< Y,

V2M

< ¢M Rypax(

< — Rmax]Es
4

ap L3S, (el el
J
pneA =1 k=1 2 2
2 2
HH21H _ HIL21H +10g(%)
sup :
pnEA
H#21\|2 _ HN151H2 +10g(7;71\14)
%E;:l €51
9R2 /4 +logk)E :

1 n
% Die1 €M

HEA

Tk
log )
1
T

sup(pei, u)

&2 €

1 n
7 21 €M

(C.8)

Note that each element of the vector in Equation [C.§]is the average of n i.i.d mean 0 Radamacher
random variables, which are essentially sub-gaussian radnom variables with subgaussian norm upper

bounded by 1. Consequently, Vk € [M

and

L E

(E1) < M32Rya (R, /4 +log k)/\/n

As for (E.2), we have

(E.2)

| /\

\ /\

< QIEX6 sup ZZGJ]C

_] 1k=1
M
3V2M
S RmaxEX e | sup Z Nk - Hl)
HEA LT
max Sup(p‘k - ll'l
neEA

max Z EX €

1 n
2
j=1

iy g — 1) sup (g, u)
pneA

n

1
-~ > X

Jj=1

2%

LY k’ < ¢ /y/n for some global constant c [7],

(C.9)

In Eq (C9), the vector X Z?Zl €;1X; is the average of n independent mean zero isotropic subgaus-
sian random vectors. Another using of the discretizing technique along with the moment generating

function with ¢ > 0 gives:

1 n
o 2 X
j=1

n

1
E t|— .¢
exp n;egk j

n

1
-~ > e X;

J=1

E

< ZE exp 2%2@;6
)

Zeﬂk

< 2max

n

j=1

¢/ (14 Rimax) *t?
< " +2d+ f
- t

Taking ¢t = Ovnd/(1 4+ Rmax),

(E.2) < cM3?R?

Thus, combing (E.1) and (E.2) we get:

(B) <

< exp (2d +

m'lx(l + Rlnax)ﬂ/\/ﬁ

cM3/2(1 + Rpay)® max{1,log(r)}vd

- Vi
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The final bound follows by combining (D) and (E):

R, (F) < eM3/2(1 + Rpay)?Vdmax{1,log(x)}
T Vi

For proving Lemma 2] we first recall the following symmetrization lemma in learning theory.

Lemma C.2 (See e.g. [6]). Let F be a function class with domain X. Let { X1, X2, -+ , X, } be a
set of sample generated by a distribution P on X. Assume o; are i.i.d. Rademacher variables, then

(sup f——Zf ><2Rn<f)

fer

Here R, (F) =E [supfef |3 0 f(X:)] is the Rademacher complexity.

Proof of Lemmal[2] Consider for some r > 0, the set in which X lies in the r-ball of its correspond-
ing center. If Z; denotes the hidden cluster assignment of X;, we denote y% ={Xy, -, Xy :

1Xs = pz || <}
Ve={X1,... X0 | Xi —pui || <7, Vi€ 0]} =N Y)
By Lemma |A.5|and union bound, for r = Q(+/d),

PX Y, < Z (X e yl ¢) < cnexp (_r\/3> . (C.10)

Let m, := E[g(X)|X € ),], we want to show m,. is close to E[g(X)] and is close to g(X) with
high probability.

Let X and X’ be two samples which only differ on one data-point, then

g(X)—g(X’)—SIépA <nzw1 Xis w){(Xi — pa,u) — Exwl(X;u)<X—u1>U>>

n

1
Taeln > wi (X[ ) (X] = pa,u) — Exwy (X3 p) (X — mm))
ne i=1

Assume fi be the maximizer for the supremum of X, then

%)~ 9(X) L 103 0 (X0 0) X, — i) — B (X3 )X — )

=1

1 — . _ _
*Z wi (X5 @) (X] = fr, u) — By (X5 @) (X' = fig, u))

3

1 N N - -
:Ew1(Xi;M)<X¢ — fuy,u) — wi (XG5 @) (X7 — f,u)

where (i) is by definition of supremum. The inequality holds when we change the order of X and
X', hence for X, X' € ),

190) — g(X')| < - (X ) (X: — i, ) — s (X ) (X7 — o, )

2
<= sup  Jwi (X p)(Xi — p,u))
N ped, Xey,

2
<— sup (| X — py, || + Rmax)
N Xey,

(’I" + Rmax)

n

< =L
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By Theorem|[6] we have

P(g(X) — m, > ¢) <p+ exp (_2<6—an>i)

nL?

—nlL - —evdr)?
<cinexp(—cVdr) + exp (_2(6 nL - cynexp( cfr))+>

nlL?

= cnexp(—eVdr) + exp (
N —

P

cin(e — con(r + Ruax) exp(—cvdr))2
(7" + Rmax)2

Py
(C.11

Let r = O((1 + Rumax) log?(n)v/d) and € = ¢o(1 + Rmax)dlog®?(n)/\/n. Since, for large n,
n(r + Rmax) exp(—cr\/g) < ¢a(1 + Rumax) exp(logn + loglogn — clog? n) = o((1 + Rmax)/Vn)

for some constant co, which yields for large n, (€ — con(r + Rmax) exp(—crv/d)); > ¢/2. Finally,
for large n, we can have the following bounds on P; and Ps.

P =0 (exp(logn — ¢(1 + Ruax)*(log n)z)) =0 (exp(—c’(l + Ruax)?dlog n))

2
P, <exp (— cne ) = O (exp(—c"dlogn)) (C.12)

d(log2 n(l + Rmax))?

where ¢, ¢/, ¢ are some global constants. The last line uses the fact 7 + Rpa = O(Vd(1 +
Rmax) 10g2 n)

Now we bound the difference between Eg(X) and the conditional expectation m,. By the total
expectation theorem,

Eg(X) =m, P(X € V) + E[g(X)L(X & Vr)]

Elg(X)](P (X €Vy)+ PXE ) =mP(X €Y,)+E[g(X)UX & )r)]
(X
r)

Elg(X)1(X € ),)] — E X,

B(X) — m,  EICOIX ¢ 0] - Elp(X)|P(X ¢ Y, .
PXe)

plEg(X)| + [E[g(X)1(X & V)]

L=p

p is defined in Eq (C.I0). Note that by Proposition [T} and the symmetrization result Lemma [C.2]

Eg(X) < 2R, (F) < en™'2M3Vd(1 + Rpax)® max{1,log(x)}. On the other hand, as g(X) is

the sup over a class of quantity, which is centered at zero. So g(X) > 0. We also have 1(X €

U:()%) € 30, 1(X € (V1)°). Henee,

E[g(X)1(X ¢ V,)] = E[g(X) Y UX € (V}))] < Z]E 1(X € (V1))

i=1

= |m, — Eg(X)| <

Note for each sample X; and p, |sup,,en w1 (Xi; p)(X; — pru)| < sup,en w1 (Xi; )| X —
*i _ l‘l’1|| < ||X,L — I'L*Z1|| + 2Rmax' Thus,

lg( \—Isup Zwl X5 ) (X — p,u) — Exwr (X5 p)(X — pa, )|

IA
Si=
M:

(1% = w2, || + 2Rmax) + Ex[|X — pf || + 2Rmax

<.
Il
—

IA
S
NE

1X5 = 17, [+ Ex [|X — pu7 [l + 4 Rinax

<.
Il
—
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Therefore we have,

BlOLK # )] < DBl 301 = i 1+ BxlX = |+ 4R (X € (7))

I N

Z 1% = nz, 11X € )N + Ex X = pZ ||+ 4Rmax) P(X € (V7)°)]

I N

2 Exl
> - Z 11X, — i, 10X € (V5))] + € (Runa + Dl

(C.14)

where the last inequality follows from Lemma[A2] Note that when j # i, the expectation factors
due to independence of the sample points and by Lemmal[A.3]

* [AYe * * _rvd
Ex[[1X; = pz, 11X € (V7)) = Ex; X5 — piz, |l - P(|Xi = pz,[| = 7) < ede™ 2
When j = 4, from Lemma[A:4]

) 0 ) d/2
(1, — pi, 10K € O Sen |~ 07104 B+ (0?20 s
v=r 5

<cidexp (_7‘\/&)

2
Putting back to Eq. (C.14), we have

Elg(X)1(X & V)] <cindexp (_7"2> + cod exp (_7‘\2/3> + c3n(Ruax + d) exp <_7d\2/3>

<cen(Rpax + d) exp (_7‘\5&)

Following from Eq. (C.13), we have
cin exp(—%\/g)Rn(]:) + can(Rmax + d) exp(— 5V d)
1 — csnexp(—cyrv/d)

Recall that we take r = O(vd(1l + Ruax)log®n), for large enough n, we have 1 —
csnexp(—crv/d) > 1/2, and ne=ervVd < C/n. Finally for the second part of the numerator in

Eq. (C:I3) we have:
n(Rmax + d) exp(f\/c?r/Q) < (Rmax + 1) exp(logn + logd — ©(d(1 + Rmax) log2 n))
S C/(Rmax + 1)/\/5

Im, —Eg(X)| < (C.15)

Eq (C13) becomes,
my < 2R (F)(1+ 0(1/n)) + O((Rmax +1)/vn) (C.16)

Thus using Eqs (C.11), (C:12) and (C.16) the final bound becomes:

P(g(X) < 2R (F)(1 4 O(1/n)) + O((Rumax + 1)/vn) + (1 + Runax)dy/log’ n/n)
>1-P - P
>1 — cexp (—¢' min((1 + Ryax)’dlogn, dlogn)) > 1 — exp (—cdlogn)

Finally we have,

P(g(X) = O(max{ Ry, (F), (1 + Ruax)dlog®*(n) /v/n})) = 1 — exp (—cdlogn)
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Proof of Theorem[5] Denote Z; = sup ¢, HG(i)(u) - Ggf)(u)H where

%w1(§7ﬂ)(§ — M)
Glu) = wa( ,H?( — p2)

B (X; 1) (X — ps)

Assume S?~! is d-dimensional unit sphere. Recall the definition g}'(X) = sup,,c REeAME

GW (1), u) = suppep £ Y00 wi (Xis ) (X — pr,u) — By (X5 ) (X — g, u). Then Z; =
sup,esa—1 gy (X). Without loss of generality, we assume 7 = 1, the proof for other clusters follows
similarly. Let {u, u® ... 4(F)}bea %-covering of the unit sphere S?~!, then Vv € S%~1 35 €
(K], s.t. |[v—u@|| < 1. Hence we have

)

v e v G (x o .
(X)) < gt (X) + gl (X) —gp )ISm?xgl +21vau(”H

As aresult, Z; < 2max;j—1,... g g}‘(j) (X). Therefore it is sufficient to bound g(X) for a fixed
ul) € §41. By Lemma covering number K < exp(2d).

By Lemma|2| we have with probability at least 1 — exp (—cdlogn), g7 = O(max{R,,(F}{), (1 +
Ruax)d//n}). Plugging in the Rademacher complexity from Proposition |1} and applying union
bound, we have

Zy <2max gy? < O(max{n~2M3(1 4+ Rupax)>Vdmax{1,log(x)}, (1 + Rmax)d/\/n})
J
with probability at least 1 — exp (2d — cdlogn) =1 — exp (—c'dlog n). O

Proof of Theorem 2] We show the result by induction. When ¢ = 1,
[t = ], = [|Gu(n®) — || < [|G(1®) — p* || + || G (1®) — G(1O) |
S C ||M0 _ ""*H + 6unif(n)

If ||t — pf|| < aand €™f(n) < (1—()a, we have Huﬁ“ —
region for V¢ > 0.

’ < a. So ! lies in the contraction

Then iteratively we get
Hut _ M*H < < ||ut71 _ H*H + 6unif(n)
t—1
< Ct ||/l’0 _ ll’*H + Z Cieunif(n)
i=0

1 e
+ - CEunn‘(n)

with probability at least 1 — 4. O

< CHp® - p

D Initialization

This section provides the number of initializations needed for the condition in Theorem T}

Proposition D.1. Let m; = ﬁ,Vi € [M], Rpin = Q(\/a) and let a satisfy the conditions in

V2rM \1-e—avd/2
good initialization is greater than 1 — 0.

M
Theorem Then with 1264/ ( - ) initializations, the probability of having at least one

The proof follows directly from some combinatorial arguments and Lemma
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Proof of Proposition|D.1} Define event E;nit(a) = {u) € B,:(a), Vi € [M]}. By equal weights
assumption, the probability of randomly sampled M points having exactly one from each cluster is
% By Sterling’s formula, we have M! > /27 M e~ M For each center, by Lemma we have

the probability of it lying in B+ (a) is no less than 1 — e~aV4/2 Hence

1 — e—avd/2 M
e =P

P(ginit(a)) > \/W <

Now assume the number of initializations is 7', in order to satisfy the required property, we need
(1 — P(&init(a)))T < 8. A sufficient condition is

1o 1os(1/0)
log (1 —p)
Note that log(1 — z) > —z,V0 < z < 0.5. Since p < .5 for M > 2, we see that as long as
M
T> 1%) (1_62 el 2) , with probability 1 — ¢ we will have a good initialization. O

Remark D.1. Perhaps not so surprisingly, the above theorem requires a stronger separation

condition, i.e. Ry, = Q(\/a) whereas all our analysis requires Ry, = Q(v/dy) where
do = min(d, M) can be thought of as effective dimension. This difficulty can be alleviated by
using projections schemes similar to those in [\I| 4|]. We leave this for future work.
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