
Appendix
A Related Work

Machine learning for combinatorial optimization. Reinforcement learning is used to solve a job-
shop flow scheduling problem in [38]. Boyan and Moore [7] use regression to learn good restart rules
for local search algorithms. Both of these methods require hand-designed, problem-specific features,
a limitation with the learned graph embedding.

Machine learning for branch-and-bound. Learning to search in branch-and-bound is another
related research thread. This thread includes machine learning methods for branching [26, 22], tree
node selection [16, 34], and heuristic selection [35, 23]. In comparison, our work promotes an even
tighter integration of learning and optimization.

Deep learning for continuous optimization. In continuous optimization, methods have been pro-
posed for learning an update rule for gradient descent [2, 27] and solving black-box optimization
problems [8]; these are very interesting ideas that highlight the possibilities for better algorithm
design through learning.

B Set Covering Problem

We also applied our framework to the classical Set Covering Problem (SCP). SCP is interesting
because it is not a graph problem, but can be formulated as one. Our framework is capable of
addressing such problems seamlessly, as we will show in the coming sections of the appendix which
detail the performance of S2V-DQN as compared to other methods.

Set Covering Problem (SCP): Given a bipartite graph G with node set V := U [C, find a subset of
nodes S ✓ C such that every node in U is covered, i.e. u 2 U , 9s 2 S s.t. (u, s) 2 E, and |S| is
minimized. Note that an edge (u, s), u 2 U , s 2 C, exists whenever subset s includes element u.

Meta-algorithm: Same as MVC; the termination criterion checks whether all nodes in U have been
covered.

RL formulation: In SCP, the state is a function of the subset of nodes of C selected so far; an action
is to add node of C to the partial solution; the reward is -1; the termination criterion is met when all
nodes of U are covered; no helper function is needed.

Baselines for SCP: We include Greedy, which iteratively selects the node of C that is not in the
current partial solution and that has the most uncovered neighbors in U [25]. We also used LP,
another O(log |U|)-approximation that solves a linear programming relaxation of SCP, and rounds
the resulting fractional solution in decreasing order of variable values (SortLP-1 in [31]).

C Experimental Results on Realistic Data

In this section, we show results on realistic nstances for all four problems. In particular, for MVC
and SCP, we used the MemeTracker graph to formulate network diffusion optimization problems.
For MAXCUT and TSP, we used benchmark instances that arise in physics and transportation,
respectively.

C.1 Minimum Vertex Cover

As mentioned in the introduction, the MVC problem is related to the efficient spreading of information
in networks, where one wants to cover as few nodes as possible such that all nodes have at least
one neighbor in the cover. The MemeTracker graph 5 is a network of who-copies-whom, where
nodes represent news sites or blogs, and a (directed) edge from u to v means that v frequently copies
phrases (or memes) from u. The network is learned from real traces in [13], having 960 nodes and
5000 edges. The dataset also provides the average transmission time �u,v between a pair of nodes,
i.e. how much later v copies u’s phrases after their publication online, on average. As done in [21],

5
http://snap.stanford.edu/netinf/#data

12

we use these average transmission times to compute a diffusion probability P (u, v) on the edge, such

that P (u, v) = ↵ · 1

�u,v

, where ↵ is a parameter of the diffusion model. In both MVC and SCP,

we use ↵ = 0.1, but results are consistent for other values we have considered. For pairs of nodes
that have edges in both directions, i.e. (u, v) and (v, u), we take the average probability to obtain an
undirected version of the graph, as MVC is defined for undirected graphs.

Following the widely-adopted Independent Cascade model (see [10] for example), we sample a
diffusion cascade from the full graph by independently keeping an edge with probability P (u, v). We
then consider the largest connected component in the graph as a single training instance, and train
S2V-DQN on a set of such sampled diffusion graphs. The aim is to test the learned model on the
(undirected version of the) full MemeTracker graph.

Experimentally, an optimal cover has 473 nodes, whereas S2V-DQN finds a cover with 474 nodes,
only one more than the optimum, at an approximation ratio of 1.002. In comparison, MVCApprox
and MVCApprox-Greedy find much larger covers with 666 and 578 nodes, at approximation ratios
of 1.408 and 1.222, respectively.

C.2 Maximum Cut

A library of Maximum Cut instances is publicly available 6, and includes synthetic and realistic
instances that are widely used in the optimization community (see references at library website). We
perform experiments on a subset of the instances available, namely ten problems from Ising spin
glass models in physics, given that they are realistic and manageable in size (the first 10 instances in
Set2 of the library). All ten instances have 125 nodes and 375 edges, with edge weights in {�1, 0, 1}.

To train our S2V-DQN model, we constructed a training dataset by perturbing the instances, adding
random Gaussian noise with mean 0 and standard deviation 0.01 to the edge weights. After training,
the learned model is used to construct a cut-set greedily on each of the ten instances, as before.

Table C.1 shows that S2V-DQN finds near-optimal solutions (optimal in 3/10 instances) that are much
better than those found by competing methods.

Table C.1: MAXCUT results on the ten instances described in C.2; values reported are cut weights of
the solution returned by each method, where larger values are better (best in bold). Bottom row is the
average approximation ratio (lower is better).

Instance OPT S2V-DQN MaxcutApprox SDP
G54100 110 108 80 54
G54200 112 108 90 58
G54300 106 104 86 60
G54400 114 108 96 56
G54500 112 112 94 56
G54600 110 110 88 66
G54700 112 108 88 60
G54800 108 108 76 54
G54900 110 108 88 68
G5410000 112 108 80 54

Approx. ratio 1 1.02 1.28 1.90

C.3 Traveling Salesman Problem

We use the standard TSPLIB library [32] which is publicly available 7. We target 38 TSPLIB instances
with sizes ranging from 51 to 318 cities (or nodes). We do not tackle larger instances as we are
limited by the memory of a single graphics card. Nevertheless, most of the instances addressed here
are larger than the largest instance used in [6].

6
http://www.optsicom.es/maxcut/#instances

7
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

13

We apply S2V-DQN in “Active Search" mode, similarly to [6]: no upfront training phase is required,
and the reinforcement learning algorithm 1 is applied on-the-fly on each instance. The best tour
encountered over the episodes of the RL algorithm is stored.

Table C.2 shows the results of our method and six other TSP algorithms. On all but 6 instances,
S2V-DQN finds the best tour among all methods. The average approximation ratio of S2V-DQN is
also the smallest at 1.05.

Table C.2: TSPLIB results: Instances are sorted by increasing size, with the number at the end of an
instance’s name indicating its size. Values reported are the cost of the tour found by each method
(lower is better, best in bold). Bottom row is the average approximation ratio (lower is better).

Instance OPT S2V-DQN Farthest 2-opt Cheapest Christofides Closest Nearest MST

eil51 426 439 467 446 494 527 488 511 614
berlin52 7,542 7,542 8,307 7,788 9,013 8,822 9,004 8,980 10,402
st70 675 696 712 753 776 836 814 801 858
eil76 538 564 583 591 607 646 615 705 743
pr76 108,159 108,446 119,692 115,460 125,935 137,258 128,381 153,462 133,471
rat99 1,211 1,280 1,314 1,390 1,473 1,399 1,465 1,558 1,665
kroA100 21,282 21,897 23,356 22,876 24,309 26,578 25,787 26,854 30,516
kroB100 22,141 22,692 23,222 23,496 25,582 25,714 26,875 29,158 28,807
kroC100 20,749 21,074 21,699 23,445 25,264 24,582 25,640 26,327 27,636
kroD100 21,294 22,102 22,034 23,967 25,204 27,863 25,213 26,947 28,599
kroE100 22,068 22,913 23,516 22,800 25,900 27,452 27,313 27,585 30,979
rd100 7,910 8,159 8,944 8,757 8,980 10,002 9,485 9,938 10,467
eil101 629 659 673 702 693 728 720 817 847
lin105 14,379 15,023 15,193 15,536 16,930 16,568 18,592 20,356 21,167
pr107 44,303 45,113 45,905 47,058 52,816 49,192 52,765 48,521 55,956
pr124 59,030 61,623 65,945 64,765 65,316 64,591 68,178 69,297 82,761
bier127 118,282 121,576 129,495 128,103 141,354 135,134 145,516 129,333 153,658
ch130 6,110 6,270 6,498 6,470 7,279 7,367 7,434 7,578 8,280
pr136 96,772 99,474 105,361 110,531 109,586 116,069 105,778 120,769 142,438
pr144 58,537 59,436 61,974 60,321 73,032 74,684 73,613 61,652 77,704
ch150 6,528 6,985 7,210 7,232 7,995 7,641 7,914 8,191 9,203
kroA150 26,524 27,888 28,658 29,666 29,963 32,631 31,341 33,612 38,763
kroB150 26,130 27,209 27,404 29,517 31,589 33,260 31,616 32,825 35,289
pr152 73,682 75,283 75,396 77,206 88,531 82,118 86,915 85,699 90,292
u159 42,080 45,433 46,789 47,664 49,986 48,908 52,009 53,641 54,399
rat195 2,323 2,581 2,609 2,605 2,806 2,906 2,935 2,753 3,163
d198 15,780 16,453 16,138 16,596 17,632 19,002 17,975 18,805 19,339
kroA200 29,368 30,965 31,949 32,760 35,340 37,487 36,025 35,794 40,234
kroB200 29,437 31,692 31,522 33,107 35,412 34,490 36,532 36,976 40,615
ts225 126,643 136,302 140,626 138,101 160,014 145,283 151,887 152,493 188,008
tsp225 3,916 4,154 4,280 4,278 4,470 4,733 4,780 4,749 5,344
pr226 80,369 81,873 84,130 89,262 91,023 98,101 100,118 94,389 114,373
gil262 2,378 2,537 2,623 2,597 2,800 2,963 2,908 3,211 3,336
pr264 49,135 52,364 54,462 54,547 57,602 55,955 65,819 58,635 66,400
a280 2,579 2,867 3,001 2,914 3,128 3,125 2,953 3,302 3,492
pr299 48,191 51,895 51,903 54,914 58,127 58,660 59,740 61,243 65,617
lin318 42,029 45,375 45,918 45,263 49,440 51,484 52,353 54,019 60,939
linhp318 41,345 45,444 45,918 45,263 49,440 51,484 52,353 54,019 60,939

Approx. ratio 1 1.05 1.08 1.09 1.18 1.2 1.21 1.24 1.37

C.4 Set Covering Problem

The SCP is also related to the diffusion optimization problem on graphs; for instance, the proof
of hardness in the classical [20] paper uses SCP for the reduction. As in MVC, we leverage the
MemeTracker graph, albeit differently.

We use the same cascade model as in MVC to assign the edge probabilities, and sample graphs from
it in the same way. Let RG(u) be the set of nodes reachable from u in a sampled graph G. For every
node u in G, there are two corresponding nodes in the SCP instance, uC 2 C and uU 2 U . An edge
exists between uC 2 C and vU 2 U if and only if v 2 RG(u). In other words, each node in the
sampled graph G has a set consisting of the other nodes that it can reach in G. As such, the SCP
reduces to finding the smallest set of nodes whose union can reach all other nodes. We generate
training and testing graphs according to this same process, with ↵ = 0.1.

14

Experimentally, we test S2V-DQN and the other baseline algorithms on a set of 1000 test graphs.
S2V-DQN achieves an average approximation ratio of 1.001, only slightly behind LP, which achieves
1.0009, and well ahead of Greedy at 1.03.

D Experiment Details

D.1 Problem instance generation

D.1.1 Minimum Vertex Cover

For the Minimum Vertex Cover (MVC) problem, we generate random Erdős-Renyi (edge probability
0.15) and Barabasi-Albert (average degree 4) graphs of various sizes, and use the integer programming
solver CPLEX 12.6.1 with a time cutoff of 1 hour to compute optimal solutions for the generated
instances. When CPLEX fails to find an optimal solution, we report the best one found within the
time cutoff as “optimal". All graphs were generated using the NetworkX 8 package in Python.

D.1.2 Maximum Cut

For the Maximum Cut (MAXCUT) problem, we use the same graph generation process as in MVC,
and augment each edge with a weight drawn uniformly at random from [0, 1]. We use a quadratic
formulation of MAXCUT with CPLEX 12.6.1. and a time cutoff of 1 hour to compute optimal
solutions, and report the best solution found as “optimal".

D.1.3 Traveling Salesman Problem

For the (symmetric) 2-dimensional TSP, we use the instance generator of the 8th DIMACS Imple-
mentation Challenge 9 [18] to generate two types of Euclidean instances: “random" instances consist
of n points scattered uniformly at random in the [106, 106] square, while “clustered" instances consist
of n points that are clustered into n/100 clusters; generator details are described in page 373 of [18].

To compute optimal TSP solutions for both TSP, we use the state-of-the-art solver, Concorde 10 [3],
with a time cutoff of 1 hour.

D.1.4 Set Covering Problem

For the SCP, given a number of node n, roughly 0.2n nodes are in node-set C, and the rest in node-set
U . An edge between nodes in C and U exists with probability either 0.05 or 0.1, which can be seen
as “density" values, and commonly appear for instances used in optimization papers on SCP [5].
We guarantee that each node in U has at least 2 edges, and each node in C has at least one edge, a
standard measure for SCP instances [5]. We also use CPLEX 12.6.1. with a time cutoff of 1 hour to
compute a near-optimal or optimal solution to a SCP instance.

D.2 Full results on solution quality

Table D.1 is a complete version of Table 2 that appears in the main text.

D.3 Full results on generalization

The full generalization results can be found in Table D.1, D.2, D.3, D.4, D.5, D.6 , D.7 and D.8.

D.4 Experiment Configuration of S2V-DQN

The node/edge representations and hyperparameters used in our experiments is shown in Table D.9.
For our method, we simply tune the hyperparameters on small graphs (i.e., the graphs with less than
50 nodes), and fix them for larger graphs.

8
https://networkx.github.io/

9
http://dimacs.rutgers.edu/Challenges/TSP/

10
http://www.math.uwaterloo.ca/tsp/concorde/

15

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0032 1.0883 1.0941 1.0710 1.0484 1.0365 1.0276 1.0246 1.0111
40-50 1.0037 1.0076 1.1013 1.0991 1.0800 1.0651 1.0573 1.0299

50-100 1.0079 1.0304 1.0570 1.0532 1.0463 1.0427 1.0238
100-200 1.0102 1.0095 1.0136 1.0142 1.0125 1.0103
400-500 1.0021 1.0027 1.0057

Table D.1: S2V-DQN’s generalization on MVC problem in ER graphs.

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0016 1.0027 1.0039 1.0066 1.0093 1.0106 1.0125 1.0150 1.0491
40-50 1.0027 1.0051 1.0092 1.0130 1.0144 1.0161 1.0170 1.0228

50-100 1.0033 1.0041 1.0045 1.0040 1.0045 1.0048 1.0062
100-200 1.0016 1.0020 1.0019 1.0021 1.0026 1.0060
400-500 1.0025 1.0026 1.0030

Table D.2: S2V-DQN’s generalization on MVC problem in BA graphs.

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0034 1.0167 1.0407 1.0667 1.1067 1.1489 1.1885 1.2150 1.1488
40-50 1.0127 1.0154 1.0089 1.0198 1.0383 1.0388 1.0384 1.0534

50-100 1.0112 1.0024 1.0109 1.0467 1.0926 1.1426 1.1297
100-200 1.0005 1.0021 1.0211 1.0373 1.0612 1.2021
200-300 1.0106 1.0272 1.0487 1.0700 1.1759

Table D.3: S2V-DQN’s generalization on MAXCUT problem in ER graphs.

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0055 1.0119 1.0176 1.0276 1.0357 1.0386 1.0335 1.0411 1.0331
40-50 1.0107 1.0119 1.0139 1.0144 1.0119 1.0039 1.0085 0.9905

50-100 1.0150 1.0181 1.0202 1.0188 1.0123 1.0177 1.0038
100-200 1.0166 1.0183 1.0166 1.0104 1.0166 1.0156
200-300 1.0420 1.0394 1.0290 1.0319 1.0244

Table D.4: S2V-DQN’s generalization on MAXCUT problem in BA graphs.

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0147 1.0511 1.0702 1.0913 1.1022 1.1102 1.1124 1.1156 1.1212
40-50 1.0533 1.0701 1.0890 1.0978 1.1051 1.1583 1.1587 1.1609

50-100 1.0701 1.0871 1.0983 1.1034 1.1071 1.1101 1.1171
100-200 1.0879 1.0980 1.1024 1.1056 1.1080 1.1142
200-300 1.1049 1.1090 1.1084 1.1114 1.1179

Table D.5: S2V-DQN’s generalization on TSP in random graphs.

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0214 1.0591 1.0761 1.0958 1.0938 1.0966 1.1009 1.1012 1.1085
40-50 1.0564 1.0740 1.0939 1.0904 1.0951 1.0974 1.1014 1.1091

50-100 1.0730 1.0895 1.0869 1.0918 1.0944 1.0975 1.1065
100-200 1.1009 1.0979 1.1013 1.1059 1.1048 1.1091
200-300 1.1012 1.1049 1.1080 1.1067 1.1112

Table D.6: S2V-DQN’s generalization on TSP in clustered graphs.

16

(a) MVC ER (b) MVC BA

(c) MAXCUT ER (d) MAXCUT BA

(e) TSP random (f) TSP clustered

(g) SCP 0.1 (h) SCP 0.05

Figure D.1: Approximation ratio on 1000 test graphs. Note that on MVC, our performance is pretty
close to optimal. In this figure, training and testing graphs are generated according to the same
distribution.

D.5 Stabilizing the training of S2V-DQN

For the learning rate, we use exponential decay after a certain number of steps, where the decay factor
is fixed to 0.95. We also anneal the exploration probability ✏ from 1.0 to 0.05 in a linear way. For the
discounting factor used in MDP, we use 1.0 for MVC, MAXCUT and SCP. For TSP, we use 0.1.

We also normalize the intermediate reward by the maximum number of nodes. For Q-learning, it is
also important to disentangle the actual Q with obsolete Q̃, as mentioned in [29].

Also for TSP with insertion helper function, we find it works better with negative version of designed
reward function. This sounds counter intuitive at the beginning. However, since typically the RL

17

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0055 1.0170 1.0436 1.1757 1.3910 1.6255 1.8768 2.1339 3.0574

40-50 1.0039 1.0083 1.0241 1.0452 1.0647 1.0792 1.0858 1.0775

50-100 1.0056 1.0199 1.0382 1.0614 1.0845 1.0821 1.0620

100-200 1.0147 1.0270 1.0417 1.0588 1.0774 1.0509

200-300 1.0273 1.0415 1.0828 1.1357 1.2349

Table D.7: S2V-DQN’s generalization on SCP with edge probability 0.05.

Train
Test 15-20 40-50 50-100 100-200 200-300 300-400 400-500 500-600 1000-1200

15-20 1.0015 1.0200 1.0369 1.0795 1.1147 1.1290 1.1325 1.1255 1.0805

40-50 1.0048 1.0137 1.0453 1.0849 1.1055 1.1052 1.0958 1.0618

50-100 1.0090 1.0294 1.0771 1.1180 1.1456 1.2161 1.0946

100-200 1.0231 1.0394 1.0564 1.0702 1.0747 2.5055

200-300 1.0378 1.0517 1.0592 1.0556 1.3192

Table D.8: S2V-DQN’s generalization on SCP with edge probability 0.1.

agent will bias towards most recent rewards, flipping the sign of reward function suggests a focus
over future rewards. This is especially useful with the insertion construction. But it shows that
designing a good reward function is still challenging for learning combinatorial algorithm, which we
will investigate in our future work.

D.6 Convergence of S2V-DQN

In Figure D.2, we plot our algorithm’s convergence with respect to the held-out validation performance.
We first obtain the convergence curve for each type of problem under every graph distribution. To
visualize the convergence at the same scale, we plot the approximate ratio.

Figure D.2 shows that our algorithm converges nicely on the MVC, MAXCUT and SCP problems.
For the MVC, we use the model trained on small graphs to initialize the model for training on larger
ones. Since our model also generalizes well to problems with different sizes, the curve looks almost
flat. For TSP, where the graph is essentially fully connected, it is harder to learn a good model based
on graph structure. Nevertheless, as shown in previous section, the graph embedding can still learn
good feature representations with multiple embedding iterations.

D.7 Complete time v/s approximation ratio plots

Figure D.3 is a superset of Figure 3, including both graph types and three graph size ranges for MVC,
MAXCUT and SCP.

D.8 Additional analysis of the trade-off between time and approx. ratio

Tables D.10 and D.11 offer another perspective on the trade-off between the running time of a
heuristic and the quality of the solution it finds. We ran CPLEX for MVC and MAXCUT for 10
minutes on the 200-300 node graphs, and recorded the time and value of all the solutions found by
CPLEX within the limit; results shown next carry over to smaller graphs. Then, for a given method
M that terminates in T seconds on a graph G and returns a solution with approximation ratio R, we
asked the following 2 questions:

Problem Node tag Edge feature Embedding size p T Batch size n-step
Minimum Vertex Cover 0/1 tag N/A 64 5 128 5

Maximum Cut 0/1 tag edge length; end node tag 64 3 64 1
Traveling Salesman Problem coordinates; 0/1 tag; start/end node edge length; end node tag 64 4 64 1

Set Covering Problem 0/1 tag N/A 64 5 64 2

Table D.9: S2V-DQN’s configuration used in Experiment.

18

103 104

minibatch training

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

ap
pr

ox
 ra

tio

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-400-500

103 104 105

minibatch training

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ap
pr

ox
 ra

tio

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-400-500

(a) MVC ER (b) MVC BA

103 104 105

minibatch training

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ap
pr

ox
 ra

tio

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

103 104 105

minibatch training

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

ap
pr

ox
 ra

tio

pre-trained

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

(c) MAXCUT ER (d) MAXCUT BA

102 103 104

minibatch training

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ap
pr

ox
 ra

tio

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

102 103 104

minibatch training

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

ap
pr

ox
 ra

tio

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-200-300

(e) TSP random (f) TSP clustered

103 104 105

minibatch training

1

1.5

2

2.5

3

3.5

ap
pr

ox
 ra

tio

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-500-600

103 104 105

minibatch training

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

ap
pr

ox
 ra

tio

#node-15-20
#node-40-50
#node-50-100
#node-100-200
#node-500-600

(g) SCP 0.1 (h) SCP 0.05

Figure D.2: S2V-DQN convergence measured by the held-out validation performance.

1. If CPLEX is given the same amount of time T for G, how well can CPLEX do?

2. How long does CPLEX need to find a solution of same or better quality than the one the heuristic
has found?

19

(a) MVC ER 50-100 (b) MVC ER 100-200 (c) MVC ER 200-300

(d) MVC BA 50-100 (e) MVC BA 100-200 (f) MVC BA 200-300

(g) MAXCUT ER 50-100 (h) MAXCUT ER 100-200 (i) MAXCUT ER 200-300

(j) MAXCUT BA 50-100 (k) MAXCUT BA 100-200 (l) MAXCUT BA 200-300

(m) SCP 0.05 50-100 (n) SCP 0.05 100-200 (o) SCP 0.05 200-300

(p) SCP 0.1 50-100 (q) SCP 0.1 100-200 (r) SCP 0.1 200-300

Figure D.3: Time-approximation trade-off for MVC, MAXCUT and SCP. In this figure, each dot
represents a solution found for a single problem instance. For CPLEX, we also record the time and
quality of each solution it finds. For example, CPLEX-1st means the first feasible solution found by
CPLEX.

For the first question, the column “Approx. Ratio of Best Solution" in Tables D.10 and D.11 shows
the following:

20

– MVC (Table D.10): The larger values for S2V-DQN imply that solutions we find quickly are of
higher quality, as compared to the MVCApprox/Greedy baselines.

– MAXCUT (Table D.11): On most of the graphs, CPLEX cannot find any solution at all if
given the same time as S2V-DQN or MaxcutApprox. SDP (solved with state-of-the-art CVX
solver) is so slow that CPLEX finds solutions that are 10% better than those of SDP if given the
same time as SDP (on ER graphs), which confirms that SDP is not time-efficient. One possible
interpretation of the poor performance of SDP is that its theoretical guaranteed of 0.87 is in
expectation over the solutions it can generate, and so the variance in the approximation ratios of
these solutions may be very large.

For the second question, the column “Additional Time Needed" in Tables D.10 and D.11 shows the
following:

– MVC (Table D.10): The larger values for S2V-DQN imply that solutions we find are harder to
improve upon, as compared to the MVCApprox/Greedy baselines.

– MAXCUT (Table D.11): On ER (BA) graphs, CPLEX (10 minute-cutoff) cannot find a solution
that is better than those of S2V-DQN or MaxcutApprox on many instances (e.g. the value (59)
for S2V-DQN on ER graphs means that on 41 = 100 � 59 graphs, CPLEX could not find a
solution that is as good as S2V-DQN’s). When we consider only those graphs for which CPLEX
could find a better solution, S2V-DQN’s solutions take significantly more time for CPLEX to
beat, as compared to MaxcutApprox and SDP. The negative values for SDP indicate that CPLEX
finds a solution better than SDP’s in a shorter time.

Table D.10: Minimum Vertex Cover (100 graphs with 200-300 nodes): Trade-off between running
time and approximation ratio. An “Approx. Ratio of Best Solution" value of 1.x% means that the
solution found by CPLEX if given the same time as a certain heuristic (in the corresponding row)
is x% worse, on average. “Additional Time Needed" in seconds is the additional amount of time
needed by CPLEX to find a solution of value at least as good as the one found by a given heuristic;
negative values imply that CPLEX finds such solutions faster than the heuristic does. Larger values
are better for both metrics. The values in parantheses are the number of instances (out of 100) for
which CPLEX finds some solution in the given time (for “Approx. Ratio of Best Solution"), or finds
some solution that is at least as good as the heuristic’s (for “Additional Time Needed").

Approx. Ratio of Best Solution Additional Time Needed
ER BA ER BA

S2V-DQN 1.09 (100) 1.81 (100) 2.14 (100) 137.42 (100)

MVCApprox-Greedy 1.07 (100) 1.44 (100) 1.92 (100) 0.83 (100)

MVCApprox 1.03 (100) 1.24 (98) 2.49 (100) 0.92 (100)

Table D.11: Maximum Cut (100 graphs with 200-300 nodes): please refer to the caption of Table D.10.
Approx. Ratio of Best Solution Additional Time Needed

ER BA ER BA

S2V-DQN N/A (0) 1081.45 (1) 8.99 (59) 402.05 (34)

MaxcutApprox 1.00 (48) 340.11 (3) -0.23 (50) 218.19 (57)

SDP 0.90 (100) 0.84 (100) -6.06 (100) -5.54 (100)

D.9 Visualization of solutions

In Figure D.4, D.5 and D.6, we visualize solutions found by our algorithm for MVC, MAXCUT and
TSP problems, respectively. For the ease of presentation, we only visualize small-size graphs. For
MVC and MAXCUT, the graph is of the ER type and has 18 nodes. For TSP, we show solutions for a
“random" instance (18 points) and a “clustered" one (15 points).

21

For MVC and MAXCUT, we show two step by step examples where S2V-DQN finds the optimal
solution. For MVC, it seems we are picking the node which covers the most edges in the current state.
However, in a more detailed visualization in Appendix D.10, we show that our algorithm learns a
smarter greedy or dynamic programming like strategy. While picking the nodes, it also learns how to
keep the connectivity of graph by scarifying the intermediate edge coverage a little bit.

In the example of MAXCUT, it is even more interesting to see that the algorithm did not pick the
node which gives the largest intermediate reward at the beginning. Also in the intermediate steps,
the agent seldom chooses a node which would cancel out the edges that are already in the cut set.
This also shows the effectiveness of graph state representation, which provides useful information to
support the agent’s node selection decisions. For TSP, we visualize an optimal tour and one found by
S2V-DQN for two instances. While the tours found by S2V-DQN differ slightly from the optimal
solutions visualized, they are of comparable cost and look qualitatively acceptable. The cost of the
tours found by S2V-DQN is within 0.07% and 0.5% of optimum, respectively.

Figure D.4: Minimum Vertex Cover: an optimal solution to an ER graph instance found by S2V-DQN.
Selected node in each step is colored in orange, and nodes in the partial solution up to that iteration
are colored in black. Newly covered edges are in thick green, previously covered edges are in red,
and uncovered edges in black. We show that the agent is not only picking the node with large degree,
but also trying to maintain the connectivity after removal of the covered edges. For more detailed
analysis, please see Appendix D.10.

Figure D.5: Maximum Cut: an optimal solution to ER graph instance found by S2V-DQN. Nodes are
partitioned into two sets: white or black nodes. At each iteration, the node selected to join the set of
black nodes is highlighted in orange, and the new cut edges it produces are in green. Cut edges from
previous iteration are in red (Best viewed in color). It seems the agent will try to involve the nodes
that won’t cancel out the edges in current cut set.

D.10 Detailed visualization of learned MVC strategy

In Figure D.7, we show a detailed comparison with our learned strategy and two other simple
heuristics. We find that the S2V-DQN can learn a much smarter strategy, where the agent is trying to
maintain the connectivity of graph during node picking and edge removal.

22

Figure D.6: Traveling Salesman Problem. Left: optimal tour to a “random" instance with 18 points
(all edges are red), compared to a tour found by our method next to it. For our tour, edges that are
not in the optimal tour are shown in green. Our tour is 0.07% longer than an optimal tour. Right: a
“clustered" instance with 15 points; same color coding as left figure. Our tour is 0.5% longer than an
optimal tour. (Best viewed in color).

D.11 Experiment Configuration of PN-AC

We implemented PN-AC to the best of our capabilities. Note that it is quite possible that there
are minor differences between our implementation and Bello et al. [6] that might have resulted in
performance not as good as reported in that paper.

For experiments of PN-AC across all tasks, we follow the configurations provided in [6]: a) For the
input data, we use mini-batches of 128 sequences with 0-paddings to the maximal input length (which
is the maximal number of nodes) in the training data. b) For node representation, we use coordinates
for TSP, so the input dimension is 2. For MVC, MAXCUT and SCP, we represent nodes based on the
adjacency matrix of the graph. To get a fixed dimension representation for each node, we use SVD to
get a low-rank approximation of the adjacency matrix. We set the rank as 8, so that each node in the
input sequence is represented by a 8-dimensional vector. c) For the network structure, we use standard
single-layer LSTM cells with 128 hidden units for both encoder and decoder parts of the pointer
networks. d) For the optimization method, we train the PN-AC model with the Adam optimizer [24]
and use an initial learning rate of 10�3 that decay every 5000 steps by a factor of 0.96. e) For the
glimpse trick, we exactly use one-time glimpse in our implementation, as described in the original
PN-AC paper. f) We initialize all the model parameters uniformly random within [�0.08, 0.08] and
clip the L2 norm of the gradients to 1.0. g) For the baseline function in the actor-critic algorithm,
we tried the critic network in our implementation, but it hurts the performance according to our
experiments. So we use the exponential moving average performance of the sampled solution from
the pointer network as the baseline.

Consistency with the results from Bello et al. [6] Though our TSP experiment setting is not
exactly the same as Bello et al. [6], we still include some of the results directly here, for the sake of
completeness. We applied the insertion heuristic to PN-AC as well, and all the results reported in our
paper are with the insertion heuristic. We compare the approximation ratio reported by Bello et al.
[6] verses which reported by our implementation. For TSP20: 1.02 vs 1.03 (reported in our paper);
TSP50: 1.05 vs 1.07 (reported in our paper); TSP100: 1.07 vs 1.09 (reported in our paper). Note that
we have variable graph size in each setting (where the original PN-AC is only reported on fixed graph
size), which makes the task more difficult. Therefore, we think the performance gap here is pretty
reasonable.

23

step (0) step (1)

step (2) step (3)

step (4) step (5)

step (6) step (7)

step (8) step (9)

step (10) step (11)

Figure D.7: Step-by-step comparison between our S2V-DQN and two greedy heuristics. We can see
our algorithm will also favor the large degree nodes, but it will also do something smartly: instead of
breaking the graph into several disjoint components, our algorithm will try the best to keep the graph
connected.

24

	Introduction
	Common Formulation for Greedy Algorithms on Graphs
	Representation: Graph Embedding
	Structure2Vec
	Parameterizing Q"0362Q(h(S), v;)

	Training: Q-learning
	Reinforcement learning formulation
	Learning algorithm

	Experimental Evaluation
	Comparison of solution quality
	Generalization to larger instances
	Scalability & Trade-off between running time and approximation ratio
	Experiments on real-world datasets
	Discovery of interesting new algorithms

	Conclusions
	Related Work
	Set Covering Problem
	Experimental Results on Realistic Data
	Minimum Vertex Cover
	Maximum Cut
	Traveling Salesman Problem
	Set Covering Problem

	Experiment Details
	Problem instance generation
	Minimum Vertex Cover
	Maximum Cut
	Traveling Salesman Problem
	Set Covering Problem

	 Full results on solution quality
	Full results on generalization
	Experiment Configuration of S2V-DQN
	Stabilizing the training of S2V-DQN
	Convergence of S2V-DQN
	Complete time v/s approximation ratio plots
	Additional analysis of the trade-off between time and approx. ratio
	Visualization of solutions
	Detailed visualization of learned MVC strategy
	Experiment Configuration of PN-AC

