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Abstract

As a fundamental problem in computer vision, graph matching problem can
usually be formulated as a Quadratic Programming (QP) problem with doubly
stochastic and discrete (integer) constraints. Since it is NP-hard, approximate
algorithms are required. In this paper, we present a new algorithm, called Multi-
plicative Update Graph Matching (MPGM), that develops a multiplicative update
technique to solve the QP matching problem. MPGM has three main benefits: (1)
theoretically, MPGM solves the general QP problem with doubly stochastic con-
straint naturally whose convergence and KKT optimality are guaranteed. (2) Em-
pirically, MPGM generally returns a sparse solution and thus can also incorporate
the discrete constraint approximately. (3) It is efficient and simple to implement.
Experimental results show the benefits of MPGM algorithm.

1 Introduction

In computer vision and machine learning area, many problems of interest can be formulated by
graph matching problem. Previous approaches [3–5, 15, 16] have formulated graph matching as a
Quadratic Programming (QP) problem with both doubly stochastic and discrete constraints. Since
it is known to be NP-hard, many approximate algorithms have been developed to find approximate
solutions for this problem [8, 16, 21, 24, 20, 13].

One kind of approximate methods generally first develop a continuous problem by relaxing the dis-
crete constraint and aim to find the optimal solution for this continuous problem. After that, they
obtain the final discrete solution by using a discretization step such as Hungarian or greedy algo-
rithm [3, 15, 16]. Obviously, the discretization step of these methods is generally independent of the
matching objective optimization process which may lead to weak local optimum for the problem.
Another kind of methods aim to obtain a discrete solution for QP matching problem [16, 1, 24].
For example, Leordeanu et al. [16] proposed an iterative matching method (IPFP) which optimized
the QP matching problem in a discrete domain. Zhou et al. [24, 25] proposed an effective graph
matching method (FGM) which optimized the QP matching problem approximately using a convex-
concave relaxation technique [21] and thus returns a discrete solution for the problem. From opti-
mization aspect, the core optimization algorithm used in both IPFP [16] and FGM [24] is related to
Frank-Wolfe [9] algorithm and FGM [24, 25] further uses a path following procedure to alleviate the
local-optimum problem more carefully. The core of Frank-Wolfe [9] algorithm is to optimize the
quadratic problem by sequentially optimizing the linear approximations of QP problem. In addition
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to optimization-based methods, probabilistic methods can also be used for solving graph matching
problems [3, 19, 23].

In this paper, we propose a new algorithm, called Multiplicative Update Graph Matching (MPGM),
that develops a multiplicative update technique for the general QP problem with doubly stochas-
tic constraint. Generally, MPGM has the following three main aspects. First, MPGM solves the
general QP problem with doubly stochastic constraint directly and naturally. In MPGM algorithm,
each update step has a closed-form solution and the convergence of the algorithm is also guaranteed.
Moreover, the converged solution is guaranteed to be Karush-Kuhn-Tucker (KKT) optimality. Sec-
ond, empirically, MPGM can generate a sparse solution and thus incorporates the discrete constraint
naturally in optimization. Therefore, MPGM can obtain a local optimal discrete solution for the
QP matching problem. Third, it is efficient and simple to implement. Experimental results on both
synthetic and real-world matching tasks demonstrate the effectiveness and benefits of the proposed
MPGM algorithm.

2 Problem Formulation and Related Works

Problem Formulation. Assume G = (V,E) and G′ = (V ′, E′) are two attributed graphs to be
matched, where each node vi ∈ V or edge eik ∈ E has an attribute vector ai or rik. The aim of graph
matching problem is to establish the correct correspondences between V and V ′. For each corre-
spondence (vi, v′j), there is an affinity Sa(ai, a′j) that measures how well node vi ∈ V matches node
v′j ∈ V ′. Also, for each correspondence pair (vi, v′j) and (vk, v

′
l), there is an affinity Sr(rik, r′jl)

that measures the compatibility between node pair (vi, vk) and (v′j , v
′
l). One can define an affinity

matrix W whose diagonal term Wij,ij represents Sa(ai, a′
j), and the non-diagonal element Wij,kl

contains Sr(rik, r′jl). The one-to-one correspondences can be represented by a permutation matrix
X ∈ {0, 1}n×n, where n = |V | = |V ′|1. Here, Xij = 1 implies that node vi in G corresponds to
node v′j in G′, and Xij = 0 otherwise. In this paper, we denote x = (X11...Xn1, ...,X1n...Xnn)

T

as a column-wise vectorized replica of X. The graph matching problem is generally formulated as
a Quadratic Programming (QP) problem with doubly stochastic and discrete constraints [16, 3, 10],
i.e.,

x∗ = argmax
x

(xTWx) s.t. x ∈ P, (1)

where P is defined as,

P = {x | ∀i
∑n

j=1 xij = 1, ∀j
∑n

i=1 xij = 1, xij ∈ {0, 1}} (2)

The above QP problem is NP-hard and thus approximate relaxations are usually required. One
popular way is to relax the permutation domain P to the doubly stochastic domain D,

D = {x|∀i
∑n

j=1 xij = 1, ∀j
∑n

i=1 xij = 1, xij ≥ 0}. (3)

That is solving the following relaxed matching problem [21, 20, 10],

x∗ = argmax
x

(xTWx) s.t. x ∈ D. (4)

Since W is not necessarliy positive (or negative) semi-definite, thus this problem is generally not a
concave or convex problem.

Related Works. Many algorithms have been proposed to find a local optimal solution for the above
QP matching problem (Eq.(4)). One kind of popular methods is to use constraint relaxation and pro-
jection, such as GA [10] and RRWM [3]. Generally, they iteratively conduct the following two steps:
(a) searching for a solution by ignoring the doubly stochastic constraint temporarily; (b) Projecting
the current solution onto the desired doubly stochastic domain to obtain a feasible solution. Note
that the projection step (b) is generally independent of the optimization step (a) and thus may lead to
weak local optimum. Another kind of important methods is to use objective function approximation
and thus solves the problem approximately, such as Frank-Wolfe algorithm [9]. Frank-Wolfe aims
to optimize the above quadratic problem by sequentially solving the approximate linear problems.
This algorithm has been widely adopted in many recent matching methods [16, 24, 21], such as IPFP
[16] and FGM [24].

1Here, we focus on equal-size graph matching problem. For graphs with different sizes, one can add dummy
isolated nodes into the smaller graph and transform them to equal-size case [21, 10]
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3 Algorithm

Our aim in this paper is to develop a new algorithm to solve the general QP matching problem Eq.(4).
We call it as Multiplicative Update Graph Matching (MPGM). Formally, starting with an initial
solution vector x(0), MPGM solves the problem Eq.(4) by iteratively updating a current solution
vector x(t), t = 0, 1... as follows,

x(t+1)
kl = x(t)kl

[2(Wx(t))kl +Λ−
k + Γ−

l

Λ+
k + Γ+

l

]1/2
, (5)

where Λ+
k = (|Λk|+Λk)/2, Λ−

k = (|Λk| −Λk)/2, Γ+
k = (|Γk|+ Γk)/2, Γ−

k = (|Γk| − Γk)/2,
and the Lagrangian multipliers (Λ,Γ) are computed as,

Γ =2
(
I − X(t)TX(t)

)−1
[
diag

(
K(t)TX(t)

)
− X(t)T diag

(
K(t)X(t)T

)]
Λ =2diag

(
K(t)X(t)T

)
− X(t)Γ (6)

where K(t), X(t) are the matrix forms of vector (Wx(t)) and x(t), respectively, i.e., K(t),X(t) ∈
Rn×n and K(t)

kl = (Wx(t))kl,X(t)
kl = x(t)kl . Λ = (Λ1, · · ·Λn)

T ∈ Rn×1,Γ = (Γ1, · · ·Γn)
T ∈

Rn×1. The iteration starts with an initial x(0) and is repeated until convergence.

Complexity. The main complexity in each iteration is on computing Wx(t). Thus, the total com-
putational complexity for MPGM is less than O(MN2), where N = n2 is the length of vector x(t)
and M is the maximum iteration. Our experience is that the algorithm converges quickly and the
average maximum iteration M is generally less than 200. Theoretically, the complexity of MPGM
is the same with RRWM [3] and IPFP [16], but obviously lower than GA [10] and FGM [24].

Comparison with Related Works. Multiplicative update algorithms have been studied in solving
matching problems [6, 13, 11, 12]. Our work is significantly different from previous works in the
following aspects. Previous works [6, 13, 11] generally first develop a kind of approximation (or
relaxation) for QP matching problem by ignoring the doubly stochastic constraint, and then aim
to find the optimum of the relaxation problem by developing an algorithm. In contrast, our work
focus on the general and challengeable QP problem with doubly stochastic constraint (Eq.(4)), and
derive a simple multiplicative algorithm to solve the problem Eq.(4) directly. Note that, the proposed
algorithm is not limited to solving QP matching problem only. It can also be used in some other QP
(or general continuous objective function) problems with doubly stochastic constraint (e.g. MAP
inference, clustering) in machine learning area. In this paper, we focus on graph matching problem.

Starting Point. To alleviate the local optima and provide a feasible starting point for MPGM algo-
rithm, given an initial vector x(0), we first use the simple projection x(0) = P (Wx(0)) several times
to obtain a kind of the feasible start point for MPGM algorithm. Here P denotes the projection [22]
or normalization [20] to make x(0) satisfy the doubly stochastic constraint.

4 Theoretical Analysis

Theorem 1. Under update Eq.(5), the Lagrangian function L(x) is monotonically increasing,

L(x) = xTWx −
n∑

i=1

Λi(
n∑

j=1

xij − 1)−
n∑

j=1

Γj(
n∑

i=1

xij − 1) (7)

where Λ,Γ are Lagrangian multipliers.

Proof. To prove it, we use the auxiliary function approach [7, 14]. An auxiliary function function
Φ(x, x̃) of Lagrangian function L(x) satisfies following,

Φ(x, x) = L(x),Φ(x, x̃) ≤ L(x). (8)

Using the auxiliary function Φ(x, x̃), we define

x(t+1) = argmax
x

Φ(x, x(t)). (9)
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Then by construction of Φ(x, x̃), we have

L(x(t)) = Φ(x(t), x(t)) ≤ L(x(t+1)). (10)

This proves that L(x(t)) is monotonically increasing.

The main step in the following of the proof is to provide an appropriate auxiliary function and find
the global maximum for the auxiliary function. We rewrite Eq.(7) as

L(x) = xT Wx −
n∑

i=1

Λi(

n∑
j=1

xij − 1)−
n∑

j=1

Γj(

n∑
i=1

xij − 1)

=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Wij,klxijxkl −
n∑

i=1

Λi(

n∑
j=1

xij − 1)−
n∑

j=1

Γj(

n∑
i=1

xij − 1). (11)

We show that one auxiliary function Φ(x, x̃) of L(x) is,

Φ(x, x̃) =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

Wij,klx̃ij x̃kl

(
1 + log

xijxkl

x̃ij x̃kl

)
(12)

−
n∑

i=1

Λ+
i

[ n∑
j=1

1

2
(

x2
ij

x̃ij
+ x̃ij)− 1

]
+

n∑
i=1

Λ−
i

[ n∑
j=1

x̃ij(1 + log
xij

x̃ij
)− 1

]
−

n∑
j=1

Γ+
j

[ n∑
i=1

1

2
(

x2
ij

x̃ij
+ x̃ij)− 1

]
+

n∑
j=1

Γ−
j

[ n∑
i=1

x̃ij(1 + log
xij

x̃ij
)− 1

]
.

Using the inequality z ≥ 1+ log z and ab ≤ 1
2 (a

2+ b2)(a ≤ 1
2 (

a2

b + b)), one can prove that Eq.(12)
is a lower bound of Eq.(11). Thus, Z(x, x̃) is an auxiliary function of L(x). According to Eq.(9), we
need to find the global maximum of Φ(x, x̃) for x. The gradient is

∂Φ(x, x̃)
∂xkl

= 2(Wx̃)kl
x̃kl
xkl

−Λ+
k

xkl
x̃kl

+Λ−
k

x̃kl
xkl

− Γ+
l

xkl
x̃kl

+ Γ−
l

x̃kl
xkl

Note that, for graph matching problem, we have WT = W. Thus, the second derivative is

∂2Φ(x, x̃)
∂xkl∂xij

= −
[(
2(Wx̃)kl +Λ−

k + Γ−
l

) x̃kl

x2
kl

+
1

x̃kl
(Λ+

k + Γ+
l )

]
δkiδlj ≤ 0, (13)

Therefore, Φ(x, x̃) is a concave function in x and has a unique global maximum. It can be obtained
by setting the first derivative to zero (∂Φ(x,x̃)

∂xkl
= 0), which gives

xkl = x̃kl
[2(Wx̃)kl +Λ−

k + Γ−
l

Λ+
k + Γ+

l

]1/2
. (14)

Therefore, we obtain the update rule in Eq.(5) by setting x(t+1) = x and x(t) = x̃. �
Theorem 2. Under update Eq.(5), the converged solution x∗ is Karush-Kuhn-Tucker (KKT) optimal.

Proof. The standard Lagrangian function is

L(x) = xTWx −
n∑

i=1

Λi(
n∑

j=1

xij − 1)−
n∑

j=1

Γj(
n∑

i=1

xij − 1)−
n∑

i=1

n∑
j=1

∆ijxij (15)

Here, we use the Lagrangian function to induce KKT optimal condition. Using Eq.(15), we have
∂L(x)
∂xkl

= 2(Wx)kl − λk − µl. (16)

The corresponding KKT condition is
∂L(x)
∂xkl

= 2(Wx)kl −Λk − Γl −∆kl = 0 (17)

∂L(x)
∂Λk

= −(
∑
l

xkl − 1) = 0 (18)

∂L(x)
∂Γl

= −(
∑
k

xkl − 1) = 0 (19)

∆klxkl = 0. (20)
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This leads to the following KKT complementary slackness condition,[
2(Wx)kl −Λk − Γl

]
xkl = 0. (21)

Because
∑

l xkl = 1,
∑

k xkl = 1, summing over indexes k and l respectively, we obtain the follow-
ing two group equations,

2
n∑

l=1

xkl(Wx)kl −
n∑

l=1

Γlxkl −Λk = 0, (22)

2

n∑
k=1

xkl(Wx)kl −
n∑

k=1

Λkxkl − Γl = 0. (23)

Eqs.(22, 23) can be equivalently reformulated as the following matrix forms,

2 diag(KXT)−Λ− XΓ = 0, (24)

2 diag(KTX)− Γ− XTΛ = 0. (25)
where k = 1, 2, · · ·n, l = 1, 2, · · ·n. K, X are the matrix forms of vector (Wx) and x, respectively,
i.e., K,X ∈ Rn×n and Kkl = (Wx)kl,Xkl = xkl. Thus, we can obtain the values for Λ and Γ as,

Γ = 2(I − XTX)−1(diag(KTX)− XT diag(KXT)) (26)

Λ = 2diag(KXT)− XΓ (27)
On the other hand, from update Eq.(5), at convergence,

x∗kl = x∗kl
[2(Wx∗)kl +Λ−

k + Γ−
l

Λ+
k + Γ+

l

]1/2
(28)

Thus, we have (2(Wx∗)kl −Λk − Γl)x∗2kl = 0, which is identical to the following KKT condition,[
2(Wx∗)kl −Λk − Γl

]
x∗kl = 0. (29)

Substituting the values of Λk,Γl in Eq.(28) from Eqs.(26,27), we obtain update rule Eq.(5). �
Remark. Similar to the above analysis, we can also derive another similar update as,

x(t+1)
kl = x(t)kl

2(Wx(t))kl +Λ−
k + Γ−

l

Λ+
k + Γ+

l

. (30)

The optimality and convergence of this update are also guaranteed. We omit the further discussion
of them due to the lack of space. In real application, one can use both of these two update algorithms
(Eq.(5), Eq.(30)) to obtain better results.

5 Sparsity and Discrete Solution

One property of the proposed MPGM is that it can result in a sparse optimal solution, although the
discrete binary constraint have been dropped in MPGM optimization process. This suggests that
MPGM can search for an optimal solution nearly on the permutation domain P , i.e., the boundary
of the doubly stochastic domain D. Unfortunately, here we cannot provide a theoretical proof on the
sparsity of MPGM solution, but demonstrate it experimentally.

Figure 1 (a) shows the solution x(t) across different iterations. Note that, regardless of initialization,
as the iteration increases, the solution vector x(t) of MPGM becomes more and more sparse and
converges to a discrete binary solution. Note that, in MPGM update Eq.(5), when xtkl closes to zero,
it can keep closing to zero in the following update process because of the particular multiplicative
operation. Therefore, as the iteration increases, the solution vector xt+1 is guaranteed to be more
sparse than solution vector xt. Figure 1 (b) shows the objective and sparsity2 of the solution vector
x(t). We can observe that (1) the objective of x(t) increases and converges after some iterations,
demonstrating the convergence of MPGM algorithm. (2) The sparsity of the solution x(t) increases
and converges to the baseline, which demonstrates the ability of MPGM algorithm to maintain the
discrete constraint in the converged solution.

2Sparsity measures the percentage of zero (close-to-zero) elements in Z. Firstly, set the threshold ϵ =
0.001 × mean(Z), then renew Zij = 0 if Zij ≤ ϵ. Finally, the sparsity is defined as the percentage of zero
elements in the renewed Z.
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Figure 1: (a) Solution vector x(t) of MPGM across different iterations (top: start from uniform
solution; middle: start from SM solution; bottom: start from RRWM solution).

6 Experiments

We have applied MPGM algorithm to several matching tasks. Our method has been compared with
some other state-of-the-art methods including SM [15], IPFP [16], SMAC [5], RRWM [3] and FGM
[24]. We implemented IPFP [16] with two versions: (1) IPFP-U that is initialized by the uniform
solution; (2) IPFP-S that is initialized by SM method [15]. In experiments, we initialize our MPGM
with uniform solution and obtain similar results when initializing with SM solution.

6.1 Synthetic Data

Similar to the works [3, 24], we have randomly generated data sets of nin 2D points as inlier nodes
for G. We obtain the corresponding nodes in graph G′ by transforming the whole point set with
a random rotation and translation and then adding Gaussian noise N(0, σ) to the point positions
from graph G. In addition, we also added nout outlier nodes in both graphs respectively at random
positions. The affinity matrix W has been computed as Wij,kl = exp(−∥rik − r′jl∥2F /0.0015),
where rik is the Euclidean distance between two nodes in G and similarly for r′jl.

Figure 2 summarizes the comparison results. We can note that: (1) similar to IPFP [16] and FGM
[24] which return discrete matching solutions, MPGM always generates sparse solutions on doubly
stochastic domain. (2) MPGM returns higher objective score and accuracy than IPFP [16] and FGM
[24] methods, which demonstrate that MPGM can find the sparse solution more optimal than these
methods. (3) MPGM generally performs better than the continuous domain methods including SM
[15], SMAC [5] and RRWM [3]. Comparing with these methods, MPGM incorporates the doubly
stochastic constraint more naturally and thus finds the solution more optimal than RRWM method.
(4) MPGM generally has similar time cost with RRWM [3]. We have not shown the time cost of
FGM [24] method in Fig.2, because FGM uses a hybrid optimization method and has obviously
higher time cost than other methods.

6.2 Image Sequence Data

In this section, we perform feature matching on CMU and YORK house sequences [3, 2, 18]. For
CMU "hotel" sequence, we have matched all images spaced by 5, 10 · · · 75 and 80 frames and com-
puted the average performances per separation gap. For YORK house sequence, we have matched
all images spaced by 1, 2 · · · 8 and 9 frames and computed the average performances per separation
gap. The affinity matrix has been computed by Wij,kl = exp(−∥rik − r′jl∥2F /1000), where rik is
the Euclidean distance between two points.

Figure 3 summarizes the performance results. It is noted that MPGM outperforms the other methods
in both objective score and matching accuracy, indicating the effectiveness of MPGM method. Also,
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Figure 2: Comparison results of different methods on synthetic point sets matching

MPGM can generate sparse solutions. These are generally consistent with the results on the synthetic
data experiments and further demonstrate the benefits of MPGM algorithm.
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Figure 3: Comparison results of different methods on CMU and YORK image sequences. Top:
CMU images; Bottom: YORK images.

6.3 Real-world Image Data

In this section, we tested our method on some real-world image datasets. We evaluate our MPGM
on the dataset [17] whose images are selected from Pascal 2007 3. In this dataset, there are 30 pairs
of car images and 20 pairs of motorbike images. For each image pair, feature points and ground-
truth matches were manually marked and each pair contains 30-60 ground-truth correspondences.
The affinity between two nodes is computed as Wij,ij = exp(

−|pi−p′
j |

0.05 ), where pi is the orientation
of normal vector at the sampled point (node) i to the contour, similarly to p′j . Also, the affinity

3http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html
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Figure 4: Some examples of image matching on Pascal 2007 dataset (LEFT: original image pair,
MIDDLE: FGM result, RIGHT: MPGM result. Incorrect matches are marked by red lines)

Figure 5: Comparison results of different graph matching methods on the Pascal 2007 dataset

between two correspondences has been computed as Wij,kl = exp(
−|dik−d′

jl|
0.15 ), where dik denotes

the Euclidean distance between feature point i and k, similarly to d′jl. Some matching examples
are shown in Figure 4. To test the performance against outlier noise, we have randomly added 0-
20 outlier features for each image pair. The overall results of matching accuracy across different
outlier features are summarized in Figure 5. From Figure 5, we can note that MPGM outperforms
the other competing methods including RRWM [3] and FGM [24], which further demonstrates the
effectiveness and practicality of MPGM on conducting real-world image matching tasks.

7 Conclusions and Future work

This paper presents an effective algorithm, Multiplicative Update Graph Matching (MPGM), that de-
velops a multiplicative update technique to solve the QP matching problem with doubly stochastic
mapping constraint. The KKT optimality and convergence properties of MPGM algorithms are theo-
retically guaranteed. We show experimentally that MPGM solution is sparse and thus approximately
incorporates the discrete constraint in optimization naturally. In our future, the theoretical analysis
on the sparsity of MPGM needs to be further studied. Also, we will incorporate our MPGM in some
path-following strategy to find a more optimal solution for the matching problem. We will adapt the
proposed algorithm to solve some other optimization problems with doubly stochastic constraint in
machine learning and computer vision area.
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