
Dynamic-Depth Context Tree Weighting:
Supplementary Material

A Appendices

A.1 Proof of Theorem 1

Let k ∈ N and T ′ = kT . Then,

P fe (σ0:T ′) =

k−1∏
i=0

P fe (σiT :(i+1)T |σ0:iT−1)

=

k∏
i=1

T+iT∏
t=iT

P fe (σt|σ0:t−1)⇔

⇔

∏
σ∈Σ

Pσfw (σ0:T ′)

P fe (σ0:T ′)
=

k∏
i=1

T+iT∏
t=iT

∏
σ∈Σ

Pσfw (σt|σ0:t−1)

P fe (σt|σ0:t−1)
⇔

⇔ βfT ′ =

k∏
i=1

ξi,

where ξi > 1∀i = 1, .., k. Therefore, βfT ′ → ∞ as k → ∞. Using Eqs. (8) and (1),
α∅exp := P ∅w(σ0:T ′ ;Mexp)/P

∅
w(σ0:T ′ ;M) → ∞, and therefore there must be k for which

α∅exp > γ.

A.2 Proof of Proposition 1

For each two nodes p and s such that p is the parent of s, the change in the likelihood of the observed
data according to p induced by a change in the likelihood according to s can be expressed as:

αpexp =
P̄ pw(σ0:t)

P pw(σ0:t)
=

1 + αsexpβ
p
t

1 + βpt
. (1)

Using Eq. (1), and applying the chain rule we have that:

dα∅exp

dαfexp
=
dα∅exp
dαp1exp

dαp1exp
dαp2exp

. . .
dα

p|f|−1
exp

dαfexp

=

|f |−1∏
d=0

βpdt
1 + βpdt

=: ρf .

Since α∅exp is linear in αfexp, and considering an initial value of α∅exp = 1, αfexp = 1 we have:

α∅exp − α∅exp
αfexp − αfexp

=
dα∅exp

dαfexp
⇔

⇔ α∅exp = 1 + ρf
(
αfexp − 1

)
.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

A.3 D2-CTW Pseudo-code and Auxiliary Subroutines

An online model-learning procedure for D2-CTW, which can be used directly either for symbolic
prediction or reinforcement learning tasks, is sketched in Algorithm 1. Its most relevant operations
are getWeightedProb (Algorithm 2), which outputs the probability of symbol σt, updates the
predictive mixture accordingly, and evaluates the effect of potential fringe expansions and prune
operations; and postProcess (Algorithm 3), which carries out those topological operations while
respecting the overall memory bound, and updates the mixture as necessary to prevent biasing.

For model-based RL tasks, and during their planning stage, it may be necessary to sample repeat-
edly from the learned model without updating it (particularly for Monte-Carlo planning methods
such as UCT). For this purpose of sampling without a corresponding update, Algorithm 2 can be
trivially adapted by preventing symbol counts and β from being updated for each node, and evalu-
ating P ∅w(σ|·) for multiple σ.

Algorithm 1 train

Input: Fringe depthH; likelihood test level γ; memory bound L
1: T ← initSuffixTree() // Contains model metadata e.g. size, root
2: n∅ ← getRoot(T)
3: σ ← ∅
4: while running conditions hold do
5: Draw symbol σt from source
6: dmax ← maxDepth(T) +H
7: if |σ| > dmax then
8: σ ← σ\σt−dmax // Keep only dmax past symbols in context.
9: end if
10: PD2−CTW ← getWeightedProb(n∅, T , σt,σ, γ,H)
11: T ← postProcess(T , L)
12: Use PD2−CTW e.g. for compression or control
13: σ ← σ ∪ σt
14: end while

Algorithm 2 getWeightedProb(n, T , σt,σ, γ,H)
Input: Node pointer n; suffix tree T ; current symbol σt;

context σ; likelihood ratio threshold γ; fringe depthH
Output: Weighted conditional probability of σt
1: Pne ← SADEstimator(n, σt) // Eq. (4)
2: updateCounts(n, σt) // Update count vector
3: d← depth(n)
4: σ ← [σ]|σ|−d // Get d−th to last symbol in context
5: if not hasChild(n, σ) then
6: if fringeDepth(n) < H then
7: createFringeChild(n, σ, T)
8: else
9: Return Pne
10: end if
11: end if
12: c← getChild(n, σ)
13: P cw ← getWeightedProb(c, T , σt,σ, γ,H)

14: βnt ← updateBeta(βnt−1, P
n
e , P

c
w) // Eq. (7)

15: if isFrontier(n) then
16: testExpansion(n, γ, T)
17: Return Pne
18: else if fringeDepth(n) = 0 then
19: testPrune(n, T)
20: end if
21: Pnw ← Pne

1+βnt
1+βn

t−1
// Eq. (6)

22: Return Pnw

2

Algorithm 3 postProcess(T , L)
Input: Suffix tree T ; memory bound L
1: f∗, Lexp, αexp ← getBestExpansion(T)

2: p∗, Lprune, αprune ← getBestPrune(T)

3: if (L < getSize(T) + Lexp < L+ Lprune and
p∗ is not an ancestor of f∗ and αexp × αprune > 1) then

4: pruneChildren(p∗, T)
5: end if
6: if L > getSize(T) + Lexp then
7: expandFringe(f∗, T)
8: end if

Algorithm 4 testExpansion(n, γ, T)

1: if ρnt not known then
2: ρnt ← updateRho(n, βnt) // Also updates values of ρ for ancestors
3: end if
4: α∅exp ← 1 + ρnt

(
1+βnt

2 − 1
)

5: if α∅exp > γ then
6: Lexp ← subtreeSize(n) // Size of the subtree below n

7: Hnexp ←
logα∅exp
Lexp

8: ifHnexp > getBestExpansion(T) then
9: setBestExpansion(T , n)
10: end if
11: end if

Algorithm 5 testPrune(n, γ, T , L)

1: if ρnt not known then
2: ρnt ← updateRho(n, βnt) // Also updates values of ρ for ancestors
3: end if
4: α∅prune ← 1 + ρnt

(
2

1+βnt
− 1

)
5: Lprune ← subtreeSize(n) // Size of the subtree below n

6: Hnprune ←
− logα∅prune
Lprune

7: ifHnexp < getBestPrune(T) then
8: setBestPrune(T , n)
9: end if

Algorithm 6 expandFringe(n, T)

Input: Frontier node n

1: α← 1+βnt
2

2: while n 6= getRoot(T) do
3: n← getParent(n)

4: α← 1+αβnt
1+βnt

5: βnt ← αβnt
6: end while
7: Clear frontier status at n

A.4 Description of RL domains

We now provide further description of the environments that were used for our reinforcement learn-
ing experiments. Our implementation of the T-Maze and partially observable mountain car prob-
lems can be found at: https://bitbucket.org/jmessias/po_gym. For the cheese maze prob-
lem, we used the publicly available implementation of [4].

A.4.1 T-Maze

In the T-maze environment (Fig. 1) [1], an agent starts at one end of a hallway (position S), where
it observes the state of a switch (which can be up or down). The goal of the agent may be in one
of the two possible positions at the other end of the hallway (positions G), with equal probability.

3

https://bitbucket.org/jmessias/po_gym

S

G?

G?

Figure 1: The T-maze environment.

The state of the switch identifies (deterministically) the position of the goal. The agent may take
any of the four cardinal movement actions, which have deterministic outcomes. It can only uniquely
observe the state of the switch, and its presence at the other end of the hallway – along the hallway, it
receives a constant, uninformative observation, making this a non-Markovian problem. If the agent
successfully reaches the position of the goal, it receives a reward of 100. Otherwise, if it enters the
wrong end of the T intersection, it receives a penalty (−5). In both cases, the problem is reset and
the goal position is re-sampled. The agent also receives a small penalty for each movement action
(−1) and for bumping into walls (−5).

A.4.2 Cheese Maze

The cheese or M-maze environment, introduced in [2] (and shown in Fig. 2, is a navigation problem
where an agent must navigate to a goal position, but some of its observations are aliased. The
environment has a total of elevn states, but only six distinct observations. The agent can perform the
four cardinal movement actions deterministically. It receives an reward of 10 for reaching the goal,
at which point the problem is reset; a reward of −10 whenever it bumps into a wall; and a reward of
−1 otherwise.

o1 o2 o2o3 o4

o5 o5 o5

o6 o6 o6

Figure 2: The cheese maze environment.

A.4.3 Partially Observable Mountain Car

G

Figure 3: The mountain car environment.

In the classic mountain car problem (depicted in Fig. 3) [3], a car must be driven up a steep hill,
but does not have enough power to push itself up the goal from its initial position. Therefore, it
must first pick up momentum by driving up a smaller hill opposite the goal. The agent may attempt
to accelerate backwards, forwards, or stay neutral. For every time-step, it receives a small penalty
(−1). The episode terminates when the agent reaches the goal, at which point the agent is reset.

4

In our partially observable version of this problem, the agent can observe its horizontal position,
but not its velocity. We further discretized the position into 10 equally sized states. Otherwise, all
problem-specific parameters are the same as in [3].

A.4.4 Algorithm Parameters

In Table 1, we present the parameters that were used for our RL experiments across all algorithms
and environments.

Table 1: Algorithm parameters for our RL experiments. L: maximum number of nodes in the
model; K: maximum depth of the model; γ: D2-CTW fringe expansion threshold; H: D2-CTW
fringe depth; ε0: initial exploration probability for ε-greedy policy; εdec: exponential decay rate
on exploration probability; S: number of simulations in UCT; C: UCT exploration/exploitation
tradeoff parameter; h: maximum horizon for UCT simulations. est: base estimator (Sparse Dirichlet
or Frequentist).

Environment Algorithm L K γ H ε0 εdec S C h est.
D2-CTW – – 1 2 0.2 0.9995 50 1 10 SAD
CTW – 3 – – 0.2 0.9995 50 1 10 SADT-Maze
PPM-C – 3 – – 0.2 0.9995 50 1 10 FREQ

D2-CTW 1000 – 10 2 0.2 0.999 100 2 10 SAD
CTW 1000 5 – – 0.2 0.999 100 2 10 SADCheese Maze
PPM-C 1000 5 – – 0.2 0.999 100 2 10 FREQ

D2-CTW 1000 – 10 2 0.5 0.9995 50 1 10 SAD
CTW 1000 4 – – 0.5 0.9995 50 1 10 SADPO-Mountain Car
PPM-C 1000 4 – – 0.5 0.9995 50 1 10 FREQ

References
[1] B. Bakker. Reinforcement learning with long short-term memory. In Proceedings of the 14th

International Conference on Neural Information Processing Systems, NIPS’01, pages 1475–
1482, Cambridge, MA, USA, 2001. MIT Press.

[2] A. K. McCallum. Reinforcement Learning with Selective Percemption and Hidden State. PhD
thesis, University of Rochester, 1995.

[3] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[4] J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A monte-carlo AIXI approximation.
Journal of Artificial Intelligence Research, 40(1):95–142, 2011.

5

	Appendices
	Proof of Theorem 1
	Proof of Proposition 1
	D2-CTW Pseudo-code and Auxiliary Subroutines
	Description of RL domains
	T-Maze
	Cheese Maze
	Partially Observable Mountain Car
	Algorithm Parameters

