
Appendix A Proof of Lemma 1

Proof. Let s = min(d/K,K) and n = 2s. Let v be an s dimensional vector. Let y(v) be a vector
such that for all 1  i  s, 1  j  s, y((i� 1)d/K + j) = v(i) and the remaining entries are 0.
Let Y be the set of all such vectors corresponding to v 2 {�1, 1}s:

Y = {y(v) : v 2 {�1, 1}s}.

We first note that for all points in Y and for all 1  i  K, [y((i � 1)d/K + 1), y((i � 1)d/K +
2), y((i � 1)d/K + 1), . . . , y((i � 1)d/K + d/K)] takes one of two values and hence Y has a
canonical basis product code with codebook size 2.

Let R be a permutation matrix such that for all 1  i  s and 1  j  s

y(id/K + j) ! y((i+ j � 1)d/K + j mod (d).

This ensures that within each subspace, 1  i  s, [x((i� 1)d/K + 1), x((i� 1)d/K + 2), x((i�
1)d/K + 1), . . . , x((i � 1)d/K + s)] takes all possible 2s possibilities. Hence, by the Gilbert-
Varshamov bound, any product code to achieve a mean squared loss of ✏kxk2 requires at least 2c·s✏
codewords to achieve a worst case MSE of ✏kxk2.

Appendix B Coarse quantization

To define the exact K-subspace mixture model, we need few definitions.

Let D(1)
, D

(2)
, . . . D

(K) be K be subspaces of equal dimension that span Rd. We call a probability
distribution p K-subspace independent if the projections of the sample on D

(1)
, D

(2)
, . . . D

(K) are
statistically generated according to K independent probability distributions p(1), p(2), . . . p(K).

We define a K-subspace mixture model as follows. Each sample X is generated as

X = R(µ+ Y ),

where R is an arbitrary but fixed rotation matrix, µ is the mean of components which can take one
of m values µ1, µ2, . . . µm, and Y is the residual which is generated according to a K-subspace
independent distribution. Without loss of generality we assume that Y is a zero mean random variable.

As stated before, the above model captures several phenomena such as clusterability and low-

dimensionality of the underlying data within each subspace. Furthermore, it allows us to use product
codes even when data is arbitrarily rotated. Finally, if we cluster the data, then the MSE of the product
codes depends only on the radius of the residuals as opposed to the whole data. Thus, stronger
guarantees can be found using previous results on the MSE of product codes [15].

Proof of Theorem 1. The proof relies on the following lemmas, which is a direct application of
McDiarmid’s inequality.

Lemma 2. Let Y be generated according to a zero-mean K-subspace independent distribution such

that within each coordinate, the maximum value of Y is at most r. Then for a q ,

Pr
�
|q

T
Y | � t

�
 2e

�2t2

kqk22dr2/K
.

Proof. Recall that for a vector x, x(k) denotes its component along subspace D
(k). Observe that

q
T
Y =

KX

k=1

(q(k))TY (k)
.

Since Y is generated according to a K-subspace independent distribution, each of the Y
(k) are

independent. Changing Y
(k) changes qTY by at most kq(k)k2 ·

p
dr2/K. Thus, by McDiarmid’s

inequality,

Pr
�
|q

T
Y | � t

�
 2e

�2t2

kqk22dr2/K
.
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Lemma 3. Let Y be generated according to a zero-mean K-subspace independent distribution such

that within each coordinate, then

Pr
�
kY k

2
2 � E[kY k

2
2] + t

�
 e

�2Kt2

d2r4 .

Proof. Recall that for a vector x, x(k) denotes its component along subspace D
(k). Since Y is

generated according to a K-subspace independent distribution, each of the Y
(k) are independent.

Changing Y
(k) changes kY k

2
2 by at most dr2/K. Thus, by McDiarmid’s inequality,

Pr
�
kY k

2
2 � E[kY k

2
2] + t

�
 e

�2Kt2

d2r4 .

Let µ1 be the cluster center corresponding to x
⇤
q and µ2 be the cluster center corresponding to x

V Q
q .

Let µ̃1 and µ̃2 be their estimates. Let yV Q
q = x

V Q
q � µ2 and y

⇤
q = x

⇤
q � µ1. If µ1 = µ2, then our

algorithm outputs x⇤
q and hence x

V Q
q = x

⇤
q . If µ1 6= µ2, note that

kq � x
⇤
qk

2
2 � kq � x

V Q
q k

2
2

= kq � (µ1 + y
⇤
q )k

2
2 � kq � (µ2 + y

V Q
q )k22

= kq � µ1k
2
2 � kq � µ2k

2
2 + ky

⇤
qk

2
2 � ky

V Q
q k

2
2 + 2(q � µ1)

T
y
⇤
q � 2(q � µ2)

T
y
V Q
q

= kq � µ̃1k
2
2 � kq � µ̃2k

2
2

+ 2(q � µ1)
T
y
⇤
q � 2(q � µ2)

T
y
V Q
q + 2(q � µ̃1)

T (µ̃1 � µ1)� 2(q � µ̃2)
T (µ̃2 � µ2)

+ kµ1 � µ̃1k
2
2 � kµ2 � µ̃2k

2
2 + ky

⇤
qk

2
2 � ky

V Q
q k

2
2

(a)
 2(q � µ1)

T
y
⇤
q � 2(q � µ2)

T
y
V Q
q + 2(q � µ̃1)

T (µ̃1 � µ1)� 2(q � µ̃2)
T (µ̃2 � µ2)

+ kµ1 � µ̃1k
2
2 � kµ2 � µ̃2k

2
2 + ky

⇤
qk

2
2 � ky

V Q
q k

2
2

(b)
 8 max

i:kqk2
2b

q
T
yi + kµ1 � µ̃1k

2
2 � kµ2 � µ̃2k

2
2 + ky

⇤
qk

2
2 � ky

V Q
q k

2
2

(c)
 8 max

i:kqk2
2b

q
T
yi + 4max

i
|yik

2
2 � E[kYik

2
2]|.

where (a) follows from the fact that the algorithm favors µ̃2 over µ̃1 and hence q
T
µ̃2 � q

T
µ̃1. (b)

and (c) follow from triangle inequality and the fact that µ1 � µ̃1 is the average of yis in that cluster.
By Lemmas and 3, with probability � 1� �, for all n samples,

8 max
i:kqk2

2b
q
T
yi + 4max

i
|kyik

2
2 � E[kYik

2
2]|  8b

r
dr2

2K
log

4n

�
+ 4r2

r
d2

2K
log

2n

�
.

and hence the result.
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