
A Additional Illustrations

This section provides additional illustrations related to our work.

A.1 Model Selection Probem (presented in Section 1)

Without observing the latent positions or knowing which model generated the underlying graph,
the adjacency matrix of a social graph typically looks like the one shown in Fig. 5(a). However, if the
model generating the graph is known, it is then possible to run a suitable “clustering algorithm” [14,
16] that reveals the hidden structure. When the vertices are ordered suitably, the SBM’s adjacency
matrix looks like the one shown in Fig. 5(b) and that of the SWM looks like the one shown in
Fig. 5(c).
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Figure 5: Inference problem in social graphs: Given an input graph (a), are we able to shuffle the
nodes so that statistical patterns are revealed? A major problem in network inference is the model
selection problem. The input here can come from stochastic block model (b) or small-world model
(c).

A.2 Algorithm for the Small-world Model (presented in Section 2)

The inference algorithm for small-world networks uses different ideas. Each edge in the graph
can be thought of as a “short-range” or “long-range” one. Short-range edges are those between
nodes that are nearby in latent space, while long-range ones have end-points that are far away in
latent space. After the removal of all the long-range edges, the shortest path distance between two
nodes scales proportionally to the corresponding latent space distance (see Fig. 6). Once estimates
for pairwise distances are obtained, standard buidling blocks may be used to find the latent positions
xi [40].

Figure 6: In the small-world model, after removal of long range edges (red thick), the shortest-path
distance between two nodes approximates latent space distance

A.3 Sensitivity of the Gram matrix K (presented in Section 3.2)

After we construct our estimate Φ̂d, we may estimate K by letting K̂ = Φ̂dΦ̂
T
d . Recalling

Ki,j = c0/(|xi − xj |∆ + c1), one plausible approach would be estimating |xi − xj | = (c0/K̂i,j −
c1)1/∆. A main issue with this approach is that κ(xi, xj) is a convex function in |xi − xj |. Thus,
when Ki,j is small, a small estimation error here will result in an amplified estimation error in
|xi − xj | (cf. Fig. 7). But when |xi − xj | is small, Ki,j is reliable (see the “reliable” region in
Fig. 7).
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Figure 7: The behavior of K̂i,j .

B Summary of notations

• A ∈ Rn×n: the adjacent matrix of an undirected graph. In the simplified graph model, A
is the input graph. In the bipartite graph model, A is the regularized matrix over BTB.
• B ∈ Rm×n: the bipartite graph matrix, i.e., Bi,j = 1 if and only if follower i is connected

to influencer j.
• Ball(z, r) = {z′ : ‖z′ − z‖ ≤ r}
• C(n): the normalization constant in the undirected graph model, i.e., Pr[{xi, xj} ∈ E] =
κ(xi, xj)/C(n).

• C: a curve in RNH , defined as C = {Φ(x)}x∈[0,1]

• D: the distribution in which xi and yI come from.
• D: the distance estimate, e.g., Di,j is the estimate of distance between xi and xj in our

algorithm.
• d: the number of eigenvalues to keep; in the section for isomap technique, it sometimes is

used to refer to the length of the shortest path.
• H: the reproducing kernel Hilbert space of κ.
• K ∈ Rn×n: the kernel/Gram matrix associated with κ, i.e., Ki,j = κ(xi, xj).

• K: an integral operator defined as Kf(x) =
∫
κ(x, x′)f(x′)dF (x′).

• F (n): the cdf of D.
• M: an integral operator defined asMf(x) =

∫
µ(x, y)f(y)dF (y).

• M ∈ Rn×n: the kernel/Gram matrix associated with µ, i.e., Mi,j = µ(xi, xj).
• m: the number of followers in the bipartite graph model.
• NH: the number of eigenvalues in K, which could be countably infinite.
• n: the number of nodes in the simplified model and the number of influencers in the bipar-

tite grpah model.
• P: projection operators.

• [ŨX , S̃X , ṼS ] where X ∈ {A,K,M}: the SVD of X .
• [UX , SX , VS ], where X ∈ {A,K,M}: the first d singular vectors/values of X . Note here

they implicitly depend on d.
• X = {x1, ..., xn}: the set of nodes in the simplified model and the set of influencers in the

bipartite graph model.
• x̂i: our algorithm’s estimate of xi.
• Y = {y1, ..., yn}: the set of followers in the bipartite graph model.
• ŷi: our algorithm’s estimate of yi.
• zi: the feature of xi, i.e., Φ(zi).
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• ẑi: our algorithm’s estimate of zi.
• δi: the eigengap, defined as δi = λi − λi+1.
• λi: the eigenvalues of K unless otherwise specified.
• ρ(n): we also re-parametrize C(n) = n/ρ(n), i.e., ρ(n) = n/C(n).
• κ : [0, 1]× [0, 1]→ (0, 1]: the kernel function.

• ∆: the exponent in the small-world kernel, i.e., κ(xi, xj) = c0/(|xi − xj |∆ + c0.

• Φ : [0, 1]→ RNH the feature map associated with K.

• Φ̂: our algorithm’s estimate of Φ.
• ΦM: the feature map associated withM.
• Φd: the first d coordinates of the feature map. It is also overloaded to be inRNH by padding

0’s after the d-th coordinate.
• Φ̂d: our algorithm’s estimate of Φd.
• ΦMd : the first d coordinates of ΦM.
• ψi: the i-th eigenfunction of K.
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