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Abstract

In recent years, stochastic gradient descent (SGD) based techniques has become
the standard tools for training neural networks. However, formal theoretical under-
standing of why SGD can train neural networks in practice is largely missing.
In this paper, we make progress on understanding this mystery by providing a
convergence analysis for SGD on a rich subset of two-layer feedforward networks
with ReLU activations. This subset is characterized by a special structure called
“identity mapping”. We prove that, if input follows from Gaussian distribution,
with standard O(1/

√
d) initialization of the weights, SGD converges to the global

minimum in polynomial number of steps. Unlike normal vanilla networks, the
“identity mapping” makes our network asymmetric and thus the global minimum is
unique. To complement our theory, we are also able to show experimentally that
multi-layer networks with this mapping have better performance compared with
normal vanilla networks.
Our convergence theorem differs from traditional non-convex optimization tech-
niques. We show that SGD converges to optimal in “two phases”: In phase I, the
gradient points to the wrong direction, however, a potential function g gradually
decreases. Then in phase II, SGD enters a nice one point convex region and con-
verges. We also show that the identity mapping is necessary for convergence, as it
moves the initial point to a better place for optimization. Experiment verifies our
claims.

1 Introduction

Deep learning is the mainstream technique for many machine learning tasks, including image
recognition, machine translation, speech recognition, etc. [17]. Despite its success, the theoretical
understanding on how it works remains poor. It is well known that neural networks have great
expressive power [22, 7, 3, 8, 31]. That is, for every function there exists a set of weights on the
neural network such that it approximates the function everywhere. However, it is unclear how to
obtain the desired weights. In practice, the most commonly used method is stochastic gradient
descent based methods (e.g., SGD, Momentum [40], Adagrad [10], Adam [25]), but to the best of
our knowledge, there were no theoretical guarantees that such methods will find good weights.

In this paper, we give the first convergence analysis of SGD for two-layer feedforward network with
ReLU activations. For this basic network, it is known that even in the simplified setting where the
weights are initialized symmetrically and the ground truth forms orthonormal basis, gradient descent
might get stuck at saddle points [41].

Inspired by the structure of residual network (ResNet) [21], we add an extra identity mapping for
the hidden layer (see Figure 1). Surprisingly, we show that simply by adding this mapping, with the
standard initialization scheme and small step size, SGD always converges to the ground truth. In other
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Figure 1: Vanilla network (left), with identity mapping (right)
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Figure 2: Illustration for our result.

words, the optimization becomes significantly easier, after adding the identity mapping. See Figure
2, based on our analysis, the region near the identity matrix I contains only one global minimum
without any saddle points or local minima, thus is easy for SGD to optimize. The role of the identity
mapping here, is to move the initial point to this easier region (better initialization).

Other than being feedforward and shallow, our network is different from ResNet in the sense that
our identity mapping skips one layer instead of two. However, as we will show in Section 5.1, the
skip-one-layer identity mapping already brings significant improvement to vanilla networks.

Formally, we consider the following function.

f(x,W) = ‖ReLU((I + W)>x)‖1 (1)

where ReLU(v) = max(v, 0) is the ReLU activation function. x ∈ Rd is the input vector sampled
from a Gaussian distribution, and W ∈ Rd×d is the weight matrix, where d is the number of input
units. Notice that I adds ei to column i of W, which makes f asymmetric in the sense that by
switching any two columns in W, we get different functions.

Following the standard setting [34, 41], we assume that there exists a two-layer teacher network with
weight W∗. We train the student network using `2 loss:

L(W) = Ex[(f(x,W)− f(x,W∗))2] (2)

We will define a potential function g, and show that if g is small, the gradient points to partially
correct direction and we get closer to W∗ after every SGD step. However, g could be large and thus
gradient might point to the reverse direction. Fortunately, we also show that if g is large, by doing
SGD, it will keep decreasing until it is small enough while maintaining the weight W in a nice region.
We call the process of decreasing g as Phase I, and the process of approaching W∗ as Phase II. See
Figure 3 and simulations in Section 5.3.

Our two phases framework is fundamentally different from any type of local convergence, as in Phase
I, the gradient is pointing to the wrong direction to W∗, so the path from W to W∗ is non-convex,
and SGD takes a long detour to arrive W∗. This framework could be potentially useful for analyzing
other non-convex problems.

To support our theory, we have done a few other experiments and got interesting observations.
For example, as predicted by our theorem, we found that for multilayer feedforward network with
identity mappings, zero initialization performs as good as random initialization. At the first glance, it
contradicts the common belief “random initialization is necessary to break symmetry”, but actually
the identity mapping itself serves as the asymmetric component. See Section 5.4.

Another common belief is that neural network has lots of local minima and saddle points [9], so
even if there exists a global minimum, we may not be able to arrive there. As a result, even when
the teacher network is shallow, the student network usually needs to be deeper, otherwise it will
underfit. However, both our theorem and our experiment show that if the shallow teacher network
is in a pretty large region near identity (Figure 2), SGD always converges to the global minimum
by initializing the weights I + W in this region, with equally shallow student network. By contrast,
wrong initialization gets stuck at local minimum and underfit. See Section 5.2.
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Related Work

Expressivity. Even two-layer network has great expressive power. For example, two-layer network
with sigmoid activations could approximate any continuous function [22, 7, 3]. ReLU is the state-of-
the-art activation function [30, 13], and has great expressive power as well [29, 32, 31, 4, 26].

Learning. Most previous results on learning neural network are negative [39, 28, 38], or positive but
with algorithms other than SGD [23, 43, 37, 14, 15, 16], or with strong assumptions on the model
[1, 2]. [35] proved that with high probability, there exists a continuous decreasing path from random
initial point to the global minimum, but SGD may not follow this path. Recently, Zhong et al. showed
that with initialization point found using tensor decomposition, gradient descent could find the ground
truth for one hidden layer network [44].

Linear network and independent activation. Some previous works simplified the model by ignor-
ing the activation functions and considering deep linear networks [36, 24] or deep linear residual
networks [19], which can only learn linear functions. Some previous results are based on independent
activation assumption that the activations of ReLU and the input are independent [5, 24].

Saddle points. It is observed that saddle point is not a big problem for neural networks [9, 18]. In
general, if the objective is strict-saddle [11], SGD could escape all saddle points.

2 Preliminaries

Denote x as the input vector in Rd. For now, we first consider x sampled from normal distribution
N (0, I). Denote W∗ = (w∗1 , · · · , w∗n) ∈ Rd×d as the weights for the teacher network, W =
(w1, · · · , wn) ∈ Rd×d as the weights for the student network, where w∗i , wi ∈ Rd are column
vectors. f(x,W∗), f(x,W) are defined in (1), representing the teacher and student network.

We want to know whether a randomly initialized W will converge to W∗, if we run SGD with l2
loss defined in (2). Alternatively, we can write the loss L(W) as

Ex[(ΣiReLU(〈ei + wi, x〉)− ΣiReLU(〈ei + w∗i , x〉))2]

Taking derivative with respect to wj , we get

∇L(W)j = 2Ex

[(∑
i

ReLU(〈ei + wi, x〉)−
∑
i

ReLU(〈ei + w∗i , x〉)

)
x1〈ej+wj ,x〉≥0

]

where 1e is the indicator function that equals 1 if the event e is true, and 0 otherwise. Here
∇L(W) ∈ Rd×d, and ∇L(W)j is its j-th column.

Denote θi,j as the angle between ei+wi and ej +wj , θi∗,j as the angle between ei+w∗i and ej +wj .
Denote v̄ = v

‖v‖2 . Denote I + W∗ and I + W∗ as the column-normalized version of I + W∗ and
I + W such that every column has unit norm. Since the input is from a normal distribution, one can
compute the expectation inside the gradient as follows.

Lemma 2.1 (Eqn (13) from [41]). If x ∼ N (0, I), then −∇L(W)j =
∑d
i=1

(
π
2 (w∗i − wi) +(

π
2 − θi∗,j

)
(ei+w∗i )−

(
π
2 − θi,j

)
(ei+wi)+

(
‖ei+w∗i ‖2 sin θi∗,j−‖ei+wi‖2 sin θi,j

)
ej + wj

)
Remark. Although the gradient of ReLU is not well defined at the point of zero, if we assume input x
is from the Gaussian distribution, the loss function becomes smooth, and the gradient is well defined
everywhere.

Denote u ∈ Rd as the all one vector. Denote Diag(W) as the diagonal matrix of matrix W,
Diag(v) as a diagonal matrix whose main diagonal equals to the vector v. Denote Off-Diag(W) ,
W −Diag(W). Denote [d] as the set {1, · · · , d}. Throughout the paper, we abuse the notation of
inner product between matrices W,W∗,∇L(W), such that 〈∇L(W),W〉 means the summation of
the entrywise products. ‖W‖2 is the spectral norm of W, and ‖W‖F is the Frobenius norm of W.
We define the potential function g and variables gj ,Aj ,A below, which will be useful in the proof.

Definition 2.2. We define the potential function g ,
∑d
i=1(‖ei +w∗i ‖2 −‖ei +wi‖2), and variable

gj ,
∑
i 6=j(‖ei + w∗i ‖2 − ‖ei + wi‖2).
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the wrong direction but the potential is shrinking.
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Figure 4: The function is one point strongly con-
vex as every point’s negative gradient points to
the center, but not convex as any line between
the center and the red region is below surface.

Definition 2.3. Denote Aj ,
∑
i 6=j((ei + w∗i )ei + w∗i

> − (ei + wi)ei + wi
>

),A ,
∑d
i=1((ei +

w∗i )ei + w∗i
> − (ei + wi)ei + wi

>
) = (I + W∗)I + W∗> − (I + W)I + W

>
.

In this paper, we consider the standard SGD with mini batch method for training the neural network.
Assume W0 is the initial point, and in step t > 0, we have the following updating rule:

Wt+1 = Wt − ηtGt

where the stochastic gradient Gt = ∇L(Wt) + Et with E[Et] = 0 and ‖Et‖F ≤ ε. Let G2 ,
6dγ + ε,GF , 6d1.5γ + ε, where γ is the upper bound of ‖W∗‖2 and ‖W0‖2 (defined later). As
we will see in Lemma C.2, they are the upper bound of ‖Gt‖2 and ‖Gt‖F respectively.

It’s clear that L is not convex, In order to get convergence guarantees, we need a weaker condition
called one point convexity.
Definition 2.4 (One point strongly convexity). A function f(x) is called δ-one point strongly convex
in domain D with respect to point x∗, if ∀x ∈ D, 〈−∇f(x), x∗ − x〉 > δ‖x∗ − x‖22.

By definition, if a function f is strongly convex, it is also one point strongly convex in the entire space
with respect to the global minimum. However, the reverse is not necessarily true, e.g., see Figure
4. If a function is one point strongly convex, then in every step a positive fraction of the negative
gradient is pointing to the optimal point. As long as the step size is small enough, we will finally
arrive the optimal point, possibly by a winding path. See Figure 3 for illustration, where starting from
W6 (Phase II), we get closer to W∗ in every step. Formally, we have the following lemma.
Lemma 2.5. For function f(W), consider the SGD update Wt+1 = Wt − ηGt, where E[Gt] =
∇f(Wt), E[‖Gt‖2F ] ≤ G2. Suppose for all t, Wt is always inside the δ-one point strongly convex
region with diameter D, i.e., ‖Wt −W∗‖F ≤ D. Then for any α > 0 and any T such that
Tα log T ≥ D2δ2

(1+α)G2 , if η = (1+α) log T
δT , we have E‖WT −W∗‖2F ≤

(1+α) log TG2

δ2T .

The proof can be found in Appendix J. Lemma 2.5 uses fixed step size, so it easily fits the standard
practical scheme that shrinks η by a factor of 10 after every a few epochs. For example, we may
apply Lemma 2.5 every time η gets changed. Notice that our lemma does not imply that WT will
converge to W∗. Instead, it only says WT will be sufficiently close to W∗ with small step size η.

3 Main Theorem

Theorem 3.1 (Main Theorem). There exists constants γ > γ0 > 0 such that If x ∼ N (0, I),
‖W0‖2, ‖W∗‖2 ≤ γ0, d ≥ 100, ε ≤ γ2, then SGD for L(W) will find the ground truth W∗ by
two phases. In Phase I, by setting η ≤ γ2

G2
2

, the potential function will keep decreasing until it is

smaller than 197γ2, which takes at most 1
16η steps. In Phase II, for any α > 0 and any T such that

Tα log T ≥ 36d
1004(1+α)G2

F
, if we set η = (1+α) log T

δT , we have E‖WT −W∗‖2F ≤
1002(1+α) log TG2

F

9T .

Remarks. Randomly initializing the weights with O(1/
√
d) is standard in deep learning, see

[27, 12, 20]. It is also well known that if the entries are initialized with O(1/
√
d), the spectral norm
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of the random matrix is O(1) [33]. So our result matches with the common practice. Moreover, as we
will show in Section 5.5, networks with small average spectral norm already have good performance.
Thus, our assumption ‖W∗‖2 = O(1) is reasonable. Notice that here we assume the spectral norm
of W∗ to be constant, which means the Frobenius norm ‖W∗‖F could be as big as O(

√
d).

The assumption that the input follows a Gaussian distribution is not necessarily true in practice
(Although this is a common assumption appeared in the previous papers [5, 41, 42], and also
considered plausible in [6]). We could easily generalize the analysis to rotation invariant distributions,
and potentially more general distributions (see Section 6). Moreover, previous analyses either ignore
the nonlinear activations and thus consider linear model [36, 24, 19], or directly [5, 24] or indirectly
[41]1 assume that the activations are independent. By contrast, in our model the ReLU activations
are highly correlated2 as ‖W‖2, ‖W∗‖2 = Ω(1). As pointed out by [6], eliminating the unrealistic
assumptions on activation independence is the central problem of analyzing the loss surface of neural
network, which was not fully addressed by the previous analyses.

To prove the main theorem, we split the process and present the following two theorems, which will
be proved in Appendix C and D.

Theorem 3.2 (Phase I). There exists a constant γ > γ0 > 0 such that If ‖W0‖2, ‖W∗‖2 ≤ γ0,
d ≥ 100, η ≤ γ2

G2
2

, ε ≤ γ2, then gt will keep decreasing by a factor of 1 − 0.5ηd for every step,

until gt1 ≤ 197γ2 for step t1 ≤ 1
16η . After that, Phase II starts. That is, for every T > t1, we have

‖WT ‖2 ≤ 1
100 and gT ≤ 0.1.

Theorem 3.3 (Phase II). There exists a constant γ such that if ‖W‖2, ‖W∗‖2 ≤ γ, and g ≤ 0.1,
then 〈−∇L(W),W∗ −W〉 =

∑d
j=1〈−∇L(W)j , w

∗
j − wj〉 > 0.03‖W∗ −W‖2F .

With these two theorems, we get the main theorem immediately.

Proof for Theorem 3.1. By Theorem 3.2, we know the statement for Phase I is true, and we will enter
phase II in 1

16η steps. After entering Phase II, based on Theorem 3.3, we simply use Lemma 2.5 by

setting δ = 0.03, D =
√
d

50 , G = GF to get the convergence guarantee.

4 Overview of the Proofs

General Picture. In many convergence analyses for non-convex functions, one would like to show
that L is one point strongly convex, and directly apply Lemma 2.5 to get the convergence result.
However, this is not true for 2-layer neural network, as the gradient may point to the wrong direction,
see Section 5.3.

So when is our L one point convex? Consider the following thought experiment: First, suppose
‖W‖2, ‖W∗‖2 → 0, we know ‖wi‖2, ‖w∗i ‖2 also go to 0. Thus, ei +wi and ei +w∗i are close to ei.
As a result, θi,j , θi∗,j ≈ π

2 , and θi∗,i ≈ 0. Based on Lemma 2.1, this gives us a naïve approximation
of the negative gradient, i.e.,−∇L(W)j ≈ π

2 (w∗j −wj)+ π
2

∑d
i=1(w∗i −wi)+ej + wj

∑
i 6=j(‖ei+

w∗i ‖2 − ‖ei + wi‖2) .

While the first two terms π2 (w∗j−wj) and π
2

∑d
i=1(w∗i−wi) have positive inner product with W∗−W,

the last term gj = ej + wj
∑
i 6=j(‖ei+w∗i ‖2−‖ei+wi‖2) can point to arbitrary direction. If the last

term is small, it can be covered by the first two terms, and L becomes one point strongly convex. So
we define a potential function closely related to the last term: g =

∑d
i=1(‖ei + w∗i ‖2 − ‖ei + wi‖2).

We show that if g is small enough, L is also one point strongly convex (Theorem 3.3).

However, from random initialization, g can be as large as of Ω(
√
d), which is too big to be covered.

Fortunately, we show that if g is big, it will gradually decrease simply by doing SGD on L. More
specifically, we introduce a two phases convergence analysis framework:

1They assume input is Gaussian and the W∗ is orthonormal, which means the activations are independent in
teacher network.

2 Let σi be the output of i-th ReLU unit, then in our setting,
∑

i,j Cov[σi, σj ] can be as large as Ω(d), which
is far from being independent.
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Figure 5: Lower bounds of inner product using Taylor expansion

1. In Phase I, the potential function g is decreasing to a small value.
2. In Phase II, g remains small, so L is one point convex and thus W starts to converge to W∗.

We believe that this framework could be helpful for other non-convex problems.

Technical difficulty: Phase I. Our key technical challenge is to show that in Phase I, the potential
function actually decreases to O(1) after polynomial number of iterations. However, we cannot show
this by merely looking at g itself. Instead, we introduce an auxiliary variable s = (W∗ −W)u,
where u is the all one vector. By doing a careful calculation, we get their joint update rules (Lemma
C.3 and Lemma C.4): {

st+1 ≈ st − πηd
2 st + ηO(

√
dgt +

√
dγ)

gt+1 ≈ gt − ηdgt + ηO(γ
√
d‖st‖2 + dγ2)

Solving this dynamics, we can show that gt will approach to (and stay around) O(γ), thus we enter
Phase II.

Technical difficulty: Phase II. Although the overall approximation in the thought experiment looks
simple, the argument is based on an over simplified assumption that θi∗,j , θi,j ≈ π

2 for i 6= j.
However, when W∗ has constant spectral norm, even when W is very close to W∗, θi,j∗ could be
constantly far away from π

2 , which prevents us from applying this approximation directly. To get a
formal proof, we use the standard Taylor expansion and control the higher order terms. Specifically,
we write θi∗,j as θi∗,j = arccos〈ei + w∗i , ej + wj〉 and expand arccos at point 0, thus,

θi∗,j =
π

2
− 〈ei + w∗i , ej + wj〉+O(〈ei + w∗i , ej + wj〉3)

However, even when W ≈W∗, the higher order term O(〈ei + w∗i , ej + wj〉3) still can be as large
as a constant, which is too big for us. Our trick here is to consider the “joint Taylor expansion”:

θi∗,j − θi,j = 〈ei + wi − ei + w∗i , ej + wj〉+O(|〈ei + w∗i , ej + wj〉3 − 〈ei + wi, ej + wj〉3|)

As W approaches W∗, |〈ei + w∗i , ej + wj〉3 − 〈ei + wi, ej + wj〉3| also tends to zero, therefore
our approximation has bounded error.

In the thought experiment, we already know that the constant part in the Taylor expansion of∇L(W)
is π

2 − O(g)-one point convex. We show that after taking inner product with W∗ −W, the first
order terms are lower bounded by (roughly) −1.3‖W∗ −W‖2F and the higher order terms are lower
bounded by −0.085‖W∗ −W‖2F . Adding them together, we can see that L(W) is one point convex
as long as g is small. See Figure 5.

Geometric Lemma. In order to get through the whole analysis, we need tight bounds on a few
common terms that appear everywhere. Instead of using naïve algebraic techniques, we come up with
a nice geometric proof to get nearly optimal bounds. Due to space limit, we defer it to Appendix E.

5 Experiments

In this section, we present several simulation results to support our theory. Our code can be found in
the supplementary materials.

5.1 Importance of identity mapping

In this experiment, we compare the standard ResNet [21] and single skip model where identity
mapping skips only one layer. See Figure 6 for the single skip model. We also ran the vanilla network,
where the identity mappings are completely removed.
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Table 1: Test error of three 56-layer networks on
Cifar-10

ResNet Single skip Vanilla
Test Err 6.97% 9.01% 12.04%
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Figure 6: Illustration of one block in single skip
model in Sec 5.1
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Figure 7: Verifying the global convergence

In this experiment, we choose Cifar-10 as the dataset, and all the networks have 56-layers. Other than
the identity mappings, all other settings are identical and default. We run the experiments for 5 times
and report the average test error. As we can see in Table 1, compared with vanilla network, by simply
using a single skip identity mapping, one can already improve the test error by 3.03%, and is 2.04%
close to the ResNet. So single skip identity mapping brings significant improvement on test accuracy.

5.2 Global minimum convergence

In this experiment, we verify our main theorem that for two-layer teacher network and student network
with identity mappings, as long as ‖W0‖2, ‖W∗‖2 is small, SGD always converges to the global
minimum W∗, thus gives almost 0 training error and test error. We consider three student networks.
The first one (ResLink) is defined using (2), the second one (Vanilla) is the same model without the
identity mapping. The last one (3-Block) is a three block network with each block containing a linear
layer (500 hidden nodes), a batch normalization and a ReLU layer. The teacher network always
shares the same structure as the student network.

The input dimension is 100. We generated a fixed W∗ for all the trials with ‖W∗‖2 ≈ 0.6, ‖W∗‖F ≈
5.7. We generated a training set of size 100, 000, and test set of size 10, 000, sampled from a Gaussian
distribution. We use batch size 200, step size 0.001. We run ResLink for 5 times with random
initialization (‖W‖2 ≈ 0.6 and ‖W‖F ≈ 5), and plot the curves by taking the average.

Figure 7(a) shows test error and training error of the three networks. Comparing Vanilla with 3-Block,
we find that 3-Block is more expressive, so its training error is smaller compared with vanilla network;
but it suffers from overfitting and has bigger test error. This is the standard overfitting vs underfitting
tradeoff. Surprisingly, with only one hidden layer, ResLink has both zero test error and training
error. If we look at Figure 7(b), we know the distance between W and W∗ converges to 0, meaning
ResLink indeed finds the global optimal in all 5 trials. By contrast, for vanilla network, which is
essentially the same network with different initialization, ‖W −W∗‖2 does not converge to zero3.
This is exactly what our theory predicted.

5.3 Verify the dynamics

In this experiment, we verify our claims on the dynamics. Based on the analysis, we construct a
1500×1500 matrix W s.t. ‖W‖2 ≈ 0.15, ‖W‖F ≈ 5 , and set W∗ = 0. By plugging them into (2),
one can see that even in this simple case that W∗ = 0, initially the gradient is pointing to the wrong
direction, i.e., not one point convex. We then run SGD on W by using samples x from Gaussian
distribution, with batch size 300, step size 0.0001.

3To make comparison meaningful, we set W − I to be the actual weight for Vanilla as its identity mapping
is missing, which is why it has a much bigger initial norm.
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Figure 8: Verifying the dynamics

Figure 8(a) shows the first 100 iterations. We can see that initially the inner product defined in
Definition 2.4 is negative, then after about 15 iterations, it turns positive, which means W is in the
one point strongly convex region. At the same time, the potential g keeps decreasing to a small value,
while the distance to optimal (which also equals to ‖W‖F in this experiment) is not affected. They
precisely match with our description of Phase I in Theorem 3.2.

After that, we enter Phase II and slowly approach to W∗, see Figure 8(b). Notice that the potential
g is always very small, the inner product is always positive, and the distance to optimal is slowly
decreasing. Again, they precisely match with our Theorem 3.3.

5.4 Zero initialization works

In this experiment, we used a simple 5-block neural network on MNIST, where every block contains
a 784 ∗ 784 feedforward layer, an identity mapping, and a ReLU layer. Cross entropy criterion is
used. We compare zero initialization with standard O(1/

√
d) random initialization. We found that

for zero initialization, we can get 1.28% test error, while for random initialization, we can get 1.27%
test error. Both results were obtained by taking average among 5 runs and use step size 0.1, batch
size 256. If the identity mapping is removed, zero initialization no longer works.

5.5 Spectral norm of W∗

We also applied the exact model f defined in (1) to distinguish two classes in MNIST. For any input
image x, We say it’s in class A if f(x,W) < TA,B , and in class B otherwise. Here TA,B is the
optimal threshold for the function f(x,0) to distinguish A and B. If W = 0, we get 7% training
error for distinguish class 0 and class 1. However, it can be improved to 1% with ‖W‖2 = 0.6.
We tried this experiment for all possible 45 pairs of classes in MNIST, and improve the average
training error from 34% (using W = 0) to 14% (using ‖W‖2 = 0.6). Therefore our model with
‖W‖2 = Ω(1) has reasonable expressive power, and is substantially different from just using the
identity mapping alone.

6 Discussions

The assumption that the input is Gaussian can be relaxed in several ways. For example, when
the distribution is N (0,Σ) where ‖Σ − I‖2 is bounded by a small constant, the same result holds
with slightly worse constants. Moreover, since the analysis relies Lemma 2.1, which is proved by
converting the original input space into polar space, it is easy to generalize the calculation to rotation
invariant distributions. Finally, for more general distributions, as long as we could explicitly compute
the expectation, which is in the form of O(W∗ −W) plus certain potential function, our analysis
framework may also be applied.

There are many exciting open problems. For example, Our paper is the first one that gives solid
SGD analysis for neural network with nonlinear activations, without unrealistic assumptions like
independent activation assumption. It would be great if one could further extend it to multiple layers,
which would be a major breakthrough of understanding optimization for deep learning. Moreover,
our two phase framework could be applied to other non-convex problems as well.
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A Flowchart of the proofs

Although the proofs of our theorems are intricate, many lemmas have clear intuition behind the
statement. Therefore, we add “*” to these lemmas, so that time constrained readers could feel
confident to skip the proofs. We also plot a flowchart of the proofs in Figure 9 to help the readers
spend time wisely.

Since the proofs are long and complicated, we choose to present them in a top-down way. That is,
we present the main theorems (Theorem 3.1, Theorem 3.2, and Theorem 3.3) in the main paper, and
then present the necessary lemmas in order to prove those main theorems in Section B, Section C
and Section D. Finally, we present the proofs for those lemma in Section G, Section H and Section I,
respectively.

B Compute Approximation Matrix

The exact form of−∇L(W)j in Lemma 2.1 contains variables like θi∗,j , θi,j , sin θi∗,j , sin θi,j , which
are hard to deal with. In this section, we compute the approximation of these terms using Taylor
series, and show that the approximation loss is minor. While the proofs are technically involved, the
claims themselves are not surprising. Hence, we encourage the readers to skip the proofs (Appendix
G) for the first reading.

Define the j-th column of the approximation matrix P as follows. See Definition 2.2 and Definition
2.3 for gj ,Aj .

Pj , P1,j + P2,j + P3,j , where

P1,j ,
d∑
i=1

π

2
(w∗i − wi),

P2,j , gjej + wj +

(
I− 1

2
ej + wj · ej + wj

>
)

Ajej + wj ,

P3,j ,
(π

2
− θj∗,j

)
(ej + w∗j )− π

2
(ej + wj) + ‖ej + w∗j ‖ sin θj∗,jej + wj .

Treat P1,j ,P2,j ,P3,j as j-th column of matrix P1,P2,P3 respectively, we have P = P1+P2+P3.
Although P depends on W, we abuse the notation and simply write P.
Claim B.1. Pj approximates −∇L(W)j by setting (π2 − θi,j) ≈ 〈ei + wi, ej + wj〉, (π2 − θi∗,j) ≈
〈ei + w∗i , ej + wj〉, sin θi,j ≈ 1− 1

2 〈ei + wi, ej + wj〉2 and sin θi∗,j ≈ 1− 1
2 〈ei + w∗i , ej + wj〉2.

Below we show that the approximation loss is negligible in terms of one point convexity and spectral
norm.
Lemma* B.2. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1

100 , |〈P +∇L(W),W∗ −W〉| < 0.085‖W∗ −W‖2F .

Lemma* B.3. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , ‖P +∇L(W)‖2 ≤ 3.5γ2.
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C Phase I: The Decreasing Potential Function

As we saw in Theorem 3.3, if ‖W‖2, ‖W∗‖2 is bounded by a constant γ = 1
100 , and the potential

function g ≤ 0.1, L(W) is 0.03-one point convex, which will give us convergence guarantee
according to Lemma 2.5. However, g could be larger than 0.1 initially, and as we run SGD, ‖W‖2
might be larger than 1

100 as well.

In this section, we address both problems by analyzing the dynamics of SGD, thus prove Theorem
3.2. The proofs can be found in Appendix H. Before proceeding to the interesting stuff, we need a
simpler form of∇L(W) to work with, see below.
Lemma C.1. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1

100 , the negative gradient of L(W) is approximately

Q(W) ,
π

2
(W∗ −W)

(
I + uu>

)
+ (W∗ −W)> − 2Diag(W∗ −W) + gI + W

where u is the all 1 vector. The approximation error is ‖Q(W)− [−∇L(W)]‖2 ≤ 61γ2.

We immediately get the bound of the gradient norm.
Lemma* C.2. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1

100 , ‖∇L(W)‖2 ≤ 6dγ.

Now we are ready to analyze the dynamics. We use subscript t under each variable to denote its value
at the step t. For simplicity, let Qt , Q(Wt). Define st , (W∗ −Wt)u. We first compute the
updating rule for gt.

Lemma C.3. If ‖Wt‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , d ≥ 100, η ≤ γ2

G2
2

, then |gt+1| ≤ (1 − 0.95ηd)|gt| +
86ηdγ2 + 1.03η

√
dε+ 4.8η‖st‖2γ

√
d.

The bound contains ‖st‖2 which could be large, so we also need to compute its updating rule:

Lemma C.4. If ‖Wt‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , then ‖st+1‖2 ≤

(
1− η (d+1)π

2

)
‖st‖2 + η(6.61γ +

1.03|gt|+ ε)
√
d.

Combining the two lemmas, we are ready to show that gt will shrink, conditioned on that ‖Wt‖2 is
bounded by γ.

Lemma C.5. If for every step t > 0, ‖Wt‖2, ‖W∗‖2 ≤ γ ≤ 1
100 ,d ≥ 100, η ≤ γ2

G2
2

, ε ≤ γ2, then

|gt| will keep decreasing by a factor of 1− 0.5ηd for every step, until |gt1 | ≤ 197γ2 for t1 ≤ 1
16η .

Fortunately, we also know that ‖Wt‖2 is always bounded by γ during the process described in
Lemma C.5.
Lemma C.6. There exists a constant γ > γ0 > 0 such that if ‖W0‖2, ‖W∗‖2 ≤ γ0, d ≥ 100,
η ≤ γ2

G2
2

, ε ≤ γ2, then in the process of Phase I (Lemma C.5), we always have ‖WT ‖2 ≤ γ ≤ 1
100

for any T > 0.

Now, we are at the state where |gt| is small, and ‖WT ‖2 ≤ γ, which means we are in Phase II. The
next lemma ensures that we will stay in Phase II forever.
Lemma C.7. There exists a constant γ0 > γ > 0 such that if ‖W0‖2, ‖W∗‖2 ≤ γ0, d ≥ 100,
η ≤ γ2

G2
2

, ε ≤ γ2, then after |gt1 | ≤ 197γ2, Phase I ends and Phase II starts. That is, for every
T > t1, ‖WT ‖2 ≤ γ and |gT | ≤ 0.1.

Proof for Theorem 3.2. We immediately get Theorem 3.2 by combining the above three lemmas.
They show that gt will decrease to a small value in Phase I (Lemma C.5), ‖Wt‖2 will keep small
during this process (Lemma C.6), and they all keep small afterwards (Lemma C.7).

D Phase II: One Point Convexity

In this section, we prove Theorem 3.3. See detailed proofs in Appendix I. Using Lemma B.2, it
suffices to bound

〈P,W∗ −W〉 =

d∑
j=1

〈P1,j + P2,j + P3,j , w
∗
j − wj〉
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Here the first term is easy to calculate.

d∑
j=1

〈P1,j , w
∗
j − wj〉 =

π

2

∥∥∥∥∥
d∑
i=1

(w∗i − wi)

∥∥∥∥∥
2

2

≥ 0 (3)

For notational simplicity, denote

xj ,
(
ej + wj · ej + wj

>
)

(w∗j − wj),

X , (x1, · · · , xd) (4)

zj ,

(
I− 1

2
ej + wj · ej + wj

>
)

(w∗j − wj) (5)

By Definition of P2,j and (5), we have

d∑
j=1

〈P2,j , w
∗
j − wj〉 =

d∑
j=1

〈
gjej + wj , w

∗
j − wj

〉
+

d∑
j=1

z>j Ajej + wj (6)

We bound the above two terms separately below.
Lemma D.1. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1

100 , then

d∑
j=1

z>j Ajej + wj ≥ − (1.3 + 8γ) ‖W∗ −W‖2F + ‖W∗ −W‖F ‖X‖F .

Lemma D.2. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , then

d∑
j=1

〈gjej + wj , w
∗
j − wj〉 ≥ −‖W∗ −W‖F ‖X‖F −

(1 + γ)g‖W∗ −W‖2F
2(1− 2γ)

It remains to bound
∑d
j=1〈P3,j , w

∗
j − wj〉. We have the following lemma.

Lemma D.3. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 ,

∑d
j=1〈P3,j , w

∗
j − wj〉 ≥

(
π
2 − 0.021

)
‖W∗ −W‖2F .

Proof of Theorem 3.3. By (3), (6), Lemma D.1, Lemma D.2 and Lemma D.3, we know

〈P,W∗ −W〉 ≥
(
π

2
− 1.321− 8γ − (1 + γ)g

2(1− 2γ)

)
‖W∗ −W‖2F >

(
0.169− (1 + γ)g

2(1− 2γ)

)
‖W∗ −W‖2F

Using Lemma B.2, we get

〈−∇L(W),W∗ −W〉 >
(

0.084− (1 + γ)g

2(1− 2γ)

)
‖W∗ −W‖2F > 0.03‖W∗ −W‖2F

The last inequality holds when g ≤ 0.1.

E A Geometric Lemma

In our proof, we need very tight bounds for a few terms. In order to get such bounds, we present a
nice and intuitive geometric lemma as follows.
Lemma E.1. If ‖W‖2, ‖W∗‖2 ≤ γ, then ∀i ∈ [d],

1. ‖ei + w∗i − ei + wi‖2 ≤ ‖(I−ei+wi·ei+wi
>
)(w∗i−wi)‖2√

1−2γ ≤ ‖w
∗
i−wi‖2√
1−2γ

2. −‖w
∗
i−wi‖

2
2

2(1−2γ) ≤ 〈ei + w∗i − ei + wi, ei + wi〉 ≤ 0

3. if γ ≤ 1
100 ,0 ≤ θi,i∗ ≤ 1.001‖w∗i − wi‖2.
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Figure 10: For Lemma E.1

Proof. See Figure 10. Denote ei+w∗i as
−−→
OC, ei+wi as

−−→
OD, ei + w∗i as

−→
OA, ei + wi as

−−→
OB. Thus,

‖w∗i − wi‖2 = ‖
−−→
DC‖2.

1. Since
−−→
OD⊥

−−→
CF , we know ‖

−−→
CD‖2 ≥ ‖

−−→
CF‖2. Since4CFO ∼ 4AEO, we know

‖
−−→
CD‖2
‖
−→
AE‖2

≥ ‖
−−→
CF‖2
‖
−→
AE‖2

=
‖
−−→
OC‖2
‖
−→
OA‖2

= ‖ei + w∗i ‖2 ≥ 1− γ (7)

The last inequality holds as ‖W∗‖2 ≤ γ.

Notice that ‖
−→
OA‖2 = ‖

−−→
OB‖2 = 1, we know4ABO is a isosceles triangle. Thus, ‖

−→
AG‖2 = ‖

−−→
GB‖2.

Notice that4ABE ∼ 4BGO, we have

‖
−→
AE‖2
‖
−−→
AB‖2

=
‖
−−→
OG‖2
‖
−−→
OB‖2

=

√
1− ‖

−−→
GB‖22

1
(8)

WLOG, assume ‖
−−→
OC‖2 ≥ ‖

−−→
OD‖2, as shown in the figure. We draw

−−→
HB ‖

−−→
CD, and we know

‖
−−→
OH‖2 ≥ ‖

−−→
OB‖2 = ‖

−→
OA‖2. Since4CDO ∼ 4HBO, we have

‖
−−→
CD‖2
‖
−−→
HB‖2

=
‖
−−→
OD‖2
‖
−−→
OB‖2

= ‖
−−→
OD‖2 ≥ 1− γ

So ‖
−−→
CD‖2 ≥ (1 − γ)‖

−−→
HB‖2. On the other hand, ∠BAO < π

2 , and A is between H and O, so

∠BAH > π
2 , which means ‖

−−→
HB‖2 ≥ ‖

−−→
AB‖2 = 2‖

−−→
GB‖2. Thus, ‖

−−→
GB‖2 ≤ ‖

−−→
HB‖2
2 ≤ ‖

−−→
CD‖2

2(1−γ) .

Substitute it into (8), we get

‖
−→
AE‖2
‖
−−→
AB‖2

≥

√
1− ‖

−−→
CD‖22

4(1− γ)2
≥

√
1−

(
γ

1− γ

)2

The last inequality holds since ‖
−−→
CD‖2 = ‖w∗i − wi‖2 ≤ 2γ.

Substitute this inequality into (7), we get

‖ei + w∗i − ei + wi‖2 = ‖
−−→
AB‖2

≤ ‖
−→
AE‖2√

1−
(

γ
1−γ

)2 ≤ ‖
−−→
CF‖2

(1− γ)

√
1−

(
γ

1−γ

)2 (9)

≤ ‖
−−→
CD‖2

(1− γ)

√
1−

(
γ

1−γ

)2 =
‖w∗i − wi‖2√

1− 2γ
(10)

Notice that ei + wi
>

(w∗i − wi) = −‖
−−→
DF‖2, so ei + wi · ei + wi

>
(w∗i − wi) =

−−→
DF . That means,

‖(I− ei + wi · ei + wi
>

)(w∗i − wi)‖2 = ‖
−−→
DC −

−−→
DF‖2 = ‖

−−→
CF‖2
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The lemma follows by (9) and (10).

2. By Figure 10, we know |〈ei + w∗i − ei + wi, ei + wi〉| = ‖
−−→
BE‖2. Since4ABE ∼ 4GBO, we

have
‖
−−→
BE‖2
‖
−−→
AB‖2

=
‖
−−→
GB‖2
‖
−−→
BO‖2

=
‖
−−→
AB‖2

2

Therefore, using (10) we get

|〈ei + w∗i − ei + wi, ei + wi〉| =
‖
−−→
AB‖22

2
≤ ‖w

∗
i − wi‖22

2(1− 2γ)

Moreover, 〈ei + w∗i − ei + wi, ei + wi〉 =〈ei + w∗i , ei + wi〉 − 1 ≤ 0.

3. We know that

θi,i∗ = 2 arcsin ‖
−→
AG‖2 = 2 arcsin

‖ei + w∗i − ei + wi‖2
2

≤ ‖ei + w∗i − ei + wi‖2 +
‖ei + w∗i − ei + wi‖32

8

The last inequality holds by Taylor’s Series for arcsin, and the fact ‖ei + w∗i−ei + wi‖2 = ‖
−−→
AB‖2 ≤

‖w∗i − wi‖2 ≤ 2γ ≤ 1
50 . Thus, we have θi,i∗ ≤ 1.001‖w∗i − wi‖2.

F More Handy Lemmas

Lemma* F.1. If ‖W‖2, ‖W∗‖2 ≤ γ, then

• (1−γ)2
(1+γ)2 I � I + W

>
I + W � (1+γ)2

(1−γ)2 I, (1−γ)2
(1+γ)2 I � I + W∗>I + W∗ � (1+γ)2

(1−γ)2 I,

• (1 − γ)2I � (I + W)>(I + W) � (1 + γ)2I, (1 − γ)2I � (I + W∗)>(I + W∗) �
(1 + γ)2I.

Therefore, the singular value of I + W is at most 1+γ
1−γ and at least 1−γ

1+γ . The singular value of I + W

is at most 1 + γ and at least 1− γ. The same claims hold for I + W∗, I + W∗ respectively.

Proof. Since ‖W‖2 ≤ γ, we have 1− γ ≤ ‖I + W‖2 ≤ 1 + γ, and 1− γ ≤ ‖ei + wi‖2 ≤ 1 + γ.
Therefore, I + W = Σ(I + W) where Σ is a diagonal matrix whose entries are within [ 1

1+γ ,
1

1−γ ].

Putting into I + W
>

I + W, we have

I + W
>

I + W = (I + W)>Σ2(I + W) � 1

(1− γ)2
(I + W)>(I + W) � (1 + γ)2

(1− γ)2
I

Similarly we can show I + W
>

I + W � (1−γ)2
(1+γ)2 I. Thus we know the singular value of I + W is at

most 1+γ
1−γ and at least 1−γ

1+γ . The same proof works for I + W, I + W∗ and I + W∗.

Lemma* F.2. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , we have

|〈ei + w∗i , ej + wj〉| ≤ 2.1γ, |〈ei + wi, ej + wj〉| ≤ 2.1γ

Proof. We know

|〈ei + w∗i , ej + wj〉| =
|〈ei + w∗i , ej + wj〉|
‖ei + w∗i ‖2‖ej + wj‖2

≤ |〈ei + w∗i , ej + wj〉|
(1− γ)2

=
|w∗i,j |+ |wi,j |+ |〈wi, wj〉|

(1− γ)2
≤ (2 + γ)γ

(1− γ)2
≤ 2.1γ

where the last inequality holds since γ ≤ 1
100 . The same analysis works for 〈ei + wi, ej + wj〉.

Lemma* F.3 (Triangle inequality between ei+wi, ei+w∗i , w
∗
i −wi). |‖ei+wi‖2−‖ei+w∗i ‖2| ≤

‖w∗i − wi‖2.
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Lemma* F.4. If ‖W‖2, ‖W∗‖2 ≤ γ, |g| ≤ 2dγ.

Proof. By definition and Lemma F.3, we know |g| =
∑d
i=1(‖ei+w∗i ‖2−‖ei+wi‖2) ≤

∑d
i=1 ‖w∗i −

wi‖2 ≤ 2dγ.

Lemma* F.5. If ‖W‖2, ‖W∗‖2 ≤ γ, |〈ei + w∗i − ei + wi, ej + wj〉| ≤ ‖w
∗
i−wi‖2√
1−2γ .

Proof. By Cauchy Schwartz and Lemma E.1 term 1.

Lemma* F.6. |xk − yk| ≤ k
2 |x− y|(|x|

k−1 + |y|k−1).

Proof. |xk − yk| =
∣∣∣(x− y)

∑k−1
t=1

xtyk−t−1+ytxk−t−1

2

∣∣∣ ≤ k
2 |x − y|(|x|

k−1 + |y|k−1), where the

last inequality holds since |xtyk−t−1 +ytxk−t−1| ≤ |x|t|y|k−t−1 + |y|t|x|k−t−1 ≤ |x|k−1 + |y|k−1,
by rearrangement inequality.

Lemma* F.7. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , for k ≥ 3, we have

‖〈ei + w∗i , ej + wj〉k(ei + w∗i )− 〈ei + wi, ej + wj〉k(ei + wi)‖2
≤6(2.2γ)k−3

(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

)
‖w∗i − wi‖2

Proof.

‖〈ei + w∗i , ej + wj〉k(ei + w∗i )− 〈ei + wi, ej + wj〉k(ei + wi)‖2
≤‖w∗i − wi‖2|〈ei + w∗i , ej + wj〉k|+ ‖(〈ei + w∗i , ej + wj〉k − 〈ei + wi, ej + wj〉k)(ei + wi)‖2
≤‖w∗i − wi‖2|〈ei + w∗i , ej + wj〉k|+ (1 + γ)|〈ei + w∗i , ej + wj〉k − 〈ei + wi, ej + wj〉k|
¬
≤‖w∗i − wi‖2(2.1γ)k−2〈ei + w∗i , ej + wj〉2

+
(1 + γ)k

2
|〈ei + w∗i − ei + wi, ej + wj〉|(|〈ei + w∗i , ej + wj〉|k−1 + |〈ei + wi, ej + wj〉|k−1)

≤〈ei + w∗i , ej + wj〉2
(
‖w∗i − wi‖2(2.1γ)k−2 +

(1 + γ)k(2.1γ)k−3

2
|〈ei + w∗i − ei + wi, ej + wj〉|

)
+ 〈ei + wi, ej + wj〉2

(
(1 + γ)k(2.1γ)k−3

2
|〈ei + w∗i − ei + wi, ej + wj〉|

)
­
≤‖w∗i − wi‖2

[(
(2.1γ)k−2 + 0.52k(2.1γ)k−3

)
〈ei + w∗i , ej + wj〉2 + 0.52k(2.1γ)k−3〈ei + wi, ej + wj〉2

]
®
≤‖w∗i − wi‖2

[
0.55k(2.1γ)k−3〈ei + w∗i , ej + wj〉2 + 0.52k(2.1γ)k−3〈ei + wi, ej + wj〉2

]
¯
≤6(2.2γ)k−3

(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

)
‖w∗i − wi‖2

where ¬ uses Lemma F.2 and Lemma F.6, ­ uses Lemma F.5, ® holds as γ ≤ 1
100 , and ¯ holds

since 0.55k(2.1)k−3 ≤ 6(2.2)k−3 for k ≥ 3.

Lemma* F.8. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , for k ≥ 2,∣∣‖ei + wi‖2〈ei + wi, ej + wj〉2k − ‖ei + w∗i ‖2〈ei + w∗i , ej + wj〉2k

∣∣
≤8(2.2γ)2k−3

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
‖w∗i − wi‖2
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Proof.∣∣‖ei + wi‖2〈ei + wi, ej + wj〉2k − ‖ei + w∗i ‖2〈ei + w∗i , ej + wj〉2k
∣∣

≤‖ei + wi‖2
∣∣〈ei + wi, ej + wj〉2k − 〈ei + w∗i , ej + wj〉2k

∣∣+ |‖ei + wi‖2 − ‖ei + w∗i ‖2| 〈ei + w∗i , ej + wj〉2k

¬
≤‖ei + wi‖2

∣∣〈ei + wi, ej + wj〉2k − 〈ei + w∗i , ej + wj〉2k
∣∣+ ‖w∗i − wi‖2(2.1γ)2k−2〈ei + w∗i , ej + wj〉2

­
≤(1 + γ)k|〈ei + wi − ei + w∗i , ej + wj〉|

(
|〈ei + wi, ej + wj〉|2k−1 + |〈ei + w∗i , ej + wj〉|2k−1

)
+ ‖w∗i − wi‖2(2.1γ)2k−2〈ei + w∗i , ej + wj〉2

®
≤
[

(1 + γ)k(2.1γ)2k−3√
1− 2γ

〈ei + wi, ej + wj〉2 +

(
(1 + γ)k(2.1γ)2k−3√

1− 2γ
+ (2.1γ)2k−2

)
〈ei + w∗i , ej + wj〉2

]
‖w∗i − wi‖2

¯
≤1.05k(2.1γ)2k−3

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
‖w∗i − wi‖2

°
≤8(2.2γ)2k−3

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
‖w∗i − wi‖2

where ¬ uses Lemma F.2 and Lemma F.3, ­ uses Lemma F.6, ® uses Lemma F.5, ¯ holds as
γ ≤ 1

100 , and ± holds as 1.05k(2.1)2k−3 ≤ 8(2.2)2k−3 for k ≥ 2.

Lemma* F.9. If ‖W‖2, ‖W∗‖2 ≤ γ, for fixed j ∈ [d],∑
i 6=j

〈ei + wi, ej + wj〉2 ≤
4γ

(1− γ)2
,

∑
i 6=j

〈ei + w∗i , ej + wj〉2 ≤
4γ(1 + γ)

1− 2γ
.

Similarly, for fixed i ∈ [d],∑
j 6=i

〈ei + wi, ej + wj〉2 ≤
4γ

(1− γ)2
,

∑
j 6=i

〈ei + w∗i , ej + wj〉2 ≤
4γ(1 + γ)

1− 2γ
.

Proof. By matrix multiplication,

d∑
i=1

〈ei + w∗i , ej + wj〉2 =

d∑
i=1

ej + wj
>
ei + w∗i ·ei + w∗i

>
ej + wj = ej + wj

>
I + W∗·I + W∗>ej + wj

By Lemma F.1, we know I + W∗ · I + W∗> � (1+γ)2

(1−γ)2 I. That means,
∑d
i=1〈ei + w∗i , ej + wj〉2 ≤

(1+γ)2

(1−γ)2 . On the other hand, by Lemma E.1 term 2, 〈ej + w∗j , ej + wj〉2 = (1 − 〈ej + w∗j −

ej + wj , ej + wj〉)2 ≥ 1− ‖w
∗
i−wi‖

2
2

1−2γ .

Therefore, we know∑
i 6=j

〈ei + w∗i , ej + wj〉2 ≤
(1 + γ)2

(1− γ)2
− 1 +

‖w∗i − wi‖22
1− 2γ

=
4γ

(1− γ)2
+
‖w∗i − wi‖22

1− 2γ
≤ 4γ(1 + γ)

1− 2γ

Using the same analysis, we get
∑
i 6=j〈ei + wi, ej + wj〉2 ≤ (1+γ)2

(1−γ)2 − 1 = 4γ
(1−γ)2 . The analysis for

fixed i is similar.

Lemma* F.10. For any matrix A, we have ‖Diag(A)‖2 ≤ ‖A‖2 and ‖Off-Diag(A)‖2 ≤ 2‖A‖2.

Proof. By definition, we know ‖Diag(A)‖2 = maxi∈[d] e
>
i Aei ≤ maxv∈Rd v

>Av = ‖A‖2, and
‖Off-Diag(A)‖2 ≤ ‖A‖2 + ‖Diag(A)‖2 ≤ 2‖A‖2.

Lemma* F.11. If ‖W‖2, ‖W∗‖2 ≤ γ, ‖A‖2 ≤ 2γ(γ2+3)
1−γ2 .

Proof. By Lemma F.1, we have

‖A‖2 = ‖(I + W∗)I + W∗> − (I + W)I + W
>‖2 ≤

(1 + γ)2

1− γ
− (1− γ)2

1 + γ
=

2γ(γ2 + 3)

1− γ2
.
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Lemma* F.12. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , |ej + wj

>
Aej + wj − e>j Aej | ≤ 5γ2.

Proof.

|ej + wj
>

Aej + wj − e>j Aej | ≤ |ej + wj
>

A(ej + wj − ej)|+ |(ej + wj − ej)>Aej |
¬
≤ 4γ2(γ2 + 3)

1− γ2
­
< 5γ2

where ¬ uses Cauchy Schwartz, Lemma F.11 and ‖ej + wj−ej‖2 ≤ γ, and ­ holds as γ ≤ 1
100 .

Lemma* F.13. For any i ∈ [n], |‖[ei + w∗i ‖2 − ‖ei + wi‖2]− [w∗i,i − wi,i]| ≤ 6.07γ2.

Proof.

‖ei + wi‖2 − ‖ei + w∗i ‖2 = 〈ei + wi, ei + wi〉 − 〈ei + w∗i , ei + w∗i 〉
= 〈ei + wi, ei + wi − ei + w∗i 〉+ 〈wi − w∗i , ei + w∗i 〉
= 〈wi − w∗i , ei〉+ 〈ei + wi, ei + wi − ei + w∗i 〉+ 〈wi − w∗i , ei + w∗i − ei〉
= wi,i − w∗i,i + 〈ei + wi, ei + wi − ei + w∗i 〉+ 〈wi − w∗i , ei + w∗i − ei〉

As a result,

|[‖ei + wi‖2 − ‖ei + w∗i ‖2]− [wi,i − w∗i,i]| ≤ ||〈ei + wi, ei + wi − ei + w∗i 〉|+ |〈wi − w
∗
i , ei + w∗i − ei〉|

¬
≤ (1 + γ)2γ2

1− 2γ
+ 4γ2 ≤ 6.07γ2

where ¬ uses Lemma E.1 term 2 and ‖ei + w∗i − ei‖2 ≤ 2γ, and Cauchy Schwartz. So the claim
follows.

Corollary F.14. |g − Tr(W∗ −W)| ≤ 6.07dγ2.

Lemma* F.15. I + W is close to I on its diagonals, and close to W on its off-diagonals. More
specifically, if ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1

100 ,

‖Diag(I + W)− I‖2 ≤
γ2

2(1− γ)2
, ‖Diag(I + W∗)− I‖2 ≤

γ2

2(1− γ)2

‖Off-Diag(I + W −W)‖2 ≤
4γ2

1− γ
, ‖Off-Diag(I + W∗ −W∗)‖2 ≤

4γ2

1− γ
‖I + W − I‖2 ≤ 2.05γ, ‖I + W∗ − I‖2 ≤ 2.05γ

Proof. For the diagonal terms,

‖Diag(I + W)− I‖2 = max
j
|I + Wj,j − 1| = max

j

∣∣∣∣1 + wj,j − ‖ej + wj‖2
‖ej + wj‖2

∣∣∣∣
≤max

j

∣∣∣∣ (1 + wj,j)
2 − ‖ej + wj‖22

‖ej + wj‖2

∣∣∣∣ ∣∣∣∣ 1

1 + wj,j + ‖ej + wj‖2

∣∣∣∣ ≤ max
j

∑
i 6=j w

2
j,i

2(1− γ)2
≤ γ2

2(1− γ)2

For the off-diagonal terms, we know I + W = (I + W)Σ for some diagonal matrix Σ, so

‖Off-Diag(I + W −W)‖2 = ‖Off-Diag((I + W)Σ−W)‖2 = ‖Off-Diag((Σ− I)W)‖2
¬
≤ 2‖(Σ− I)W‖2 ≤

4γ2

1− γ

where ¬ uses Lemma F.10. For the difference between I + W and I, we split I + W into diagonal
and off-diagonal parts:

‖I + W − I‖2 = ‖Diag(I + W) + Off-Diag(I + W)− I‖2

=‖Off-Diag(W)‖2 +
γ2

2(1− γ)2
+

4γ2

1− γ
¬
≤ 2‖W‖2 +

γ2(9− 8γ)

2(1− γ)2
≤ 2.05γ

where ¬ uses Lemma F.10.
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Lemma* F.16. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 ,

‖A− [W∗ −W + (W∗ −W)> −Diag(W∗ −W)]‖2 ≤ 9.2γ2

Proof. By definition,∥∥∥[(I + W∗)I + W∗> − (I + W)I + W
>]− [(W∗ −W) + (I + W∗> − I + W

>
)
]∥∥∥

2

=‖W∗(I + W∗> − I)−W(I + W
> − I)‖2 ≤ ‖W∗(I + W∗> − I)‖2 + ‖W(I + W)> − I)‖2

≤2.05γ2 + 2.05γ2 = 4.1γ2

where the last inequality uses Lemma F.15. Below we further approximate I + W∗> − I + W
>

.∥∥∥[I + W∗> − I + W
>]− [(W∗ −W)> −Diag(W∗ −W)

]∥∥∥
2

=
∥∥∥Diag(I + W∗> − I + W

>
) + Off-Diag(I + W∗> − I + W

>
)−

[
(W∗ −W)> −Diag(W∗ −W)

]∥∥∥
2

¬
≤‖Off-Diag(I + W∗> − I + W

>
)−Off-Diag(W∗ −W)>‖2 +

γ2

(1− γ)2

­
≤ 4γ2

1− γ
+

γ2

(1− γ)2
≤ 5.1γ2

where ¬ uses Lemma F.15, ­ uses Lemma F.15 Combining everything,

‖A− [W∗ −W + (W∗ −W)> −Diag(W∗ −W)]‖2 ≤ 9.2γ2

Using Lemma F.10, we immediately have the following corollary.

Corollary F.17. ‖Diag(A)−Diag(W∗ −W)‖2 ≤ 9.2γ2.

Lemma* F.18. For η ≤ 1
πd ,∥∥∥I− η (π

2
uu> +

(π
2

+ 1
)

I
)∥∥∥

2
≤
(

1− η
(π

2
+ 1
))

Proof. Consider another basis (e′1, · · · , e′d) where e′1 = u
‖u‖2 . For every unit vector v = (v1, · · · , vd)

in this new space, we know

vT
(
I− η

(π
2
uu> +

(π
2

+ 1
)

I
))

v = ‖v‖22 − η
(π

2
+ 1
)
‖v‖22 −

πηd

2
v21

Hence we get

0 ≤ vT
(
I− η

(π
2
uu> +

(π
2

+ 1
)

I
))

v ≤
(

1− η
(π

2
+ 1
))
‖v‖22

By definition of matrix norm, the lemma follows.

G Proofs for Section B

G.1 Proof for Claim B.1

Comparing with Lemma 2.1, we know that for fixed j, P1,j is already contained in −∇L(W)j as
the first term, while P3,j is simply the summand when i = j, ignoring the first term. Below we show
how to obtain P2,j from i 6= j cases. We will bound the approximation error in Lemma B.2 and
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Lemma B.3.

∑
i 6=j

((π
2
− θi∗,j

)
(ei + w∗i )−

(π
2
− θi,j

)
(ei + wi) + (‖ei + w∗i ‖ sin θi∗,j − ‖ei + wi‖ sin θi,j) ej + wj

)
≈
∑
i 6=j

(
〈ei + w∗i , ej + wj〉(ei + w∗i )− 〈ei + wi, ej + wj〉(ei + wi)

)
+
∑
i 6=j

(
‖ei + w∗i ‖

(
1− 1

2
〈ei + w∗i , ej + wj〉2

)
− ‖ei + wi‖

(
1− 1

2
〈ei + wi, ej + wj〉2

))
ej + wj

=
∑
i 6=j

((ei + w∗i )ei + w∗i
> − (ei + wi)ei + wi

>
)ej + wj

+
∑
i 6=j

(
‖ei + w∗i ‖ − ‖ei + wi‖ −

1

2
ej + wj

>
ei + w∗i ‖ei + w∗i ‖ei + w∗i

>
ej + wj

+
1

2
ej + wj

>
ei + wi‖ei + wi‖ei + wi

>
ej + wj

)
ej + wj

=Ajej + wj +

∑
i6=j

(‖ei + w∗i ‖ − ‖ei + wi‖)−
∑
i6=j

1

2
ej + wj

>
(ei + w∗i )ei + w∗i

>
ej + wj

+
∑
i 6=j

1

2
ej + wj

>
(ei + wi)ei + wi

>
ej + wj

 ej + wj

=Ajej + wj +

(
gj −

1

2
ej + wj

>
Ajej + wj

)
ej + wj = P2,j .

G.2 Proof for Lemma B.2

In order to prove this lemma, we bound the approximation loss of θi,j , θi∗,j in Lemma G.1, and the
approximation loss of sin θi,j , sin θi∗,j in Lemma G.2.

Lemma* G.1 (Approximation loss related to θi,j , θi∗,j). If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 ,

d∑
j=1

∑
i 6=j

∣∣∣〈(
π

2
− θi∗,j − 〈ei + w∗i , ej + wj〉)(ei + w∗i )− (

π

2
− θi,j − 〈ei + wi, ej + wj〉)(ei + wi), w

∗
j − wj

〉∣∣∣
≤0.083‖W∗ −W‖2F

Proof. By definition, π
2 − θi∗,j = arcsin〈ei + w∗i , ej + wj〉, and π

2 − θi,j =
arcsin〈ei + wi, ej + wj〉.

The Taylor series of arcsinx at x = 0 is
∑∞
k=0

(2k)!
4k(k!)2(2k+1)

x2k+1, where for k ≥ 1,

(2k)!

4k(k!)2(2k + 1)
≤ 1

6
(11)
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Thus,

d∑
j=1

∑
i 6=j

∣∣∣〈(
π

2
− θi∗,j − 〈ei + w∗i , ej + wj〉)(ei + w∗i )− (

π

2
− θi,j − 〈ei + wi, ej + wj〉)(ei + wi), w

∗
j − wj

〉∣∣∣
¬
≤

d∑
j=1

∑
i 6=j

∞∑
k=1

1

6

∣∣〈〈ei + w∗i , ej + wj〉2k+1(ei + w∗i )− 〈ei + wi, ej + wj〉2k+1(ei + wi), w
∗
j − wj

〉∣∣
­
≤

d∑
j=1

∑
i 6=j

∞∑
k=1

1

6

∥∥〈ei + w∗i , ej + wj〉2k+1(ei + w∗i )− 〈ei + wi, ej + wj〉2k+1(ei + wi)
∥∥
2
‖w∗j − wj‖2

®
≤

d∑
j=1

∑
i 6=j

∞∑
k=1

(2.2γ)2k−2
(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

)
‖w∗i − wi‖2‖w∗j − wj‖2

¯
≤

d∑
j=1

∑
i 6=j

1.01
(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

)
‖w∗i − wi‖2‖w∗j − wj‖2

°
≤1.01

 d∑
j=1

∑
i 6=j

(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

)
‖w∗i − wi‖22

 1
2

 d∑
j=1

∑
i 6=j

(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

)
‖w∗j − wj‖22

 1
2

≤1.01

 d∑
i=1

‖w∗i − wi‖22

∑
i 6=j

(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

) 1
2

 d∑
j=1

‖w∗j − wj‖22

∑
i 6=j

(
〈ei + w∗i , ej + wj〉2 + 〈ei + wi, ej + wj〉2

) 1
2

±
≤1.01

(
4γ

(1− γ)2
+

4γ(1 + γ)

1− 2γ

)
‖W∗ −W‖2F

²
≤ 0.083‖W∗ −W‖2F

where ¬ is by Taylor series, ­ uses Cauchy Schwartz, ® uses Lemma F.7, ¯ holds as γ ≤ 1
100 , °

uses Cauchy Schwartz, ± uses Lemma F.9, ² holds as γ ≤ 1
100 .

Lemma* G.2 (Approximation loss related to sin θi,j , sin θi∗,j). If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 ,

d∑
j=1

∑
i 6=j

∣∣∣∣(‖ei + w∗i ‖2
(

sin θi∗,j − 1 +
1

2
〈ei + w∗i , ej + wj〉2

)
−

‖ei + wi‖2
(

sin θi,j − 1 +
1

2
〈ei + wi, ej + wj〉2

))
〈ej + wj , w

∗
j − wj〉

∣∣∣∣ ≤ 0.002‖W∗ −W‖2F

Proof. By definition, we know θi∗,j = arccos〈ei + w∗i , ej + wj〉, and θi,j =

arccos〈ei + wi, ej + wj〉. The Taylor series of sin(arccosx) at x = 0 is 1 − x2

2 −
x4

8 −
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x6

16 −
5x8

128 − · · · =
∑∞
k=0 ckx

2k, where ck ≤ 1
8 for k ≥ 2. Thus,

d∑
j=1

∑
i 6=j

∣∣∣∣(‖ei + w∗i ‖2
(

sin θi∗,j − 1 +
1

2
〈ei + w∗i , ej + wj〉2

)
−

‖ei + wi‖2
(

sin θi,j − 1 +
1

2
〈ei + wi, ej + wj〉2

))
〈ej + wj , w

∗
j − wj〉

∣∣∣∣
¬
≤

d∑
j=1

∑
i 6=j

∣∣∣∣∣
∞∑
k=2

1

8

(
‖ei + wi‖2〈ei + wi, ej + wj〉2k − ‖ei + w∗i ‖2〈ei + w∗i , ej + wj〉2k

)∣∣∣∣∣ ‖w∗j − wj‖2
­
≤

d∑
j=1

∑
i 6=j

∞∑
k=2

(2.2γ)2k−3
(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
‖w∗i − wi‖2‖w∗j − wj‖2

®
≤2.3γ

 d∑
j=1

∑
i 6=j

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
‖w∗i − wi‖22

 1
2

 d∑
j=1

∑
i 6=j

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
‖w∗j − wj‖22

 1
2

≤2.3γ

 d∑
i=1

‖w∗i − wi‖22

∑
j 6=i

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

) 1
2

 d∑
j=1

‖w∗j − wj‖22

∑
i 6=j

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

) 1
2

¯
≤2.3γ

(
4γ

(1− γ)2
+

4γ(1 + γ)

1− 2γ

)
‖W∗ −W‖2F

°
< 0.002‖W∗ −W‖2F

where ¬ is by Taylor series, ­ uses Lemma F.8 and Cauchy Schwartz, ® uses Cauchy Schwartz and
γ ≤ 1

100 , ¯ uses Lemma F.9, and ° holds as γ ≤ 1
100 .

Proof for Lemma B.2. Combining the results from Lemma G.1 and Lemma G.2, the lemma follows.

G.3 Proof for Lemma B.3

Denote ∆ , P +∇L(W). This lemma is harder to prove than the previous one since we need to
bound the spectral norm of a matrix ∆. First of all, we need to represent ∆. Again, the difference
has two parts: approximation for θi,j , θi∗,j , and sin θi,j , sin θi∗,j . Denote the two parts as ∆1,∆2,
where ∆ = ∆1 + ∆2. From the proof of Lemma G.1, we know the j-th column of the first part is

∆1,j ,
∑
i 6=j

∞∑
k=1

(2k)!

4k(k!)2(2k + 1)

(
〈ei + w∗i , ej + wj〉2k+1(ei + w∗i )− 〈ei + wi, ej + wj〉2k+1(ei + wi)

)
And the j-th column of the second part is

∆2,j ,
∑
i6=j

∞∑
k=2

ck
(
‖ei + wi‖2〈ei + wi, ej + wj〉2k − ‖ei + w∗i ‖2〈ei + w∗i , ej + wj〉2k

)
ej + wj

Below we bound ‖∆1‖2 in Lemma G.3, and bounds ‖∆2‖2 in Lemma G.4.

Lemma* G.3. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , ‖∆1‖2 ≤ 3.4γ2.
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Proof. Define U,V such that for i = j,Ui,j = Vi,j = 0, and for i 6= j,

Ui,j =

∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
〈ei + w∗i , ej + wj〉2k+1,Vi,j =

∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
〈ei + wi, ej + wj〉2k+1

By matrix multiplication,

∆1 =

d∑
i=1

[(I + W∗)∗,iUi,∗ − (I + W)∗,iVi,∗] = (I + W∗)U− (I + W)V (12)

So it suffices to bound ‖U‖2, ‖V‖2. For i 6= j,

|Ui,j | =

∣∣∣∣∣
∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
〈ei + w∗i , ej + wj〉2k+1

∣∣∣∣∣ ¬
≤
∞∑
k=1

(2.1γ)2k−1

6
〈ei + w∗i , ej + wj〉2 ≤ 0.4γ〈ei + w∗i , ej + wj〉2

where ¬ uses Lemma F.2 and (11). Now, we know

‖U‖1
¬
= max

j

d∑
i=1

|Ui,j | ≤ max
j

∑
i 6=j

0.4γ〈ei + w∗i , ej + wj〉2
­
≤ 1.6(1 + γ)γ2

1− 2γ
≤ 1.65γ2

where ¬ is by definition, ­ uses Lemma F.9. Similarly,

‖U‖∞ = max
i

d∑
j=1

|Ui,j | ≤ max
i

∑
j 6=i

0.4γ〈ei + w∗i , ej + wj〉2 ≤ 1.65γ2

By Hölder’s inequality, we have

‖U‖2 ≤
√
‖U‖1‖U‖∞ ≤ 1.65γ2

Now we do the same analysis for V.

|Vi,j | =

∣∣∣∣∣
∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
〈ei + wi, ej + wj〉2k+1

∣∣∣∣∣
≤
∞∑
k=1

(2.1γ)2k−1

6
〈ei + wi, ej + wj〉2 ≤ 0.4γ〈ei + wi, ej + wj〉2

Hence, ‖V‖1 = maxj
∑d
i=1 |Vi,j | ≤ maxj

∑
i 6=j 0.4γ〈ei + wi, ej + wj〉2 ≤ 1.65γ2. Similarly,

‖V‖∞ ≤ 1.65γ2, and by Hölder’s inequality, ‖V‖2 ≤
√
‖V‖1‖V‖∞ ≤ 1.65γ2. Using (12), we

get

‖∆1‖2 ≤ ‖I + W∗‖2‖U‖2 + ‖I + W‖2‖V‖2 ≤ 2(1 + γ)1.65γ2 < 3.4γ2

Lemma* G.4. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , ‖∆2‖2 ≤ 6γ3.

Proof. By definition, we can write

∆2 = I + WDiag

∑
i 6=j

∞∑
k=2

ck
(
‖ei + wi‖2〈ei + wi, ej + wj〉2k − ‖ei + w∗i ‖2〈ei + w∗i , ej + wj〉2k

)
d

j=1

So it suffices to bound the norm of the diagonal matrix, which is the maximum of the diagonal entries.
For any j ∈ [d], we have
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∣∣∣∣∣∣
∑
i 6=j

∞∑
k=2

ck
(
‖ei + wi‖2〈ei + wi, ej + wj〉2k − ‖ei + w∗i ‖2〈ei + w∗i , ej + wj〉2k

)∣∣∣∣∣∣
≤
∑
i 6=j

∞∑
k=2

1

8

(
‖ei + wi‖2〈ei + wi, ej + wj〉2k|+ |‖ei + w∗i ‖2〈ei + w∗i , ej + wj〉2k

)
¬
≤
∑
i 6=j

∞∑
k=2

1

4
(1 + γ)(2.1γ)2k−2

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
­
≤0.6γ2

∑
i 6=j

(
〈ei + wi, ej + wj〉2 + 〈ei + w∗i , ej + wj〉2

)
®
≤0.6γ2

(
4γ

(1− γ)2
+

4γ(1 + γ)

1− 2γ

)
< 5γ3

where ¬ uses Lemma F.2, ­ uses γ ≤ 1
100 , ® uses Lemma F.9. So we get ‖∆2‖2 ≤ 1+γ

1−γ 5γ3 ≤
6γ3.

Proof for Lemma B.3. Combining the results from Lemma G.3 and Lemma G.4, the lemma follows.

H Proofs for Section C

H.1 Proof for Lemma C.1

In Lemma B.3, we use P(W) to approximate −∇L(W) in terms of spectral norm, with approx-
imation loss 3.5γ2. Below we will get Q(W) from P(W) by removing a few more lower order
terms.

By definition 2.3, we have

P2,j =gej + wj − (‖ej + w∗j ‖2 − ‖ej + wj‖2)ej + wj +

(
I− 1

2
ej + wj · ej + wj

>
)

Aej + wj

+

(
I− 1

2
ej + wj · ej + wj

>
)

(ej + wj)−
(

I− 1

2
ej + wj · ej + wj

>
)

(ej + w∗j )ej + w∗j
>
ej + wj

=gej + wj − (‖ej + w∗j ‖2 − ‖ej + wj‖2)ej + wj +

(
I− 1

2
ej + wj · ej + wj

>
)

Aej + wj

+
1

2
(ej + wj)− (ej + w∗j )ej + w∗j

>
ej + wj +

1

2
ej + wj‖ej + w∗j ‖2(ej + w∗j

>
ej + wj)

2

=gej + wj +

(
I− 1

2
ej + wj · ej + wj

>
)

Aej + wj +
3

2
(ej + wj)− ej + w∗j

>
ej + wj(ej + w∗j )

+

(
1

2
‖ej + w∗j ‖2(ej + w∗j

>
ej + wj)

2 − ‖ej + w∗j ‖2
)
ej + wj

=gej + wj +

(
I− 1

2
ej + wj · ej + wj

>
)

Aej + wj − w∗j + wj + (1− ej + w∗j
>
ej + wj)(ej + w∗j )

+

(
1

2
‖ej + wj‖2 +

1

2
‖ej + w∗j ‖2(ej + w∗j

>
ej + wj)

2 − ‖ej + w∗j ‖2
)
ej + wj

Combining every column together, we get

P2 = gI + W+AI + W−1

2
I + WDiag({ej + wj

>
Aej + wj}dj=1)−(W∗−W)+I + W∗Σ1+I + WΣ2
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where

Σ1 = Diag({(‖ej + w∗j ‖2 − ‖ej + w∗j ‖2ej + w∗j
>
ej + wj)}dj=1)

Σ2 = Diag({1

2
‖ej + wj‖2 +

1

2
‖ej + w∗j ‖2(ej + w∗j

>
ej + wj)

2 − ‖ej + w∗j ‖2}dj=1)

Using Lemma F.12, we replace ej + wj
>

Aej + wj with e>j Aej . By Lemma F.1,∥∥∥∥P2 −
[
gI + W + AI + W − 1

2
I + WDiag(A)− (W∗ −W) + I + W∗Σ1 + I + WΣ2

]∥∥∥∥
2

≤ 5(1 + γ)

2(1− γ)
< 2.6γ2

We then focus on the middle two summands in the sum.

AI + W − 1

2
I + WDiag(A) = (A− 1

2
Diag(A)) + A(I + W − I)− 1

2
(I + W − I)Diag(A)

By Lemma F.10, ‖Diag(A)‖2 ≤ ‖A‖2, so∥∥∥∥[AI + W − 1

2
I + WDiag(A)

]
−
[
A− 1

2
Diag(A)

]∥∥∥∥
2

=

∥∥∥∥A(I + W − I)− 1

2
(I + W − I)Diag(A)

∥∥∥∥
2

≤‖A‖2‖I + W − I‖2 +
1

2
‖I + W − I‖2‖Diag(A)‖2

¬
≤ 3γ(γ2 + 3)

1− γ2
2.05γ < 18.5γ2

where ¬ uses Lemma F.11 and Lemma F.15.

Moreover, by Lemma E.1 term 2, we know ‖Σ1‖2 ≤ maxi∈[d](1 + γ)
‖w∗i−wi‖

2
2

2(1−2γ) ≤ 2.07γ2, and in
Σ2,∣∣∣∣12‖ej + w∗j ‖2(ej + w∗j

>
ej + wj)

2 − 1

2
‖ej + w∗j ‖2

∣∣∣∣ ≤ 1

2
(1 + γ)

∣∣∣ej + w∗j
>
ej + wj − 1

∣∣∣ ∣∣∣ej + w∗j
>
ej + wj + 1

∣∣∣ ≤ 2.07γ2

so the following terms approximates P2 with approximation loss (2.6 + 18.5 + 2.07 + 2.07)γ2 <
25.3γ2.

I + W(gI−Σ3) + A− 1

2
Diag(A)− (W∗ −W)

where Σ3 = Diag({ 12‖ej + w∗j ‖2 − 1
2‖ej + wj‖2}dj=1).

By Lemma F.16 and Corollary F.17, we know ‖A−[W∗−W+(W∗−W)>−Diag(W∗−W)]‖2 ≤
9.2γ2 and ‖Diag(A)−Diag(W∗ −W)‖2 ≤ 9.2γ2. Therefore, with approximation loss of 18.4γ2,
we get∥∥∥∥[A− 1

2
Diag(A)

]
−
[
W∗ −W + (W∗ −W)> − 3

2
Diag(W∗ −W)

]∥∥∥∥
2

≤ 18.4γ2

We then approximate Σ3:

‖(I + W)Σ3 − (I + W)
1

2
Diag(W∗ −W)‖2 ≤

1 + γ

1− γ

(
1

2
max
j
|‖ej + w∗j ‖2 − ‖ej + wj‖2 − w∗j,j + wj,j |

)
< 3.1γ2

where the last inequality is by Lemma F.13. Moreover,

‖I + W

(
1

2
Diag(W∗ −W)

)
− 1

2
Diag(W∗ −W)‖2

≤‖I + W − I‖2
∥∥∥∥1

2
Diag(W∗ −W)

∥∥∥∥
2

< 2.05γ

(
1

2
max
i
|w∗i,i − wi,i|

)
< 2.05γ2

Putting everything together, with approximation loss of (25.3 + 18.4 + 3.1 + 2.05)γ2 = 49γ2 to P2,
we get

(W∗ −W)> − 2Diag(W∗ −W) + gI + W

For P3, using the same idea in the proof of Lemma D.3, we have

P3 =
π

2
(W∗ −W) +

(
I + W − I + W∗

)
Σ4 + I + WΣ5
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ei + wi

O

ei ∆wi

∆‖ei + wi‖2

Figure 11: ∆g is approximately (the summation of) the projection of ∆wi onto ei + wi

where Σ4 = Diag({θj,j∗‖ej+w∗j ‖2}dj=1),Σ5 = Diag({‖ej+w∗j ‖2 sin θj,j∗−θj,j∗‖ej+w∗j ‖2}dj=1).
By Taylor’s Theorem, we know ‖Σ5‖2 ≤ ‖Diag({‖ej + w∗j ‖2θ3j,j∗/3}dj=1)‖2.

Notice that θj,j∗ ≤ 2.002γ by Lemma E.1 term 3, and ‖I + W−I + W∗‖2 ≤ 1+γ
1−γ−

1−γ
1+γ ≤ 4.001γ.

Consequently,∥∥∥P3 −
π

2
(W∗ −W)

∥∥∥
2
≤ ‖

(
I + W − I + W∗

)
Σ4‖2 + ‖I + WΣ5‖2

<4.001 ∗ 2.002(1 + γ)γ2 +
(1 + γ)2

3(1− γ)
(2.002γ)

3
< 8.1γ2 + 2.8γ3 < 8.2γ2

we only need to keep the term π
2 (W∗ −W) with approximation loss 8.2γ2 to P3.

Now, combining the approximations to P2 and P3, and Lemma B.3, we have the following matrix
with (49 + 8.2 + 3.5)γ2 < 61γ2 approximation loss to −∇L(W):

π

2
(W∗ −W)

(
I + uu>

)
+ (W∗ −W)> − 2Diag(W∗ −W) + gI + W

where u is the all 1 vector.

H.2 Proof for Lemma C.2

By Lemma F.4, we know |g| ≤ 2dγ. Using Lemma C.1,

‖∇L(W)‖2 ≤ 61γ2 +
∥∥∥π

2
(W∗ −W)

(
I + uu>

)
+ (W∗ −W)> − 2Diag(W∗ −W) + gI + W

∥∥∥
2

≤61γ2 + (d+ 1)πγ + 2γ + 4γ + |g|1 + γ

1− γ
< 61γ2 + (d+ 3)πγ + 2.05dγ < 6dγ.

H.3 Proof for Lemma C.3

In this proof, we use wj to represent the j-th column of Wt, and denote4wj as the j-th column of
Gt.

H.3.1 ∆gt ≈ η〈L(Wt), I + Wt〉

For the intuition of this section, see Figure 11. The changes in potential function g is essentially the
changes in ‖ei + wi‖2 (summing over i), which is approximately ∆wi projected onto ei + wi. If we
write it in matrix form, we get ∆gt ≈ η〈L(Wt), I + Wt〉.

By definition we know ‖Gt‖2 = ‖∇L(Wt) + Et‖2
¬
≤ ‖∇L(Wt)‖2 + ‖Et‖2

­
≤ 6dγ + ε = G2,

where ¬ uses triangle inequality, ­ uses Lemma C.2. We have

η‖4wj‖2 ≤ η‖Gt‖2 ≤
γ2

G2
≤ γ

6d
, η2‖4wj‖2 ≤ η‖Gt‖22 ≤ γ2 (13)
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By Definition 2.2, we know

4gt , gt+1 − gt =

d∑
j=1

(
〈ej + wj , ej + wj〉
‖ej + wj‖2

− 〈ej + wj − η4wj , ej + wj − η4wj〉
‖ej + wj − η4wj‖2

)

=

d∑
j=1

(
〈ej + wj , ej + wj〉‖ej + wj − η4wj‖2 − 〈ej + wj − η4wj , ej + wj − η4wj〉‖ej + wj‖2

‖ej + wj‖2‖ej + wj − η4wj‖2

)

=

d∑
j=1

(
‖ej + wj‖2(‖ej + wj − η4wj‖2 − ‖ej + wj‖2) + 2η〈4wj , ej + wj〉 − η2‖4wj‖22

‖ej + wj − η4wj‖2

)

If we project η4wj onto the ej + wj direction, we get

‖ej + wj − η4wj‖2 =
√

(‖ej + wj‖2 − 〈ej + wj , η4wj〉)2 + (‖η4j‖22 − 〈ej + wj , η4wj〉2)2

≤
√

(‖ej + wj‖2 − 〈ej + wj , η4wj〉)2 + ‖η4wj‖22
¬
≤ ‖ej + wj‖2 − 〈ej + wj , η4wj〉+ ‖η4wj‖22

Using (13), we have ‖ej + wj‖2 − 〈ej + wj , η4wj〉 ≥ 1
2 . By taking square on both sides, we know

¬ holds. It is trivial to show that ‖ej + wj − η4wj‖2 ≥ ‖ej + wj‖2 − 〈ej + wj , η4wj〉, so we
know

−〈ej + wj , η4wj〉 ≤ ‖ej + wj − η4wj‖2 − ‖ej + wj‖2 ≤ −〈ej + wj , η4wj〉+ ‖η4wj‖22
(14)

Thus, with approximation loss
∑d
j=1

‖ej+wj‖2‖η4wj‖22
‖ej+wj−η4wj‖2 , we have :

4gt ≈
d∑
j=1

(
−‖ej + wj‖2〈ej + wj , η4wj〉+ 2η〈4wj , ej + wj〉 − η2‖4wj‖22

‖ej + wj − η4wj‖2

)

=

d∑
j=1

η〈4wj , ej + wj〉 − η2‖4wj‖22
‖ej + wj − η4wj‖2

=

d∑
j=1

−η2‖4wj‖22
‖ej + wj − η4wj‖2

+

d∑
j=1

(‖ej + wj‖2 − ‖ej + wj − η4wj‖2)η〈4wj , ej + wj〉
‖ej + wj − η4wj‖2

+ η〈Gt, I + Wt〉

Thus we get the following approximation for4gt.

|4gt − η〈Gt, I + Wt〉|

≤
d∑
j=1

∣∣∣∣ −η2‖4wj‖22
‖ej + wj − η4wj‖2

+
(‖ej + wj‖2 − ‖ej + wj − η4wj‖2)η〈4wj , ej + wj〉

‖ej + wj − η4wj‖2
+
‖ej + wj‖2‖η4wj‖22
‖ej + wj − η4wj‖2

∣∣∣∣
¬
≤

d∑
j=1

[∣∣∣∣η〈4wj , ej + wj〉(η〈4wj , ej + wj〉+ ‖η4wj‖22)

‖ej + wj − η4wj‖2

∣∣∣∣+ 0.02η2‖4wj‖22
]

­
≤

d∑
j=1

[
η2‖4wj‖22 + η3‖4wj‖32
‖ej + wj − η4wj‖2

+ 0.02ηγ2
]

®
≤ 1.04ηdγ2

where ¬ uses (14) again, and ­ ® uses (13), γ ≤ 1
100 and ‖ej + wj − η4wj‖2 ≥ 0.98.

Thus |4gt − η〈∇L(Wt), I + Wt〉| ≤ 1.04ηdγ2 + |η〈Et, I + Wt〉| < 1.04ηdγ2 + 1.03η
√
dε
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H.3.2 ∆gt ≈ ηTr(∇L(Wt))

We want to approximate I + Wt with I. Below is the error bound.

|〈∇L(Wt), I + Wt − I〉| = |〈∇L(Wt) + Qt −Qt, I + Wt − I〉|

¬
=d · 61γ2 · 2.05γ +

d∑
i=1

2.05γ
∥∥∥(Qt −

π

2
(W∗ −Wt)uu

>)i

∥∥∥
2

+
〈π

2
(W∗ −Wt)uu

>, I + Wt − I
〉

­
≤1.251dγ2 + 2.05dγ

(
πγ + 2γ + 4γ +

1 + γ

1− γ
|gt|
)

+ Tr
([π

2
(W∗ −Wt)u

] [
u>I + Wt − I

]>)
®
≤20dγ2 + 2.1dγ|gt|+

∥∥∥π
2

(W∗ −Wt)u
∥∥∥
2

∥∥(I + Wt − I)u
∥∥
2

¯
≤ 20dγ2 + 2.1dγ|gt|+

2.05π

2
‖s‖2γ

√
d

where ¬ uses Cauchy Schwartz and Lemma F.15, ­ uses the definition of Q and Lemma F.1, ®
holds as for any vector u, v, Tr(uv>) ≤ ‖u‖2‖v‖2, ¯ uses Lemma F.15.

Hence,

|4gt − η〈∇L(Wt), I〉|

≤1.04ηdγ2 + 1.03η
√
dε+ |η〈∇L(Wt), I + Wt − I〉|

<1.04ηdγ2 + 1.03η
√
dε+ 20ηdγ2 + 2.1ηdγ|gt|+

2.05π

2
η‖s‖2γ

√
d

<21.1ηdγ2 + 1.03η
√
dε+ 2.1ηdγ|gt|+

2.05π

2
η‖s‖2γ

√
d

So with approximation loss of 21.1ηdγ2 + 1.03η
√
dε+ 2.1ηdγ|gt|+ 2.05π

2 η‖s‖2γ
√
d, it suffices to

consider ηTr(∇L(Wt)).

H.3.3 ∆gt ≈ −η(d+ π
2 − 1)gt

According to Lemma C.1, with approximation loss of 61γ2, we can use −Qt to approximate
∇L(Wt).

Tr(Qt) =
π

2
Tr
(
(W∗ −Wt)

(
I + uu>

))
+ Tr(W∗ −Wt)

> − 2Tr(Diag(W∗ −Wt)) + gTr(I + Wt)

=
(π

2
− 1
)

Tr(W∗ −Wt) +
π

2
Tr
(
(W∗ −Wt)

(
uu>

))
+ gTr(I + Wt)

=
(π

2
− 1
)

(Tr(W∗ −Wt)− gt) +
(π

2
− 1
)
gt +

π

2
Tr
(
(W∗ −Wt)

(
uu>

))
+ gtTr(I + Wt)

Therefore,∣∣∣Tr(Qt)− gtTr(I)−
(π

2
− 1
)
gt

∣∣∣ =
∣∣∣Tr(Qt)−

(
d+

π

2
− 1
)
gt

∣∣∣
≤
∣∣∣(π

2
− 1
)

(Tr(W∗ −Wt)− gt) +
π

2
Tr
(
(W∗ −Wt)

(
uu>

))
+ gt(Tr(I + Wt − I))

∣∣∣
¬
≤6.07

(π
2
− 1
)
dγ2 +

π

2
‖st‖2

√
d+ 2.05|gt|dγ

where ¬ uses Lemma F.14 and Lemma F.15. Thus,∣∣∣4gt − [−η (d+
π

2
− 1
)
gt

]∣∣∣
≤η
[
21.1dγ2 + 1.03

√
dε+ 2.1dγ|gt|+

2.05π

2
‖s‖2γ

√
d+ 61dγ2 + 2.05|gt|dγ + 6.07

(π
2
− 1
)
dγ2 +

π

2
‖st‖2

√
d

]
≤η
[
86dγ2 + 1.03

√
dε+ 4.15dγ|gt|+ 4.8‖st‖2γ

√
d
]

Now we have

|gt+1| = |gt +4gt| ≤
(

1− η
(
d+

π

2
− 1− 4.15dγ

))
|gt|+ 86ηdγ2 + 1.03η

√
dε+ 4.8η‖st‖2γ

√
d

≤(1− 0.95ηd)|gt|+ 86ηdγ2 + 1.03η
√
dε+ 4.8η‖st‖2γ

√
d
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H.4 Proof for Lemma C.4

By definition of st,

4st , st+1 − st = (Wt −Wt+1)u = η(∇L(Wt) + Et)u = −ηQtu+ η(Qt +∇L(Wt) + Et)u

By definition of Qt,

Qtu =
(π

2
(W∗ −Wt)

(
I + uu>

)
+ (W∗ −Wt)

> − 2Diag(W∗ −Wt) + gtI + Wt

)
u

=
(d+ 1)π

2
st +

(
(W∗ −Wt)

> − 2Diag(W∗ −Wt) + gtI + Wt

)
u

Thus, we know∥∥∥∥Qtu−
(d+ 1)π

2
st

∥∥∥∥
2

=
∥∥((W∗ −Wt)

> − 2Diag(W∗ −Wt) + gtI + Wt

)
u
∥∥
2

≤
√
d
(
‖(W∗ −Wt)

>‖2 + 2‖Diag(W∗ −Wt)‖2 + ‖gtI + Wt‖2
)

¬
≤
√
d

(
2γ + 4γ + |gt|

1 + γ

1− γ

)
< (6γ + 1.03|gt|)

√
d

where ¬ uses Lemma F.1 and Lemma F.10.

By Lemma C.1, ‖4st − [−η (d+1)π
2 st]‖2 < η(6γ + 1.03|gt|)

√
d+ η‖(Qt +∇L(Wt) + Et)u‖2 ≤

η(6.61γ + 1.03|gt|+ ε)
√
d.

H.5 Proof for Lemma C.5

Combining Lemma C.3 and Lemma C.4, we get

|gt+1|+ ‖st+1‖2
≤(1− 0.95ηd)(|gt|+ ‖st‖2) + η(6.6γ + 1.03|gt|+ ε)

√
d+ 86ηdγ2 + 1.03η

√
dε+ (4.8ηγ

√
d− 0.62ηd)‖st‖2

¬
≤(1− 0.95ηd)(|gt|+ ‖st‖2) + 6.6ηγ

√
d+ 86ηdγ2 + η1.03|gt|

√
d+ 2.03η

√
dε

­
≤(1− 0.84ηd)(|gt|+ ‖st‖2) + 6.6ηγ

√
d+ 87ηdγ2

where ¬ uses γ ≤ 1
100 , d ≥ 100, ­ uses ε ≤ γ2 and d ≥ 100. So if the following inequality holds,

|gt|+ ‖st‖2 will always decrease by factor at least 1− 0.5ηd.

0.34ηd(|gt|+ ‖st‖2) ≥ 6.6ηγ
√
d+ 87ηdγ2

Which gives

|gt|+ ‖st‖2 ≥
6.6ηγ

√
d+ 87ηdγ2

0.34ηd
=

6.6γ

0.34
√
d

+
87γ2

0.34

where the last expression is smaller than 4.5γ. Hence, |gt|+ ‖st‖2 will keep decreasing by 1− 0.5ηd
as long as it is larger than 4.5γ. So we have ‖st‖2 ≤ 4.5γ. Now plug it back to the updating rule of
|gt|:

|gt+1| ≤(1− 0.95ηd)|gt|+ 86ηdγ2 + 1.03η
√
dε+ 4.8η‖st‖2γ

√
d

≤(1− 0.95ηd)|gt|+ 86ηdγ2 + 1.03η
√
dε+ 21.6ηγ2

√
d

In order to get factor 1− 0.5ηd, we have

0.45ηd|gt| ≥ 86ηdγ2 + 1.03η
√
dε+ 21.6ηγ2

√
d

Solve this inequality, we get

86ηdγ2 + 1.03η
√
dε+ 21.6ηγ2

√
d

0.45ηd
=

86γ2

0.45
+

1.03ε+ 21.6γ2

0.45
√
d

≤ 197γ2
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The last inequality uses d ≥ 100, ε ≤ γ2. So even after |gt| + ‖st‖2 is below 4.5γ, |gt| will keep
decreasing by factor 1− 0.5ηd until it is smaller than 197γ2.

Finally we bound the number of steps to arrive 197γ2. Let γ = 1
400 , γ0 = 1

8000 . Again, the constants
here are pretty loose. Since |gt| ≤ (1−0.5ηd)t|g0| ≤ (1−0.5ηd)t2dγ0, in order to let gt ≤ 197γ2, it

suffices to have t ≥
log 197γ2

2dγ0

log(1− ηd2 )
. Since ηd is small, by Taylor expansion we know log(1− ηd

2 ) ≈ −ηd2 .

Thus, it suffices to let t ≥ 2 log(0.203d)
ηd . Notice that log(0.203d)

d is decreasing for d ≥ 100, we know it
suffices to let t ≥ 1

16η .

H.6 Proof for Lemma C.6

Let H = W −W∗, by the updating rule of Wt and the definition of Qt, we know

Ht+1 = Ht − ηHt

(π
2
uu> +

π

2

)
− ηH>t + 2ηDiag(Ht) + ηgtI + W − η(Gt + Qt)

That gives,

‖Ht+1 + H>t+1‖2

≤
∥∥∥(Ht + H>t )

(
I− η

(π
2
uu> +

π

2
+ 1
))∥∥∥

2
+ 2η

∥∥Diag(Ht + H>t )
∥∥
2

+ 2η|gt|‖I + W‖2 + 2η ‖Et +∇L(Wt) + Qt‖2
¬
≤
(
I− η

(π
2

+ 1
))
‖Ht + H>t ‖2 + 2η‖Ht + H>t ‖2 +

2(1 + γ)η|gt|
1− γ

+ 2ηε+ 122ηγ2

­
≤
(
I− η

(π
2
− 1
))
‖Ht + H>t ‖2 + 2.05η|gt|+ 124ηγ2 (15)

where ¬ uses Lemma F.18, Lemma F.10, ‖Et‖2 ≤ ε and Lemma C.1. ­ uses ε ≤ γ2 and γ ≤ 1
100 .

Similarly, we get

‖Ht+1 −H>t+1‖2
¬
≤
∥∥∥(Ht −H>t )

(
I− η

(π
2
uu> +

π

2
− 1
))∥∥∥

2
+ η|gt|‖I + W − I + I− I + W

>‖2 + 2η ‖Et +∇L(Wt) + Qt‖2
­
≤
(
I− η

(π
2
− 1
))
‖Ht −H>t ‖2 + 4.10ηγ|gt|+ 124ηγ2 (16)

where ¬ holds as the diagonal terms cancel out, ­ uses Lemma F.18, Lemma F.15.

Adding (15) and (16), we get

‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2

≤
(
I− η

(π
2
− 1
)) (
‖Ht + H>t ‖2 + ‖Ht −H>t ‖2

)
+ 2.1η|gt|+ 248ηγ2 (17)

For any T > 0, by applying (17) recursively, we have

‖HT + H>T ‖2 + ‖HT −H>T ‖2 ≤ ‖H0 + H>0 ‖2 + ‖H0 −H>0 ‖2 + 2.1η

T−1∑
t=0

|gt|+ 248ηTγ2

By Lemma F.4 we know |g0| ≤ 2dγ0, so 2.1η
∑T−1
t=0 |gt| ≤

2.1η|g0|(1−(1−0.5ηd)T )
(0.5ηd) ≤ 4.2|g0|

d ≤
8.4γ0.

By the proof of Lemma C.5, we know T ≤ 1
16η , so 248ηTγ2 ≤ 15.5γ2.

By triangle inequality, we know ‖H0‖2 ≤ ‖W0‖2 + ‖W∗‖2 ≤ 2γ0, so ‖H0 + H>0 ‖2 + ‖H0 −
H>0 ‖2 ≤ 4‖H0‖2 ≤ 8γ0.

By triangle inequality again we get

‖HT ‖2 ≤ ‖HT+H>T ‖2+‖HT−H>T ‖2 ≤ ‖H0+H>0 ‖2+‖H0−H>0 ‖2+19γ2+8.4γ0 ≤ 16.4γ0+15.5γ2

Recall we set γ = 1
400 , γ0 = 1

8000 in the proof of Lemma C.5, we know ‖WT ‖2 ≤ ‖W∗‖2 +

‖HT ‖2 ≤ 17.4γ0 + 15.5γ2 ≤ 1
440 ≤ γ.
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H.7 Proof for Lemma C.7

First, by the proof of Lemma C.5, we know |gt| will keep small if ‖Wt‖2 ≤ γ ≤ 1
100 .

Adding (15) and (16), we get

‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2

≤
(
I− η

(π
2
− 1
)) (
‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2

)
+ 2.1η|gt|+ 248ηγ2

¬
≤
(
I− η

(π
2
− 1
)) (
‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2

)
+ 661ηγ2 (18)

where ¬ holds as |gt| ≤ 197γ2. So either ‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2 keeps decreasing,
or it increases, i.e.,

η
(π

2
− 1
) (
‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2

)
≤ 197ηγ2

That gives,

‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2 ≤
197γ2

π
2 − 1

≤ 346γ2

Therefore, combined with the proof of Lemma C.6, we know ‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2
will keep decreasing until it is at most 346γ2. Now,

‖Wt‖2 ≤ ‖Ht‖2 + ‖W∗‖2 ≤ ‖Ht+1 + H>t+1‖2 + ‖Ht+1 −H>t+1‖2 + γ0
¬
≤ (346 + 20)γ2 ≤ γ

where ¬ holds as γ0 = 1
8000 . So ‖Wt‖2 is always bounded by γ.

I Proofs for Section D

For notational simplicity, denote

xj ,
(
ej + wj · ej + wj

>
)

(w∗j − wj),

X , (x1, · · · , xd) (19)

yj ,
(
I− ej + wj · ej + wj

>
)

(w∗j − wj),

Y , (y1, · · · , yd) (20)

zj ,

(
I− 1

2
ej + wj · ej + wj

>
)

(w∗j − wj),

Z , (z1, · · · , zd)

We have the following relationship between xj , yj , zj .

Lemma I.1.

‖zj‖22 =
1

4
‖xj‖22 + ‖yj‖22, ‖xj‖22 + ‖yj‖22 = ‖w∗j − wj‖22 (21)

Proof for Lemma I.1. By definition,

‖zj‖22 =‖w∗j − wj‖22
(

I− 1

2
ej + wj · ej + wj

>
)>(

I− 1

2
ej + wj · ej + wj

>
)

=‖w∗j − wj‖22
(

I− ej + wj · ej + wj
>

+
1

4
ej + wj · ej + wj

>
ej + wj · ej + wj

>
)

=‖w∗j − wj‖22
(

I− 3

4
ej + wj · ej + wj

>
)
,
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and similarly

‖yj‖22 =‖w∗j − wj‖22
(
I− ej + wj · ej + wj

>
)> (

I− ej + wj · ej + wj
>
)

= ‖w∗j − wj‖22
(
I− ej + wj · ej + wj

>
)
,

‖xj‖22 =‖w∗j − wj‖22
(
ej + wj · ej + wj

>
)> (

ej + wj · ej + wj
>
)

= ‖w∗j − wj‖22
(
ej + wj · ej + wj

>
)

The lemma follows.

I.1 Proof for Lemma D.1

In this proof, we heavily use the following trick between the summation of four vector products, and
the trace of four matrix products. We give one example below, and other cases are similar.

Lemma I.2.
∑
i,j z

>
j (ei + w∗i )(ei + w∗i − ei + wi)

>ej + wj =

Tr
([

Z>(I + W∗)
] [

(I + W∗ − I + W)>I + W
])

.

Proof. By definition, Tr(AB) =
∑d
j=1(AB)j,j =

∑
i,j Aj,iBi,j . Thus,

Tr
([

Z>(I + W∗)
] [

(I + W∗ − I + W)>I + W
])

=
∑
i,j

[
Z>(I + W∗)

]
j,i

[
(I + W∗ − I + W)>I + W

]
i,j

By definition,
[
Z>(I + W∗)

]
j,i

= z>j (ei + w∗i ), and
[
(I + W∗ − I + W)>I + W

]
i,j

=

(ei + w∗i − ei + wi)
>ej + wj , so the lemma follows.

Now we proceed to prove Lemma D.1. We first bound
∑d
j=1 z

>
j Ajej + wj below by splitting Aj

into three parts, and then improve the lower bound in Lemma I.4.

Lemma I.3. If ‖W‖2, ‖W∗‖2 ≤ γ ≤ 1
100 , we have

d∑
j=1

z>j Ajej + wj ≥ −8γ‖W∗ −W‖2F −
√
‖W∗ −W‖2f −

3

4
‖X‖2F

√
‖W∗ −W‖2F − ‖X‖2F

.

Proof. We rewrite Aj as

Aj = Bj +
1

2
Cj + Dj (22)

where

Bj =
∑
i 6=j

(ei+w
∗
i )(ei + w∗i−ei + wi)

>, Cj =
∑
i 6=j

〈w∗i−wi, ei + wi〉ei + wi·ei + wi
>
, Dj =

∑
i 6=j

ziei + wi
>


For notational simplicity, we also write B,C,D as the corresponding terms with sum

∑d
i=1 instead

of
∑
i 6=j , so they do not depend on index j. We estimate B,C,D first, then estimate Bj ,Cj ,Dj

respectively by taking the differences.

1. From B to Bj :

d∑
j=1

z>j Bej + wj =
∑
i,j

z>j (ei + w∗i )(ei + w∗i − ei + wi)
>ej + wj

¬
=Tr

([
Z>(I + W)

] [
(I + W∗ − I + W)>I + W

]) ­
≥ −

∥∥(I + W)>Z
∥∥
F

∥∥∥I + W
>

(I + W∗ − I + W)
∥∥∥
F

®
≥− ‖I + W‖2‖I + W‖2 ‖Z‖F

∥∥I + W∗ − I + W
∥∥
F

¯
≥ − (1 + γ)2

1− γ
‖Z‖F

∥∥I + W∗ − I + W
∥∥
F

(23)
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where ¬ uses Lemma I.2, ­ uses Tr(AB) ≥ −‖A‖F ‖B‖F , ® uses ‖AB‖F ≤ ‖A‖2‖B‖F , and
¯ uses Lemma F.1. By Lemma E.1 term 1, we have

∥∥I + W∗ − I + W
∥∥
F
≤

√∑d
i=1 ‖yi‖22
1− 2γ

=
‖Y‖F√
1− 2γ

(24)

On the other hand,
d∑
j=1

z>j (Bj −B)ej + wj =

d∑
j=1

z>j (ej + w∗j )(ej + w∗j − ej + wj)
>ej + wj

=

d∑
j=1

(w∗j − wj)>(I− 1

2
ej + wj · ej + wj

>
)(ej + w∗j )(ej + w∗j − ej + wj)

>ej + wj

For any vector x, ej + wj · ej + wj
>
x is the projection of x onto the direction ej + wj , so 1

2 ≤
‖I− 1

2ej + wj · ej + wj
>‖2 ≤ 1, and

|(w∗j − wj)>(ej + w∗j )(ej + w∗j − ej + wj)
>ej + wj |

¬
≤ |(w∗j − wj)>(ej + w∗j )|

‖w∗j − wj‖22
2(1− 2γ)

­
≤
‖w∗j − wj‖32(1 + γ)

2(1− 2γ)
≤
‖w∗j − wj‖22(1 + γ)γ

1− 2γ
(25)

where ¬ uses Lemma E.1 term 2, and ­ uses Cauchy-Schwartz.

Combining (23),(24),(25), we get
d∑
j=1

z>j Bjej + wj ≥ −
(1 + γ)2

(1− γ)
√

1− 2γ
‖Z‖F ‖Y‖F −

(1 + γ)γ

1− 2γ
‖W∗ −W‖2F

2. From C to Cj :

d∑
j=1

z>j Cej + wj =
∑
i,j

z>j 〈w∗i − wi, ei + wi〉ei + wi · ei + wi
>
ej + wj

¬
=Tr(

[
Z>X

] [
I + W

>
I + W

]
) = Tr(Z>X) + Tr(Z>X(I + W

>
I + W − I))

­
≥Tr(Z>X)− ‖Z‖F ‖X‖F ‖I + W

>
I + W − I‖2

®
≥ Tr(Z>X)− 4γ

(1− γ)2
‖Z‖F ‖X‖F

where ¬ uses Lemma I.2 and xj = 〈w∗j − wj , ej + wj〉ej + wj , ­ uses Tr(AB) ≥ −‖A‖F ‖B‖F ,
and ‖AB‖F ≤ ‖A‖2‖B‖F , and ® uses Lemma F.1. On the other hand,

d∑
j=1

z>j (C−Cj)ej + wj =

d∑
j=1

z>j 〈w∗j − wj , ej + wj〉ej + wj · ej + wj
>
ej + wj

=

d∑
j=1

z>j 〈w∗j − wj , ej + wj〉ej + wj = Tr(Z>X)

That implies, 1
2

∑d
j=1 z

>
j Cjej + wj ≥ − 2γ

(1−γ)2 ‖Z‖F ‖X‖F .

3. From D to Dj :

d∑
j=1

z>j Dej + wj =
∑
i,j

z>j ziei + wi
>
ej + wj = Tr

([
Z>Z

] [
I + W

>
I + W

])
≥ (1− γ)2

(1 + γ)2
‖Z‖2F

where the last inequality holds by Lemma F.1. On the other hand,

z>j (D−Dj)ej + wj = ‖zj‖22
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That gives, ∑
j

z>j Djej + wj ≥ −
4γ

(1 + γ)2
‖Z‖2F

Now, combining Bj ,Cj ,Dj together, using (22), we have

d∑
j=1

z>j Ajej + wj ≥−
(1 + γ)2

(1− γ)
√

1− 2γ
‖Z‖F ‖Y‖F −

(1 + γ)γ

1− 2γ
‖W∗ −W‖2F

− 2γ

(1− γ)2
‖Z‖F ‖X‖F −

4γ

(1 + γ)2
‖Z‖2F

By definition, we know ‖X‖F ≤ ‖W∗ −W‖F , ‖Y‖F ≤ ‖W∗ −W‖F , ‖Z‖F ≤ ‖W∗ −W‖F ,
and γ ≤ 1

100 , so

− (1 + γ)γ

1− 2γ
‖W∗ −W‖2F −

2γ

(1− γ)2
‖Z‖F ‖X‖F −

4γ

(1 + γ)2
‖Z‖2F ≥ −7γ‖W∗ −W‖2F (26)

Moreover,

−
(

(1 + γ)2

(1− γ)
√

1− 2γ
− 1

)
‖Z‖F ‖Y‖F ≥ −0.05γ‖W∗ −W‖2F (27)

Thus, those are small order terms. The only term left is ‖Z‖F ‖Y‖F . By (21), we know

‖Z‖F ‖Y‖F ≤
√
‖W∗ −W‖2F −

3

4
‖X‖2F

√
‖W∗ −W‖2F − ‖X‖2F (28)

Combining (26), (27), (28), we get:

d∑
j=1

z>j Ajej + wj ≥ −8γ‖W∗ −W‖2F −
√
‖W∗ −W‖2f −

3

4
‖X‖2F

√
‖W∗ −W‖2F − ‖X‖2F

Now it remains to bound
√
‖W∗ −W‖2f −

3
4‖X‖

2
F

√
‖W∗ −W‖2F − ‖X‖2F .

Lemma I.4.

−
√
‖W∗ −W‖2F −

3

4
‖X‖2F

√
‖W∗ −W‖2F − ‖X‖2F ≥ −1.3‖W∗−W‖2F+‖W∗−W‖F ‖X‖F

Proof. Consider the function f(x) =
√
y2 − 3

4x
2
√
y2 − x2 + xy, where x ∈ [0, y]. It suffices to

show that f(x) ≤ 1.3y2.

Indeed, we know

f ′(x) =
x(6x2 − 7y2)

2
√

4y2 − 3x2
√
y2 − x2

+ y

When x = 0, f ′(x) = y > 0, and when x → y, f ′(x) < 0. We want to find the place where
f ′(x) = 0, which gives the maximum value. Assume x = λy, this is equivalent to solve

λy(6(λy)2 − 7y2) = −2y
√

4y2 − 3(λy)2
√
y2 − (λy)2

Cancel all y, and we get the solution x ≈ 0.566y, where f(x) ≈ 1.2845y2 < 1.3y2.

Proof of Lemma D.1. Combining Lemma I.3 and Lemma I.4, we have proved Lemma D.1.
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I.2 Proof for Lemma D.2

Again, we first consider the full sum, g =
∑d
i=1(‖ei + w∗i ‖2 − ‖ei + wi‖2).

By Lemma F.3, we have

|g − gj | = |‖ej + w∗j ‖2 − ‖ej + wj‖2| ≤ ‖w∗j − wj‖2
Thus by Cauchy Schwartz,

|(g − gj)〈w∗j − wj , ej + wj〉| ≤ ‖w∗j − wj‖2‖xj‖2

Summing over j, we get

d∑
j=1

|(g − gj)〈w∗j − wj , ej + wj〉| ≤
d∑
j=1

‖w∗j − wj‖2‖xj‖2 ≤ ‖W∗ −W‖F ‖X‖F (29)

where the last inequality is by Cauchy Schwartz.

Now

g

d∑
j=1

〈w∗j − wj , ej + wj〉 = g

d∑
j=1

〈ej + w∗j − ej + wj , ej + wj〉

=g

d∑
j=1

(‖ej + w∗j ‖2 − ‖ej + wj‖2 + 〈ej + w∗j , ej + wj − ej + w∗j 〉) = g2 + gb ≥ gb (30)

where b is defined to be
∑d
j=1〈ej + w∗j , ej + wj − ej + w∗j 〉. By Lemma E.1 term 2 we know

− (1 + γ)‖W∗ −W‖2F
2(1− 2γ)

≤ b ≤ 0

Combining (29), (30), the lemma follows.

d∑
j=1

〈gjej + wj , w
∗
j − wj〉 =

d∑
j=1

〈(gj − g)ej + wj , w
∗
j − wj〉+

d∑
j=1

〈gej + wj , w
∗
j − wj〉

≥ − ‖W∗ −W‖F ‖X‖F + g2 + gb ≥ −‖W∗ −W‖F ‖X‖F −
(1 + γ)g‖W∗ −W‖2F

2(1− 2γ)

I.3 Proof for Lemma D.3

d∑
j=1

〈P3,j , w
∗
j − wj〉 =

d∑
j=1

〈π
2

(w∗j − wj)− θj∗,j(ej + w∗j ) + ‖ej + w∗j ‖ sin θj∗,jej + wj , w
∗
j − wj〉

¬
=

d∑
j=1

〈π
2

(w∗j − wj)− θj∗,j‖ej + w∗j ‖2(ej + w∗j − ej + wj) +
αj∗,j |θj∗,j |3‖ej + w∗j ‖ej + wj

3
, w∗j − wj〉

­
≥π

2
‖W∗ −W‖2F −

d∑
j=1

1.001(1 + γ)‖w∗j − wj‖22‖ej + w∗j − ej + wj‖2 −
d∑
j=1

0.335(1 + γ)‖w∗j − wj‖42

®
≥π

2
‖W∗ −W‖2F −

d∑
j=1

1.001(1 + γ)√
1− 2γ

‖w∗j − wj‖32 −
d∑
j=1

0.335(1 + γ)‖w∗j − wj‖42

¯
≥
(π

2
− 0.021

)
‖W∗ −W‖2F

where ¬ uses Taylor’s Theorem for sin θj∗,j , so we know |αj∗,j | ≤ 1. ­ uses Lemma E.1 term 3
and Cauchy Schwartz, ® uses Lemma E.1 term 1, ¯ holds since γ ≤ 1

100 , and the two small order
terms can be bounded by 0.021‖W∗ −W‖2F .
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J Proofs for Section 2

J.1 Proof for Lemma 2.5

By the updating rule, we have

E‖Wt+1 −W∗‖2F = E‖Wt −W∗ − ηGt‖2F = E‖Wt −W∗‖2F − 2〈Wt −W∗, η∇f(W)〉+ η2‖Gt‖2F
≤E‖Wt −W∗‖2F − 2〈Wt −W∗, η∇f(W)〉+ η2tG

2 ≤ (1− 2ηδ)E‖Wt −W∗‖2F + η2G2

Now if ηδE‖Wt −W∗‖2F ≥ η2G2, we know the E‖Wt −W∗‖2F will decrease by a factor of
(1− ηδ) for every step. Otherwise, although it could increase, we know

E‖Wt −W∗‖2F ≤
ηG2

δ

By setting η = (1+α) log T
δT , we know after T steps, either E‖WT −W∗‖2F is already smaller than

ηG2

δ = (1+α) log TG2

δ2T , or it is decreasing by factor of (1− ηδ) for every step, which means

E‖WT−W∗‖2F ≤ E‖W0−W∗‖2F (1−ηδ)T ≤ D2e−ηδT = D2e−(1+α) log T =
D2T−α

T
≤ (1 + α) log TG2

δ2T
.

The last inequality holds since

Tα log T ≥ D2δ2

(1 + α)G2

Thus, E‖WT −W∗‖2F will be smaller than (1+α) log TG2

δ2T .
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