A Additional proofs
Lemma 2. For each iteration k, on the event 6, < 6, , we have

_ 1
P( = il | ME) 2 Goa > 5.

Proof. Let Ay, denote the event that
Ly, —nmi, > v1 ||V L6k

By Lemma 3,
= P(Cl - I/1||V,Ck|| - Cz(;k 2 0 | M;)
By Condition 2, with probability (o,
c1 > (1 +vs)||[ VL

and

Therefore, for 65 small enough to meet the conditions of the lemma,
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Now, suppose Ay holds. Hoeffding’s inequality applies by Condition 4. Inequality 13 lets us cancel the

remaining iteration-specific variables:

Pl > npmi | M) = 1= P(Ly — b, > L}, — nmj, | M)
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The lemma follows because

P( > nmi, | My) > P(Ag | M)P(G, > qmy | M, Ay).

Lemma 3. Define
IVLell | L | nku

A 9k N
c1 = [VL]" == —n|lgx|| and c2 = 4rkn
Ve lo] lol T2

gk

If o1 < 6, then
Li, —nmy > 10y, — c20p a.s.
Proof. By Condition 1, for some ¢ € (0, 1),
Lh, = L(wk + k) — Lk
1
= s{VLk + 55 [VPL(wr + tsk)] s

L
> sIVLy — 552.

To lower bound the first term, we first express the proposed step sy in terms of gi. Because si solves

1
min gJ s + §5TH;€5 sl < O,
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there exists ax > 0 such that
(Hg + arl)sk = gk.
The matrix (Hy + o) is PSD. It follows that
[(Hy + ar D)™ gel| < 6.
Therefore, by Condition 3,

llgel
> HNIrll
o KH

By Equality 44 and Inequality 46,

gisk = [(H + arl)si]" sk
sTHysy + ars s

> —HH(S;% + akéi
> [|lgx |0k — 2K 5.
It follows that
Sk = ﬁkgjk + gL7
llgxl
for
2K
Br > 6k — 7”9:“ 5.
for some g L g. For any g™,
2K
HQLH < ﬁéi

Now, with s expressed in terms of gx, we lower bound the first term of Equation 42:

2662
SIVLL > B [VL]T (2 — ||V Ly T
llgel llgrl
> [5k . %—Héi] VLT L v
llgell llgxl
o VLT 5o — gy IV g2
llgll llgxll

Now, turning our attention to the improvement to the quadratic model:
/ T Loy
mi =g + iskask

K
< |\gk ok + 7}15%

The lemma follows from Inequality 42, Inequality 56, and Inequality 58.
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B Additional experiments
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(a) Multinomial logistic regression (“Alligators”)
from [23]. 56-dimensional domain.
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(c) A linear model with two predictors and a log log

transformation (“Log Earn Log Height”) from [20].

8-dimensional domain.
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(e) Estimation of the Size of a Closed Population

from Capture-Recapture Data (“Mt”) from [25].

8-dimensional domain.
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(b) A linear model with two predictors and interac-
tion centered using conventional points (“Kid IQ
interaction ¢2”’) from [20]. 10-dimensional domain.
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(d) Random effect logistic regression (“Seeds”)
from [24]. 346-dimensional domain.
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(f) A linear model with two predictors and interaction
(“Kid IQ interaction”) from [20]. 10-dimensional
domain.

Figure 2: Each panel shows optimization paths for five runs of ADVI, TrustVI, and HFSGVI, for
a particular dataset and statistical model. Both axes are log scale.
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