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1 Background

Two popular covariance kernels are the RBF kernel
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where 1/2, 3/2, and 5/2 are popular choices for ν to model heavy-tailed correlations between
function values. The spectral behavior of these and other kernels has been well-studied for years,
and we recommend [5] for recent results. Particularly relevant to our discussion is a theorem due
to Weyl, which says that if a symmetric kernel has ν continuous derivatives, then the eigenvalues
of the associated integral operator decay like |λn| = o(n−ν−1/2). Hence, the eigenvalues of kernel
matrices for the smooth RBF kernel (and of any given covariance matrix based on that kernel) tend to
decay much more rapidly than those of the less smooth Matérn kernel, which has two derivatives at
zero for ν = 5/2, one derivative at zero for ν = 3/2, and no derivatives at zero for ν = 1/2. This
matters to the relative performance of Chebyshev and Lanczos approximations of the log determinant
for large values of sf and small values of σ on the exact and approximate RBF kernel.

2 Methods

2.1 Scaled eigenvalue method

The scaled eigenvalue method was introduced in [7] to estimate log |KXX + σ2I|, where X consists
of n points. The eigenvalues {λi}ni=1 of KXX can be approximated using the n largest eigenvalues
of a covariance matrix K̃Y Y on a full grid with m points such that X ⊂ Y . Specifically,

log |KXX + σ2I| =
n∑
i=1

log(λi + σ2) ≈
n∑
i=1

log
( n
m
λ̃i + σ2

)
The induced kernel KUU plays the role of K̃Y Y when the scaled eigenvalue method is applied to
SKI and the eigenvalues of KUU can be efficiently computed. Assuming that the eigenvalues can be
computed efficiently is a much stronger assumption than our fast MVM based approach.

2.2 Radial basis function surrogates

Radial basis function (RBF) interpolation is one of the most popular approaches to approximating
scattered data in a general number of dimensions [1, 2, 4, 6]. Given distinct interpolation points
Θ = {θi}ni=1, the RBF model takes the form

sΘ(θ) =

n∑
i=1

λiϕ(‖x− θi‖) + p(x) (1)
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where the kernel ϕ : R≥0 → R is a one-dimensional function and p ∈ Πd
m−1, the space of

polynomials with d variables of degree no more than m − 1. There are many possible choices
for ϕ such as the cubic kernel ϕ(r) = r3 and the thin-plate spline kernel ϕ(r) = r2 log(r). The
coefficients λi are determined by imposing the interpolation conditions sΘ(θi) = log |K(θi)| for
i = 1, . . . , n and the discrete orthogonality condition

n∑
i=1

λiq(θ
i) = 0, ∀q ∈ Πd

m−1. (2)

For appropriate RBF kernels, this linear system is nonsingular provided that polynomials in Πd
m−1

are uniquely determined by their values on the interpolation set.

2.3 Comparison to a reference kernel

Suppose more generally that K̃ = K + σ2I is an approximation to a reference kernel matrix
K̃ref = Kref +σ2I , and let E = Kref−K. Let L(θ|y) and Lref(θ|y) be the log likelihood functions
for the two kernels; then

Lref(θ|y) = L(θ|y)− 1

2

[
tr(K̃−1E)− αTEα

]
+O(‖E‖2)

∂

∂θi
Lref(θ|y) =

∂

∂θi
L(θ|y)− 1

2

[
tr

(
K̃−1 ∂E

∂θi
− K̃−1 ∂K̃

∂θi
K̃−1E

)
− αT ∂E

∂θi
α

]
+O(‖E‖2).

If we are willing to pay the price of a few MVMs with E, we can use these expressions to improve
our maximum likelihood estimate. Let z and w be independent probe vectors with g = K̃−1z and
ĝ = K̃−1w. To estimate the trace in the derivative computation, we use the standard stochastic trace
estimation approach together with the observation that E[wwT ] = I:

tr
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]
This linearization may be used directly (with a stochastic estimator); alternately, if we have an
estimates for ‖E‖ and ‖∂E/∂θi‖, we can substitute these in order to get estimated bounds on the
magnitude of the derivatives. Coupled with a similar estimator for the Hessian of the likelihood
function (described in the supplementary materials), we can use this method to compute the maximum
likelihood parameters for the fast kernel, then compute a correction −H−1∇θLref to estimate the
maximum likelihood parameters of the reference kernel.

3 Additional experiments

This section contains several experiments with synthetic data sets to illustrate particular aspects of
the method.

3.1 1D cross-section plots

In this experiment we compare the accuracy of Lanczos and Chebyshev for 1-dimensional perturba-
tions of a set of true hyper-parameters, and demonstrate how critical it is to use diagonal replacement
for some approximate kernels. We choose the true hyper-parameters to be (`, sf , σ) = (0.1, 1, 0.1)
and consider two different types of datasets. The first dataset consists of 1000 equally spaced points
in the interval [0, 4] in which case the kernel matrix of a stationary kernel is Toeplitz and we can
make use of fast matrix-vector multiplication. The second dataset consists of 1000 data points drawn
independently from a U(0, 4) distribution. We use SKI with cubic interpolation to construct an
approximate kernel based on 1000 equally spaced points. The function values are drawn from a GP
with the true hyper-parameters, for both the true and approximate kernel. We use 250 iterations for
Lanczos and 250 Chebyshev moments in order to assure convergence of both methods. The results
for the first dataset with the RBF and Matérn kernels can be seen in Figure 1(a)-1(d). The results for
the second dataset with the SKI kernel can be seen in Figure 2(a)-2(d).
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(a) log marginal likelihood for the RBF kernel
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(b) log marginal likelihood for the Matérn kernel
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(c) log determinant for the RBF kernel
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(d) log determinant for the Matérn kernel

Figure 1: 1-dimensional perturbations for the exact RBF and Matérn 1/2 kernel where the data is 1000
equally spaced points in the interval [0, 4]. The exact values are (•), Lanczos is (—–), Chebyshev is
(—–). The error bars of Lanczos and Chebyshev are 1 standard deviation and were computed from
10 runs with different probe vectors

Lanczos yields an excellent approximation to the log determinant and its derivatives for both the
exact and the approximate kernels, while Chebyshev struggles with large values of sf and small
values of σ on the exact and approximate RBF kernel. This is expected since Chebyshev has issues
with the singularity at zero while Lanczos has large quadrature weights close to zero to compensate
for this singularity. The scaled eigenvalue method has issues with the approximate Matérn 1/2 kernel.

3.2 Why Lanczos is better than Chebyshev

In this experiment, we study the performance advantage of Lanczos over Chebyshev. Figure 3 shows
that the Ritz values of Lanczos quickly converge to the spectrum of the RBF kernel thanks to the
absence of interior eigenvalues. The Chebyshev approximation shows the expected equioscillation
behavior. More importantly, the Chebyshev approximation for logarithms has its greatest error near
zero where the majority of the eigenvalues are, and those also have the heaviest weight in the log
determinant.

Another advantage of Lanczos is that it requires minimal knowledge of the spectrum, while Chebyshev
needs the extremal eigenvalues for rescaling. In addition, with Lanczos we can get the derivatives
with only one MVM per hyper-parameter, while Chebyshev requires an MVM at each iteration,
leading to extra computation and memory usage.

3.3 The importance of diagonal correction

This experiment shows that diagonal correction of the approximate kernel can be very important.
Diagonal correction cannot be used efficiently for some methods, such as the scaled eigenvalue
method, and this may hurt its predictive performance. Our experiment is similar to [3]. We generate
1000 uniformly distributed points in the interval [−10, 10], and we choose a small number of inducing
points in such a way that there is a large chunk of the interval where there is no inducing point. We
are interested in the behavior of the predictive uncertainties on this subinterval. The function values
are given by f(x) = 1 + x/2 + sin(x) and normally distributed noise with standard deviation 0.05 is
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Figure 2: 1-dimensional perturbations with the SKI (cubic) approximations of the RBF and Matérn
1/2 kernel where the data is 1000 points drawn from N (0, 2). The exact values are (•), Lanczos with
diagonal replacement is (—–), Chebyshev with diagonal replacement is (—–), Lanczos without diag-
onal replacement is (—–), Chebyshev without diagonal replacement is (—–), and scaled eigenvalues
is (×). Diagonal replacement makes no perceptual difference for the RBF kernel so the lines are
overlapping in this case. The error bars of Lanczos and Chebyshev are 1 standard deviation and were
computed from 10 runs with different probe vectors

added to the function values. We find the optimal hyper-parameters of the Matérn 3/2 using the exact
method and use these hyper-parameters to make predictions with Lanczos, Chebyshev, FITC, and the
scaled eigenvalue method. We consider Lanczos both with and without diagonal correction in order
to see how this affects the predictions. The results can be seen in Figure 4.

It is clear that Lanczos and Chebyshev are too confident in the predictive mean when diagonal
correction is not used, while the predictive uncertainties agree well with FITC when diagonal
correction is used. The scaled eigenvalue method cannot be used efficiently with diagonal correction
and we see that this leads to predictions similar to Lanczos and Chebyshev without diagonal correction.
The flexibility of being able to use diagonal correction with Lanczos and Chebyshev makes these
approaches very appealing.

3.4 Surrogate log determinant approximation

The point of this experiment is to illustrate how accurate the level-curves of the surrogate model are
compared to the level-curves of the true log determinant. We consider the RBF and the Matérn 3/2
kernels and the same datasets that we considered in 3.1. We fix sf = 1 and study how the level curves
compare when we vary ` and σ. Building the surrogate with all three hyper-parameters produces
similar results, but requires more design points. We use 50 design points to construct a cubic RBF
with a linear tail. The values of the log determinant and its derivatives are computed with Lanczos. It
is clear from Figure 5 that the surrogate model does a good job approximating the log determinant
for both kernels.

3.5 Kernel hyper-parameter recovery

This experiments tests how well we can recover hyper-parameters from data generated from a GP. We
compare Chebyshev, Lanczos, the surrogate, the scaled eigenvalue method, and FITC. We consider a
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Figure 3: A comparison between the true spectrum, the Lanczos weights (m = 50), and the
Chebyshev weights (m = 100) for the RBF kernel with ` = 0.3, sf = 1, and σ = 0.1. All weights
and counts are on a log-scale so that they are easier to compare. Blue bars correspond to positive
weights while red bars correspond to negative weights.

dataset of 5000 points generated from a N (0, 2) distribution. We use SKI with cubic interpolation
and a total of 2000 inducing points for Lanczos, Chebyshev, and then scaled eigenvalue method.
FITC was used with 750 equally spaced points because it has a longer runtime as a function of the
number of inducing points. We consider the RBF kernel and the Matérn 3/2 kernel and sample from a
GP with ground truth parameters (`, sf , σ) = (0.01, 0.5, 0.05). The GPs for which we try to recover
the hyper-parameters were generated from the original kernel. It is important to emphasize that there
are two sources of errors present: the error from the kernel approximation errors and the stochastic
error from Lanczos and Chebyshev. We saw in Figure 1 and 2 that the stochastic error for Lanczos is
relatively small, so this follow-up experiment helps us understand how Lanczos is influenced by the
error incurred from an approximate kernel. We show the true log marginal likelihood, the recovered
hyper-parameters, and the run-time in Table 1.

It is clear from Table 1 that most methods are able to recover parameters close to the ground truth for
the RBF kernel. The results are more interesting for the Matérn 3/2 kernel where FITC struggles and
the parameters recovered by FITC have a value of the log marginal likelihood that is much worse
than the other methods.
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Figure 4: Example that shows how important diagonal correction can be for some kernels. The
Matérn 3/2 kernel was used to fit the data given by the black dots. This data was generated from
the function f(x) = 1 + x/2 + sin(x) to which we added normally distributed noise with standard
deviation 0.05. We used the exact method to find the optimal hyper-parameters and used these
hyper-parameters to study the different behavior of the predictive uncertainties when the inducing
points are given by the green crosses. The solid blue line is the predictive mean and the dotted red
lines shows a confidence interval of two standard deviations.
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Figure 5: Level curves of the exact and surrogate approximation of the log determinant as a function
of ` and σ for the RBF and Matérn 3/2 kernels. We used sf = 1 and the dataset consisted of 1000
equally spaced points in the interval [0, 4]. The surrogate model was constructed from the points
shown with (•) and the log determinant values were computed using stochastic Lanczos.

RBF Matérn 3/2

True − log p(y|θ) −6.22e3 −4.91e3
Hypers (0.01, 0.5, 0.05) (0.01, 0.5, 0.05)

Exact
− log p(y|θ) −6.23e3 −4.91e3

Hypers (1.01e−2, 4.81e−1, 5.03e−2) (9.63e−3, 4.87e−1, 4.96e−2)
Time (s) 368.9 466.7

Lanczos
− log p(y|θ) −6.22e3 −4.86e3

Hypers (1.00e−2, 4.77e−1, 5.03e−2) (1.04e−2, 4.87e−1, 4.67e−2)
Time (s) 66.2 133.4

Chebyshev
− log p(y|θ) −6.23e3 −4.81e3

Hypers (9.84e−3, 4.85e−1, 5.12e−2) (1.11e−2, 4.66e−1, 5.78e−2)
Time (s) 110.3 173.3

Surrogate
− log p(y|θ) −6.22e3 −4.86e3

Hypers (1.01e−2, 4.88e−1, 4.85e−2) (1.02e−2, 4.80e−1, 4.66e−2)
Time (s) 48.2 44.3

Scaled eigenvalues
− log p(y|θ) −6.22e3 −4.71e3

Hypers (1.04e−2, 4.52e−1, 5.14e−2) (1.13e−2, 4.53e−1, 6.37e−2)
Time (s) 90.2 127.3

FITC
− log p(y|θ) −6.22e3 −4.11e3

Hypers (1.03e−2, 4.90e−1, 5.07e−2) (1.34e−2, 5.22e−1, 8.91e−2)
Time (s) 86.6 136.9

Table 1: Hyper-parameter recovery for the RBF and Matérn 3/2 kernels. The data was generated
from 5000 normally distributed points. Lanczos, surrogate, and scaled eigenvalues all used 2000
inducing points while FITC used 750. These numbers where chosen to make their run times close
to equal. Diagonal correction was applied to the Matérn 3/2 approximate kernel. The value of
the log marginal likelihood was was computed from the exact kernel and shows the value of the
hyper-parameters recovered by each method. We ran Lanczos 5 times and averaged the values.
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