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Abstract

We introduce associative embedding, a novel method for supervising convolutional
neural networks for the task of detection and grouping. A number of computer
vision problems can be framed in this manner including multi-person pose estima-
tion, instance segmentation, and multi-object tracking. Usually the grouping of
detections is achieved with multi-stage pipelines, instead we propose an approach
that teaches a network to simultaneously output detections and group assignments.
This technique can be easily integrated into any state-of-the-art network architec-
ture that produces pixel-wise predictions. We show how to apply this method to
multi-person pose estimation and report state-of-the-art performance on the MPII
and MS-COCO datasets.

1 Introduction

Many computer vision tasks can be viewed in the context of detection and grouping: detecting smaller
visual units and grouping them into larger structures. For example, in multi-person pose estimation
we detect body joints and group them into individual people; in instance segmentation we detect
pixels belonging to a semantic class and group them into object instances; in multi-object tracking
we detect objects across video frames and group them into tracks. In all of these cases, the output is a
variable number of visual units and their assignment into a variable number of visual groups.

Such tasks are often approached with two-stage pipelines that perform detection first and grouping
second. But such approaches may be suboptimal because detection and grouping are tightly coupled:
for example, in multiperson pose estimation, the same features used to recognize wrists or elbows in
an image would also suggest whether a wrist and elbow belong to the same limb.

In this paper we ask whether it is possible to jointly perform detection and grouping using a single-
stage deep network trained end-to-end. We propose associative embedding, a novel method to express
output for joint detection and grouping. The basic idea is to introduce, for each detection, a vector
embedding that serves as a “tag” to identify its group assignment. All detections associated with the
same tag value belong to the same group. Concretely, the network outputs a heatmap of per-pixel
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detection scores and a set of per-pixel embeddings. The detections and groups are decoded by
extracting the corresponding embeddings from pixel locations with top detection scores.

To train a network to produce the correct tags, we use a loss function that encourages pairs of tags to
have similar values if the corresponding detections belong to the same group or dissimilar values
otherwise. It is important to note that we have no “ground truth” tags for the network to predict,
because what matters is not the particular tag values, only the differences between them. The network
has the freedom to decide on the tag values as long as they agree with the ground truth grouping.

We apply our approach to multiperson pose estimation, an important task for understanding humans
in images. Given an input image, multi-person pose estimation seeks to detect each person and
localize their body joints. Unlike single-person pose there are no prior assumptions of a person’s
location or size. Multi-person pose systems must scan the whole image detecting all people and their
corresponding keypoints. For this task, we integrate associative embedding with a stacked hourglass
network [31], which produces a detection heatmap and a tagging heatmap for each body joint, and
then group body joints with similar tags into individual people. Experiments demonstrate that our
approach outperforms all recent methods and achieves state-of-the-art results on MS-COCO [27] and
MPII Multiperson Pose [3].

Our contributions are two fold: (1) we introduce associative embedding, a new method for single-
stage, end-to-end joint detection and grouping. This method is simple and generic; it works with
any network architecture that produces pixel-wise prediction; (2) we apply associative embedding to
multiperson pose estimation and achieve state-of-the-art results on two standard benchmarks.

2 Related Work

Vector Embeddings Our method is related to many prior works that use vector embeddings. Works
in image retrieval have used vector embeddings to measure similarity between images [12, 43]. Works
in image classification, image captioning, and phrase localization have used vector embeddings to
connect visual features and text features by mapping them to the same vector space [11, 14, 22].
Works in natural language processing have used vector embeddings to represent the meaning of
words, sentences, and paragraphs [30, 24]. Our work differs from these prior works in that we use
vector embeddings as identity tags in the context of joint detection and grouping.

Perceptual Organization Work in perceptual organization aims to group the pixels of an image into
regions, parts, and objects. Perceptual organization encompasses a wide range of tasks of varying
complexity from figure-ground segmentation [28] to hierarchical image parsing [15]. Prior works
typically use a two stage pipeline [29], detecting basic visual units (patches, superpixels, parts, etc.)
first and grouping them second. Common grouping approaches include spectral clustering [41, 36],
conditional random fields (e.g. [23]), and generative probabilistic models (e.g. [15]). These grouping
approaches all assume pre-detected basic visual units and pre-computed affinity measures between
them but differ among themselves in the process of converting affinity measures into groups. In
contrast, our approach performs detection and grouping in one stage using a generic network that
includes no special design for grouping.

It is worth noting a close connection between our approach to those using spectral clustering.
Spectral clustering (e.g. normalized cuts [36]) techniques takes as input pre-computed affinities (such
as predicted by a deep network) between visual units and solves a generalized eigenproblem to
produce embeddings (one per visual unit) that are similar for visual units with high affinity. Angular
Embedding [28, 37] extends spectral clustering by embedding depth ordering as well as grouping. Our
approach differs from spectral clustering in that we have no intermediate representation of affinities
nor do we solve any eigenproblems. Instead our network directly outputs the final embeddings.

Our approach is also related to the work by Harley et al. on learning dense convolutional embed-
dings [16], which trains a deep network to produce pixel-wise embeddings for the task of semantic
segmentation. Our work differs from theirs in that our network produces not only pixel-wise em-
beddings but also pixel-wise detection scores. Our novelty lies in the integration of detection and
grouping into a single network; to the best of our knowledge such an integration has not been
attempted for multiperson human pose estimation.

Multiperson Pose Estimation Recent methods have made great progress improving human pose
estimation in images in particular for single person pose estimation [40, 38, 42, 31, 8, 5, 32, 4, 9, 13,
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Figure 1: We use the stacked hourglass architecture from Newell et al. [31]. The network performs
repeated bottom-up, top-down inference producing a series of intermediate predictions (marked in
blue) until the last “hourglass” produces a final result (marked in green). Each box represents a 3x3
convolutional layer. Features are combined across scales by upsampling and performing elementwise
addition. The same ground truth is enforced across all predictions made by the network.

26, 18, 7, 39, 34]. For multiperson pose, prior and concurrent work can be categorized as either top-
down or bottom-up. Top-down approaches [33, 17, 10] first detect individual people and then estimate
each person’s pose. Bottom-up approaches [35, 20, 21, 6] instead detect individual body joints and
then group them into individuals. Our approach more closely resembles bottom-up approaches but
differs in that there is no separation of a detection and grouping stage. The entire prediction is done at
once in a single stage. This does away with the need for complicated post-processing steps required
by other methods [6, 20].

3 Approach

To introduce associative embedding for joint detection and grouping, we first review the basic
formulation of visual detection. Many visual tasks involve detection of a set of visual units. These
tasks are typically formulated as scoring of a large set of candidates. For example, single-person
human pose estimation can be formulated as scoring candidate body joint detections at all possible
pixel locations. Object detection can be formulated as scoring candidate bounding boxes at various
pixel locations, scales, and aspect ratios.

The idea of associative embedding is to predict an embedding for each candidate in addition to the
detection score. The embeddings serve as tags that encode grouping: detections with similar tags
should be grouped together. In multiperson pose estimation, body joints with similar tags should be
grouped to form a single person. It is important to note that the absolute values of the tags do not
matter, only the distances between tags. That is, a network is free to assign arbitrary values to the
tags as long as the values are the same for detections belonging to the same group.

To train a network to predict the tags, we enforce a loss that encourages similar tags for detections
from the same group and different tags for detections across different groups. Specifically, this
tagging loss is enforced on candidate detections that coincide with the ground truth. We compare
pairs of detections and define a penalty based on the relative values of the tags and whether the
detections should be from the same group.

3.1 Network Architecture

Our approach requires that a network produce dense output to define a detection score and vector
embedding at each pixel of the input image. In this work we use the stacked hourglass architecture,
a model used previously for single-person pose estimation [31]. Each “hourglass” is comprised
of a standard set of convolutional and pooling layers to process features down to a low resolution
capturing the full global context of the image. These features are upsampled and combined with
outputs from higher resolutions until reaching a final output resolution. Stacking multiple hourglasses
enables repeated bottom-up and top-down inference to produce a more accurate final prediction.
Intermediate predictions are made by the network after each hourglass (Fig. 1). We refer the reader
to [31] for more details of the network architecture.

The stacked hourglass model was originally developed for single-person human pose estimation
and designed to output a heatmap for each body joint of a target person. The pixel with the highest
heatmap activation is used as the predicted location for that joint. The network consolidates global
and local features to capture information about the full structure of the body while preserving fine
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Figure 2: An overview of our approach for producing multi-person pose estimates. For each joint
of the body, the network simultaneously produces detection heatmaps and predicts associative
embedding tags. We take the top detections for each joint and match them to other detections that
share the same embedding tag to produce a final set of individual pose predictions.

details for precise localization. This balance between global and local context is just as important
when predicting poses of multiple people.

We make some modifications to the network architecture to increase its capacity and accommodate
the increased difficulty of multi-person pose estimation. We increase the number of features at each
drop in resolution of the hourglass (256→ 384→ 512→ 640→ 768). In addition, individual layers
are composed of 3x3 convolutions instead of residual modules. Residual links are still included
across each hourglass as well as skip connections at each resolution.

3.2 Detection and Grouping

For multiperson pose estimation, we train the network to detect joints in a similar manner to prior
work on single-person pose estimation [31]. The model predicts a detection score at each pixel
location for each body joint (“left wrist”, “right shoulder”, etc.) regardless of person identity. The
difference from single-person pose being that an ideal heatmap for multiple people should have
multiple peaks (e.g. to identify multiple left wrists belonging to different people), as opposed to just a
single peak for a single target person.

During training, we impose a detection loss on the output heatmaps. The detection loss computes
mean square error between each predicted detection heatmap and its “ground truth” heatmap which
consists of a 2D gaussian activation at each keypoint location. This loss is the same as the one used
by Newell et al. [31].

Given the top activating detections from these heatmaps we need to pull together all joints that belong
to the same individual. For this, we turn to the associative embeddings. For each joint of the body,
the network produces additional channels to define an embedding vector at every pixel. Note that the
dimension of the embeddings is not critical. If a network can successfully predict high-dimensional
embeddings to separate the detections into groups, it should also be able to learn to project those
high-dimensional embeddings to lower dimensions, as long as there is enough network capacity.
In practice we have found that 1D embedding is sufficient for multiperson pose estimation, and
higher dimensions do not lead to significant improvement. Thus throughout this paper we assume 1D
embeddings.

We think of these 1D embeddings as “tags” indicating which person a detected joint belongs to.
Each detection heatmap has its own corresponding tag heatmap, so if there are m body joints to
predict then the network will output a total of 2m channels; m for detection and m for grouping. To
parse detections into individual people, we get the peak detections for each joint and retrieve their
corresponding tags at the same pixel location (illustrated in Fig. 2). We then group detections across
body parts by comparing the tag values of detections and matching up those that are close enough. A
group of detections now forms the pose estimate for a single person.
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Figure 3: Tags produced by our network on a held-out validation image from the MS-COCO training
set. The tag values are already well separated and decoding the groups is straightforward.

The grouping loss assesses how well the predicted tags agree with the ground truth grouping.
Specifically, we retrieve the predicted tags for all body joints of all people at their ground truth
locations; we then compare the tags within each person and across people. Tags within a person
should be the same, while tags across people should be different.

Rather than enforce the loss across all possible pairs of keypoints, we produce a reference embedding
for each person. This is done by taking the mean of the output embeddings of all joints belonging
to a single person. Within an individual, we compute the squared distance between the reference
embedding and the predicted embedding for each joint. Then, between pairs of people, we compare
their reference embeddings to each other with a penalty that drops exponentially to zero as the
distance between the two tags increases.

Formally, let hk ∈ RW×H be the predicted tagging heatmap for the k-th body joint, where h(x)
is a tag value at pixel location x. Given N people, let the ground truth body joint locations be
T = {(xnk)}, n = 1, . . . , N, k = 1 . . . ,K, where xnk is the ground truth pixel location of the k-th
body joint of the n-th person.

Assuming all K joints are annotated, the reference embedding for the nth person would be

h̄n =
1

K

∑
k

hk(xnk)

The grouping loss Lg is then defined as

Lg(h, T ) =
1

NK

∑
n

∑
k

(
h̄n − hk(xnk)

)2
+

1

N2

∑
n

∑
n′

exp{− 1

2σ2

(
h̄n − h̄n′

)2}
The first half of the loss pulls together all of the embeddings belonging to an individual, and the
second half pushes apart embeddings across people. We use a σ value of 1 in our training.

3.3 Parsing Network Output

Once the network has been trained, decoding is straightforward. We perform non-maximum suppres-
sion on the detection heatmaps and threshold to get a set of detections for each body joint. Then, for
each detection we retrieve its corresponding associative embedding tag. To give an impression of the
types of tags produced by the network and the trivial nature of grouping we refer to Figure 3; we
plot a set of detections where the y-axis indicates the class of body joint and the x-axis the assigned
embedding.

To produce a final set of predictions we iterate through each joint one by one. An ordering is
determined by first considering joints around the head and torso and gradually moving out to the
limbs. We use the detections from the first joint (the neck, for example) to form our initial pool
of detected people. Then, given the next joint, say the left shoulder, we have to figure out how to
best match its detections to the current pool of people. Each detection is defined by its score and
embedding tag, and each person is defined by the mean embedding of their current joints.
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Figure 4: Qualitative results on MSCOCO validation images

We compare the distance between these embeddings, and for each person we greedily assign a new
joint based on the detection with the highest score whose embedding falls within some distance
threshold. New detections that are not matched are used to start a new person instance. This accounts
for cases where perhaps only a leg or hand is visible for a particular person. We repeat this process
for each joint of the body until every detection has been assigned to a person. No steps are taken to
ensure anatomical correctness or reasonable spatial relationships between pairs of joints.

Missing joints: In some evaluation settings we may need to ensure that each person has a prediction
for all joints, but our parsing does not guarantee this. Missing joints are usually fine, as in cases
with truncation and extreme occlusion, but when it is necessary to produce complete predictions we
introduce an additional processing step: given a missing joint, we identify all pixels whose embedding
falls close enough to the target person, and choose the pixel location with the highest activation. This
score may be lower than our usual cutoff threshold for detections.

Multiscale Evaluation: While it is feasible to train a network to predict poses for people of all
scales, there are some drawbacks. Extra capacity is required of the network to learn the necessary
scale invariance, and the precision of predictions for small people will suffer due to issues of low
resolution after pooling. To account for this, we evaluate images at test time at multiple scales. We
take the heatmaps produced at each scale and resize and average them together. Then, to combine
tags across scales, we concatenate the set of tags at a pixel location into a vector v ∈ Rm (assuming
m scales). The decoding process remains unchanged.

4 Experiments

Datasets We evaluate on two datasets: MS-COCO [27] and MPII Human Pose [3]. MPII Human
Pose consists of about 25k images and contains around 40k total annotated people (three-quarters of
which are available for training). Evaluation is performed on MPII Multi-Person, a set of 1758 groups
of multiple people taken from the test set as outlined in [35]. The groups for MPII Multi-Person
are usually a subset of the total people in a particular image, so some information is provided to
make sure predictions are made on the correct targets. This includes a general bounding box and
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Head Shoulder Elbow Wrist Hip Knee Ankle Total
Iqbal&Gall, ECCV16 [21] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1
Insafutdinov et al., ECCV16 [20] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5
Insafutdinov et al., arXiv16a [35] 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0
Levinkov et al., CVPR17 [25] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6
Insafutdinov et al., CVPR17 [19] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3
Cao et al., CVPR17 [6] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Fang et al., ICCV17 [10] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7
Our method 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5

Table 1: Results (AP) on MPII Multi-Person.

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

CMU-Pose [6] 0.611 0.844 0.667 0.558 0.684 0.665 0.872 0.718 0.602 0.749
G-RMI [33] 0.643 0.846 0.704 0.614 0.696 0.698 0.885 0.755 0.644 0.771
Our method 0.663 0.865 0.727 0.613 0.732 0.715 0.897 0.772 0.662 0.787

Table 2: Results on MS-COCO test-std, excluding systems trained with external data.

AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

CMU-Pose [6] 0.618 0.849 0.675 0.571 0.682 0.665 0.872 0.718 0.606 0.746
Mask-RCNN [17] 0.627 0.870 0.684 0.574 0.711 – – – – –
G-RMI [33] 0.649 0.855 0.713 0.623 0.700 0.697 0.887 0.755 0.644 0.771
Our method 0.655 0.868 0.723 0.606 0.726 0.702 0.895 0.760 0.646 0.781

Table 3: Results on MS-COCO test-dev, excluding systems trained with external data.

scale term used to indicate the occupied region. No information is provided on the number of people
or the scales of individual figures. We use the evaluation metric outlined by Pishchulin et al. [35]
calculating average precision of joint detections.

MS-COCO [27] consists of around 60K training images with more than 100K people with annotated
keypoints. We report performance on two test sets, a development test set (test-dev) and a standard
test set (test-std). We use the official evaluation metric that reports average precision (AP) and average
recall (AR) in a manner similar to object detection except that a score based on keypoint distance is
used instead of bounding box overlap. We refer the reader to the MS-COCO website for details [1].

Implementation Details The network used for this task consists of four stacked hourglass modules,
with an input size of 512× 512 and an output resolution of 128× 128. We train the network using
a batch size of 32 with a learning rate of 2e-4 (dropped to 1e-5 after about 150k iterations) using
Tensorflow [2]. The associative embedding loss is weighted by a factor of 1e-3 relative to the MSE
loss of the detection heatmaps. The loss is masked to ignore crowds with sparse annotations. At
test time an input image is run at multiple scales; the output detection heatmaps are averaged across
scales, and the tags across scales are concatenated into higher dimensional tags.

Following prior work [6], we apply a single-person pose model [31] trained on the same dataset to
investigate further refinement of predictions. We run each detected person through the single person
model, and average the output with the predictions from our multiperson pose model. From Table
5, it is clear the benefit of this refinement is most pronounced in the single-scale setting on small
figures. This suggests output resolution is a limit of performance at a single scale. Using our method
for evaluation at multiple scales, the benefits of single person refinement are almost entirely mitigated
as illustrated in Tables 4 and 5.

MPII Results Average precision results can be seen in Table 1 demonstrating an improvement over
state-of-the-art methods in overall AP. Associative embedding proves to be an effective method for
teaching the network to group keypoint detections into individual people. It requires no assumptions
about the number of people present in the image, and also offers a mechanism for the network to
express confusion of joint assignments. For example, if the same joint of two people overlaps at the
exact same pixel location, the predicted associative embedding will be a tag somewhere between the
respective tags of each person.

We can get a better sense of the associative embedding output with visualizations of the embedding
heatmap (Figure 5). We put particular focus on the difference in the predicted embeddings when
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Figure 5: Here we visualize the associative embedding channels for different joints. The change
in embedding predictions across joints is particularly apparent in these examples where there is
significant overlap of the two target figures.

Head Shoulder Elbow Wrist Hip Knee Ankle Total
multi scale 92.9 90.9 81.0 71.0 79.3 70.6 63.4 78.5
multi scale + refine 93.1 90.3 81.9 72.1 80.2 72.0 67.8 79.6

Table 4: Effect of single person refinement on a held out validation set on MPII.

AP AP50 AP75 APM APL

single scale 0.566 0.818 0.618 0.498 0.670
single scale + refine 0.628 0.846 0.692 0.575 0.706
multi scale 0.650 0.867 0.713 0.597 0.725
multi scale + refine 0.655 0.868 0.723 0.606 0.726

Table 5: Effect of multi-scale evaluation and single person refinement on MS-COCO test-dev.

people overlap heavily as the severe occlusion and close spacing of detected joints make it much
more difficult to parse out the poses of individual people.

MS-COCO Results Table 2 and 3 report our results on MS-COCO. We report results on both test-std
and test-dev because not all recent methods report on test-std. We see that on both sets we achieve
the state of the art performance. An illustration of the network’s predictions can be seen in Figure 4.
Typical failure cases of the network stem from overlapping and occluded joints in cluttered scenes.
Table 5 reports performance of ablated versions of our full pipeline, showing the contributions
from applying our model at multiple scales and from further refinement using a single-person pose
estimator. We see that simply applying our network at multiple scales already achieves competitive
performance against prior state of the art methods, demonstrating the effectiveness of our end-to-end
joint detection and grouping.

We perform an additional experiment on MS-COCO to gauge the relative difficulty of detection
versus grouping, that is, which part is the main bottleneck of our system. We evaluate our system on
a held-out set of 500 training images. In this evaluation, we replace the predicted detections with the
ground truth detections but still use the predicted tags. Using the ground truth detections improves AP
from 59.2 to 94.0. This shows that keypoint detection is the main bottleneck of our system, whereas
the network has learned to produce high quality grouping. This fact is also supported by qualitative
inspection of the predicted tag values, as shown in Figure 3, from which we can see that the tags are
well separated and decoding the grouping is straightforward.

5 Conclusion

In this work we introduce associative embeddings to supervise a convolutional neural network such
that it can simultaneously generate and group detections. We apply this method to multi-person pose
and demonstrate the feasibility of training to achieve state-of-the-art performance. Our method is
general enough to be applied to other vision problems as well, for example instance segmentation
and multi-object tracking in video. The associative embedding loss can be implemented given any
network that produces pixelwise predictions, so it can be easily integrated with other state-of-the-art
architectures.
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