
A Proofs of Theorem 2.1 and Theorem 2.2

The key idea in the proof of Theorem 2.1 is to find an “envelope” m1 ≤ k ≤ m2 in the spectrum of
A surrounding k, such that the eigenvalues within the envelope are relatively close. Define

m1 = argmax0≤j≤k{σj(A) ≥ (1 + 2�)σk+1(A)};
m2 = argmaxk≤j≤n{σj(A) ≥ σk(A)− 2�σk+1(A)},

where we let σ0 (A) = ∞ for convenience. Let Um, �Um be basis of the top m-dimensional linear
subspaces of A and �A, respectively. Also denote Un−m and �Un−m as basis of the orthogonal
complement of Um and �Um.

Lemma A.1. If ��A−A�2 ≤ �2σk+1(A) for � ∈ (0, 1) then ��U�
n−kUm1

�2, ��U�
k Un−m2

�2 ≤ �.

Proof. We apply an asymmetric version of Davis-Kahan inequality (Lemma C.1), with X = A,
Y = �A, i = m1 and j = k. By Weyl’s inequality, we know that σk+1(�A) ≤ σk+1(A)+��A−A�2 ≤
(1 + �2)σk+1(A) ≤ (1 + �)σk+1(A). Subsequently, ��U�

n−kUm1�2 ≤ �2σk+1(A)
σm1

(A)−(1+�)σk+1(A) ≤
�. Similarly, applying Lemma C.1 with X = �A, Y = A, i = k and j = m2 we have that
��U�

k Un−m2�2 ≤ �.

Let Um1:m2
be the linear subspace of A associated with eigenvalues σm1+1(A), · · · ,σm2

(A).
Intuitively, we choose a (k−m1)-dimensional linear subspace in Um1:m2

that is “most aligned” with
the top-k subspace �Uk of �A. Formally, define

W = argmaxdim(W)=k−m1,W∈Um1:m2
σk−m1

�
W� �Uk

�
.

W is then a d× (k −m1) matrix with orthonormal columns that corresponds to a basis of W . W is
carefully constructed so that it is closely aligned with �Uk, yet still lies in Uk. In particular, Lemma
3.2 shows that sin∠(W , �Uk) = ��U�

n−kW�2 is upper bounded by �.

Lemma A.2. If ��A−A�2 ≤ �2σk+1(A) for � ∈ (0, 1) then ��U�
n−kW�2 ≤ �.

Proof. First note that ��U�
n−kW�2 ≤

�
1− σk−m1

(�U�
k W)2 because

��U�
n−kW�22 = sup

�x�2=1

��U�
n−kWx�22 = sup

�x�2=1

�
�Wx�22 − ��U�

k Wx�22
�

≤ sup
�x�2=1

�Wx�22 − inf
�x�2=1

��U�
k Wx�22 = 1− σk−m1

(�U�
k W)2.

Subsequently, it suffices to prove that σk−m1
(�U�

k W) ≥
√
1− �2. By Weyl’s monotonicity theorem

(Lemma C.4), we have that

σk(�U�
k Um2

) ≤ σm1+1(�U�
k Um1

) + σk−m1
(�U�

k Um1:m2
).

In addition, σm1+1(�U�
k Um1

) = 0 because rank( �U�
k Um1

) ≤ m1 and σk−m1
(�U�

k Um1:m2
) =

σk−m1
(�U�

k W) because of the definition of W. Subsequently,

σk−m1
(�U�

k W)2 ≥ σk(�U�
k Um2

)2 = inf
�x�2=1

�U�
m2

�Ukx�22 = inf
�x�2=1

�
��Uk�x�22 − �U�

n−m2
�U�

k x�22
�

≥ inf
�x�2=1

�
��Ukx�22

�
− sup

�x�2=1

�
�U�

n−m2
�Ukx�22

�
≥ 1− �2.

Here in the last inequality we invoke Lemma 3.1. The proof is then complete.

Define
�A = Am1

+WW�AWW�.

The following lemma lists some of the properties of �A.
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Lemma A.3. It holds that

1. dim(Range(�A)) = k and dim(Range(W)) = k −m1;

2. Um1
⊆ Range(�A) ⊆ Um2

and Range(�A−Am1
) ⊆ Um1:m2

, where Um2
= Um1

⊕Um1:m2
.

3. ��U�
k
�U⊥�2, ��U� �Un−k�2 ≤ 2�, where �U and �U⊥ are orthonormal basis of Range(�A)

and Null(�A), respectively.

Proof. Properties 1 and 2 are obviously true by the definition of W and �A. For property 3, note
that both ��U�

k
�U⊥�2 and ��U� �Un−k�2 are equal to sin∠( �U , �Uk). Hence it suffices to show that

��U�
n−k

�U�2 ≤ 2�. Invoking Lemmas 3.1 and 3.2 we have that ��U�
n−k

�U�2 ≤ ��U�
n−kUm1

�2 +

��U�
n−kW�2 ≤ �+ � = 2�.

Decompose ��Ak −A�F as

��Ak −A�F ≤ �A− �A�F + ��Ak − �A�F ≤ �A− �A�F +
√
2k��Ak − �A�2. (12)

Here the last inequality holds because both �Ak and �A have rank at most k. Lemmas 3.3 and 3.4 give
separate upper bounds for �A− �A�F and ��Ak − �A�2.

Lemma A.4. If ��A−A�2 ≤ �2σk+1(A)2 for � ∈ (0, 1/4] then �A− �A�F ≤ (1+32�)�A−Ak�F .

Proof. Let Um1:m2 be the (m2 −m1)-dimensional linear subspace such that Um2 = Um1 ⊕ Um1:m2 .
Define Am1:m2 = Um1:m2Σm1:m2U

�
m1:m2

, where Σm1:m2 = diag(σm1+1(A), · · · ,σm2(A)) and
Um1:m2 is an orthonormal basis associated with Um1:m2 . We then have

�A− �A�2F = �An−m1
−WW�AWW��2F

(a)
= �An−m2

�2F + �Am1:m2
−WW�AWW��2F

(b)
= �A−Am2

�2F + �Am1:m2
−WW�Am1:m2

WW��2F
(c)
= �A−Am2

�2F + �Am1:m2
�2F − �WW�Am1:m2

WW��2F .

Here in (a) we apply Range(�A − Am1
) ⊆ Um1:m2

and the Pythagorean theorem (Lemma C.2)
with P = Um1:m2

, in (b) we apply W ⊆ Um1:m2
, and in (c) we apply the Pythagorean theorem

again with P = W. Note that �WW�Am1:m2
WW��2F = �W�Am1:m2

W�2F . Applying
Poincaré separation theorem (Lemma C.3) where X = Σm1:m2 and P = U�

m1:m2W, we have
�W�Am1:m2

W�2F ≥ �m2−m1

j=m2−k+1 σj(Am1:m2
)2 =

�m2

j=m1+m2−k+1 σj(A)2. Subsequently,

�A− �A�2F ≤ �A−Am2�2F +

m1+m2−k�

j=m1+1

σj(A)2 ≤ �A−Am2�2F + (m2 − k)σm1+1(A)2

(a�)
≤ �A−Am2

�2F + (m2 − k)(1 + 2�)2σk+1(A)2

(b�)
≤ �A−Am2

�2F + (m2 − k)

�
1 + 2�

1− 2�

�2

σm2
(A)2

(c�)
≤ �A−Am2

�2F + (m2 − k)σm2
(A)2 + 32(m2 − k)�σm2

(A)2

(d�)
≤ (1 + 32�)�A−Ak�2F .

Here in (a�) we apply the definition of m1 that σm1+1 ≤ (1 + 2�)σk+1(A), in (b�) we apply the
definition of m2 that σm2

(A) ≥ σk(A) − 2�σk+1(A) ≥ (1 − 2�)σk+1(A), and (c�) is due to the

fact that
�

1+2�
1−2�

�2

≤ 1 + 32� for all � ∈ (0, 1/4]. Finally, (d�) holds because (m2 − k)σm2
(A)2 ≤

�m2

j=k+1 σj(A)2 and �A−Ak�2F = �A−Am2
�2F +

�m2

j=k+1 σj(A)2.
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Lemma A.5. If ��A−A�2 ≤ �2σk+1(A) for � ∈ (0, 1/4] then ��Ak − �A�2 ≤ 102�2�A−Ak�2.

Proof. Recall the definition that �U = Range(�A) and �U⊥ = Null(�A). Consider �v�2 = 1 such that
v�(�Ak − �A)v = ��Ak − �A�2. Because v maximizes v�(�Ak − �A)v over all unit-length vectors,
it must lie in the range of

�
�Ak − �A

�
because otherwise the component outside the range will not

contribute. Therefore, we can choose v that v = v1 + v2 where v1 ∈ Range(�Ak) = �Uk and
v2 ∈ Range(�A) = �U . Subsequently, we have that

v = �Uk
�U�

k v + �U�U� �Un−k
�U�

n−kv (13)

= �U�U�v + �Uk
�U�

k
�U⊥ �U�

⊥v. (14)

Consider the following decomposition:
���v�(�Ak − �A)v

��� ≤
���v�(�A−A)v

���+
���v�(�Ak − �A)v

���+
���v�(A− �A)v

��� .

The first term |v�(�A−A)v| is trivially upper bounded by ��A−A�2 ≤ �2σk+1(A). For the second
term, we have

���v�(�Ak − �A)v
��� =

���v� �Un−k
�Σn−k

�U�
n−kv

���
(a)
=

���v� �Un−k
�U�

n−k
�U�U� �Un−k

�Σn−k
�U�

n−k
�U�U� �Un−k

�U�
n−kv

���

≤
����U�

n−k
�U
���
4

2

����Un−k

���
2

(b)

≤ 16�4σk+1(�A)
(c)

≤ 16�4(1 + �2)σk+1(A).

Here in (a) we apply Eq. (10); in (b) we apply Property 3 of Lemma A.3, and (c) is due to Weyl’s
inequality (Lemma C.4) that σk+1(�A) ≤ σk+1(A) + ��A−A�2 ≤ (1 + �2)σk+1(A).

For the third term, note that �A = �U�U�A�U�U� because Range(�A) ⊆ Um2 ⊆ Range(A) by
Lemma A.3. Subsequently,

A− �A = �U⊥ �U�
⊥A�U⊥ �U�

⊥� �� �
B1

+ �U�U�A�U⊥ �U�
⊥� �� �

B2

+ �U⊥ �U�
⊥A�U�U�

� �� �
B�

2

.

It then suffices to upper bound |v�B1v| and |v�B2v| separately. For B1 we have
��v�B1v

�� (a�)
=

���v� �U⊥ �U�
⊥ �Uk

�U�
k
�U⊥ �U�

⊥A�U⊥ �U�
⊥ �Uk

�U�
k
�U⊥ �U�

⊥v
���

≤
����U�

⊥ �Uk

���
4

2

����U�
⊥A�U⊥

���
2

(b�)
≤ 16�4

����U�
⊥A�U⊥

���
2

(c�)
≤ 16�4σm1+1(A)

(d�)
≤ 16�4(1 + 2�)σk+1(A).

Here in (a�) we apply Eq. (11); in (b�) we apply Property 3 of Lemma A.3; (c�) follows the
property that �U⊥ ∈ Un−m1

, and finally (d�) follows from the definition of m1 that σm1+1(A) ≤
(1 + 2�)σk+1(A).

For B2, we have that
��v�B2v

��=
���v� �U�U�A�U⊥ �U�

⊥ �Uk
�U�

k
�U⊥ �U�

⊥v
���

≤
���A�U⊥

���
2

����U�
⊥ �Uk

���
2

2
≤ �2(1 + 8�)σk+1(A).

Combining all inequalities and noting that � ∈ (0, 1/4], we obtain

��Ak − �A�2 ≤ �2σk+1(A) + 16�4(1 + 2�+ �2)σk+1(A) + 32�2(1 + 8�)σk+1(A)

≤ 102�2σk+1(A).
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Proof. of Theorem 2.2 The proof of Theorem 2.2 is similar and even simpler than that of Theorem 2.1.
First observing that with the large spectral gap, �A = Ak. Next we replace by replacing the assumption
��A−A�2 ≤ �2σk+1(A) in Lemma 3.4 with ��A−A�2 ≤ � (σk(A)− σk+1(A)) using the exactly
the same arguments we have

��Ak −Ak�2 ≤ 102� (σk(A)− σk+1(A)) .

Therefore, we have
��Ak −Ak�F ≤ 102

√
2k� (σk(A)− σk+1(A)) .

Lastly, apply triangle inequality:

��Ak −A�F ≤ �A−Ak�F + ��Ak −Ak�F
≤ �A−Ak�F + 102

√
2k� (σk(A)− σk+1(A)) .

B Proof of corollaries

Proof. of Corollary 2.1. We first verify the condition that δ ≤ �2σk+1(A) for � = 1/4 and the
particular choice of k. Because k ≤ �C1δ

−1/β� − 1, we have that σk+1(A) ≥ (C1δ
−1/β)−β . By

carefully chosen C1 (depending on β) the inequality σk+1(A) ≥ δ/16 holds.

If k = n− 1 then by Theorem 2.1, ��Ak −A�F ≤ O(
√
n · n−β) = O(n− 2β−1

2β ). In the rest of the
proof we assume k = �C1δ

−1/β� − 1. We then have

�A−Ak�F =

����
n�

j=k+1

σj(A)2 =

����
n�

j=k+1

j−2β ≤
�� ∞

k

x−2βdx =

�
k−(2β−1)

2β − 1
≤ C(β)δ

2β−1
2β .

Here C(β) > 0 is a constant that only depends on β. In addition,
√
k�A−Ak�2 ≤

√
k · k−β = k−(β−1/2) ≤ C̃(β)δ

2β
2β−1 .

Applying Theorem 2.1 we complete the proof of Corollary 2.1.

Proof. of Corollary 2.2 We first verify the condition that δ ≤ �2σk+1(A) for � = 1/4 and the
particular choice of k. Because k ≤ �c−1 log(1/δ)−c−1 log log(1/δ)�−1, we have that σk+1(A) ≥
δ log(1/δ). Hence, for δ ∈ (0, e−16) it holds that σk+1(A) ≥ δ/16.

If k = n− 1 then by Theorem 2.1, ��Ak −A�F ≤ O(
√
n · exp{−cn}). In the rest of the proof we

assume k = �C2 log(1/δ)� − 1. We then have

�A−Ak�F =

����
n�

j=k+1

σj(A)2 =

����
n�

j=k+1

exp{−2cj} ≤
�

exp{−2ck}
1− e−2c

≤ C(c)δ log(1/δ),

where C(c) > 0 is a constant that only depends on c. In addition,
√
k�A−Ak�2 ≤

√
k · exp{−ck} ≤ δ log(1/δ) ·

�
c−1 log(1/δ) ≤ C̃(c)δ

�
log(1/δ)3.

Applying Theorem 2.1 we complete the proof of Corollary 2.2.

C Technical lemmas

Lemma C.1 (Asymmetric Davis-Kahan inequality). Fix i ≤ j ≤ n and suppose X,Y are symmetric
n× n matrices, with eigen-decomposition X = PiΛiP

�
i +Pn−iΛn−iP

�
n−i and Y = QjΞjQ

�
j +

Qn−jΞn−jQ
�
n−j . If σi(X) > σj+1(Y) then

�Q�
n−jPi�2 ≤ �X−Y�2

σi(X)− σj+1(Y)
.
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Proof. Consider
��Q�

n−j(X−Y)Pi

��
2
=

��Q�
n−jPiΛi −Ξn−jQ

�
n−jPi

��
2
≥

��Q�
n−jPi

��
2
(σi(X)− σj+1(Y)) .

Because σi(X) > σj+1(Y), we have that

��Q�
n−jPi

��
2
≤

�Q�
n−j(X−Y)Pi�2

σi(X)− σj+1(Y)
≤ �X−Y�2

σi(X)− σj+1(Y)
.

Lemma C.2 (Pythagorean theorem). Fix n ≥ m. Suppose X is a symmetric n× n matrix and P is
an n×m matrix satisfying P�P = I. Then �X�2F = �X−PP�XPP��2F + �PP�XPP��2F .

Proof. Expanding �X�2F we have that

�X�2F = �(X−PP�XPP�) +PP�XPP��2F
= �X−PP�XPP��2F + �PP�XPP��2F + 2tr

�
(X−PP�XPP�)PP�XPP�� .

It suffices to prove that the trace term is zero:

tr
�
(X−PP�XPP�)PP�XPP�� = tr

�
XPP�XPP��− tr

�
PP�XPP�PP�XPP��

(∗)
= tr

�
P�XPP�XP

�
− tr

�
P�XPP�XP

�

= 0.

Here (∗) is due to P�P = I.

Lemma C.3 (Poincaré separation theorem). Fix n ≥ m. Suppose X is a symmetric n× n matrix,
P is an n ×m matrix that satisfies P�P = I, and Y = P�XP. Let σ1(X) ≥ · · · ≥ σn(X) and
σ1(Y) ≥ · · · ≥ σm(Y) be the eigenvalues of X and Y in descending order. Then

σi(X) ≥ σi(Y) ≥ σn−m+i(X), i = 1, · · · ,m.

Lemma C.4 (Weyl’s monotonicity theorem). Suppose X,Y are n× n symmetric matrices, and let
σ1(X) ≥ · · · ≥ σn(X), σ1(Y) ≥ · · · ≥ σn(Y) and σ1(X +Y) ≥ · · · ≥ σn(X +Y) denote the
eigenvalues of X,Y and X+Y in descending order. Then

σi+j−1(X+Y) ≤ σi(X) + σj(Y), 1 ≤ i, j ≤ n, i+ j − 1 ≤ n.

In particular, setting i = 1 one obtains the commonly used Weyl’s inequality: |σj(X+Y)−σj(X)| ≤
�Y�2.
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