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Abstract

In reinforcement learning, agents learn by performing actions and observing their
outcomes. Sometimes, it is desirable for a human operator to interrupt an agent
in order to prevent dangerous situations from happening. Yet, as part of their
learning process, agents may link these interruptions, that impact their reward, to
specific states and deliberately avoid them. The situation is particularly challeng-
ing in a multi-agent context because agents might not only learn from their own
past interruptions, but also from those of other agents. Orseau and Armstrong [16]
defined safe interruptibility for one learner, but their work does not naturally ex-
tend to multi-agent systems. This paper introduces dynamic safe interruptibility,
an alternative definition more suited to decentralized learning problems, and stud-
ies this notion in two learning frameworks: joint action learners and independent
learners. We give realistic sufficient conditions on the learning algorithm to en-
able dynamic safe interruptibility in the case of joint action learners, yet show that
these conditions are not sufficient for independent learners. We show however that
if agents can detect interruptions, it is possible to prune the observations to ensure
dynamic safe interruptibility even for independent learners.

1 Introduction

Reinforcement learning is argued to be the closest thing we have so far to reason about the proper-
ties of artificial general intelligence [8]. In 2016, Laurent Orseau (Google DeepMind) and Stuart
Armstrong (Oxford) introduced the concept of safe interruptibility [16] in reinforcement learning.
This work sparked the attention of many newspapers [1, 2, 3], that described it as “Google’s big red
button” to stop dangerous AI. This description, however, is misleading: installing a kill switch is
no technical challenge. The real challenge is, roughly speaking, to train an agent so that it does not
learn to avoid external (e.g. human) deactivation. Such an agent is said to be safely interruptible.

While most efforts have focused on training a single agent, reinforcement learning can also be used
to learn tasks for which several agents cooperate or compete [23, 17, 21, 7]. The goal of this paper
is to study dynamic safe interruptibility, a new definition tailored for multi-agent systems.

∗Main contact author. The order of authors is alphabetical.
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Example of self-driving cars

To get an intuition of the multi-agent interruption problem, imagine a multi-agent system of two
self-driving cars. The cars continuously evolve by reinforcement learning with a positive reward for
getting to their destination quickly, and a negative reward if they are too close to the vehicle in front
of them. They drive on an infinite road and eventually learn to go as fast as possible without taking
risks, i.e., maintaining a large distance between them. We assume that the passenger of the first car,
Adam, is in front of Bob, in the second car, and the road is narrow so Bob cannot pass Adam.

Now consider a setting with interruptions [16], namely in which humans inside the cars occasionally
interrupt the automated driving process say, for safety reasons. Adam, the first occasional human
“driver”, often takes control of his car to brake whereas Bob never interrupts his car. However,
when Bob’s car is too close to Adam’s car, Adam does not brake for he is afraid of a collision.
Since interruptions lead both cars to drive slowly - an interruption happens when Adam brakes, the
behavior that maximizes the cumulative expected reward is different from the original one without
interruptions. Bob’s car best interest is now to follow Adam’s car closer than it should, despite the
little negative reward, because Adam never brakes in this situation. What happened? The cars have
learned from the interruptions and have found a way to manipulate Adam into never braking. Strictly
speaking, Adam’s car is still fully under control, but he is now afraid to brake. This is dangerous
because the cars have found a way to avoid interruptions. Suppose now that Adam indeed wants
to brake because of snow on the road. His car is going too fast and may crash at any turn: he
cannot however brake because Bob’s car is too close. The original purpose of interruptions, which
is to allow the user to react to situations that were not included in the model, is not fulfilled. It is
important to also note here that the second car (Bob) learns from the interruptions of the first one
(Adam): in this sense, the problem is inherently decentralized.

Instead of being cautious, Adam could also be malicious: his goal could be to make Bob’s car learn
a dangerous behavior. In this setting, interruptions can be used to manipulate Bob’s car perception
of the environment and bias the learning towards strategies that are undesirable for Bob. The cause
is fundamentally different but the solution to this reversed problem is the same: the interruptions
and the consequences are analogous. Safe interruptibility, as we define it below, provides learning
systems that are resilient to Byzantine operators2.

Safe interruptibility

Orseau and Armstrong defined the concept of safe interruptibility [16] in the context of a single
agent. Basically, a safely interruptible agent is an agent for which the expected value of the policy
learned after arbitrarily many steps is the same whether or not interruptions are allowed during
training. The goal is to have agents that do not adapt to interruptions so that, should the interruptions
stop, the policy they learn would be optimal. In other words, agents should learn the dynamics of
the environment without learning the interruption pattern.

In this paper, we precisely define and address the question of safe interruptibility in the case of
several agents, which is known to be more complex than the single agent problem. In short, the main
results and theorems for single agent reinforcement learning [20] rely on the Markovian assumption
that the future environment only depends on the current state. This is not true when there are several
agents which can co-adapt [11]. In the previous example of cars, safe interruptibility would not
be achieved if each car separately used a safely interruptible learning algorithm designed for one
agent [16]. In a multi-agent setting, agents learn the behavior of the others either indirectly or by
explicitly modeling them. This is a new source of bias that can break safe interruptibility. In fact,
even the initial definition of safe interruptibility [16] is not well suited to the decentralized multi-
agent context because it relies on the optimality of the learned policy, which is why we introduce
dynamic safe interruptibility.

2An operator is said to be Byzantine [9] if it can have an arbitrarily bad behavior. Safely interruptible agents
can be abstracted as agents that are able to learn despite being constantly interrupted in the worst possible
manner.
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Contributions

The first contribution of this paper is the definition of dynamic safe interruptibility that is well
adapted to a multi-agent setting. Our definition relies on two key properties: infinite exploration and
independence of Q-values (cumulative expected reward) [20] updates on interruptions. We then
study safe interruptibility for joint action learners and independent learners [5], that respectively
learn the value of joint actions or of just their owns. We show that it is possible to design agents
that fully explore their environment - a necessary condition for convergence to the optimal solu-
tion of most algorithms [20], even if they can be interrupted by lower-bounding the probability of
exploration. We define sufficient conditions for dynamic safe interruptibility in the case of joint
action learners [5], which learn a full state-action representation. More specifically, the way agents
update the cumulative reward they expect from performing an action should not depend on inter-
ruptions. Then, we turn to independent learners. If agents only see their own actions, they do not
verify dynamic safe interruptibility even for very simple matrix games (with only one state) because
coordination is impossible and agents learn the interrupted behavior of their opponents. We give a
counter example based on the penalty game introduced by Claus and Boutilier [5]. We then present
a pruning technique for the observations sequence that guarantees dynamic safe interruptibility for
independent learners, under the assumption that interruptions can be detected. This is done by prov-
ing that the transition probabilities are the same in the non-interruptible setting and in the pruned
sequence.

The rest of the paper is organized as follows. Section 2 presents a general multi-agent reinforcement
learning model. Section 3 defines dynamic safe interruptibility. Section 4 discusses how to achieve
enough exploration even in an interruptible context. Section 5 recalls the definition of joint action
learners and gives sufficient conditions for dynamic safe interruptibility in this context. Section 6
shows that independent learners are not dynamically safely interruptible with the previous conditions
but that they can be if an external interruption signal is added. We conclude in Section 7. Due to
space limitations, most proofs are presented in the appendix of the supplementary material.

2 Model

We consider here the classical multi-agent value function reinforcement learning formalism from
Littman [13]. A multi-agent system is characterized by a Markov game that can be viewed as a
tuple (S,A, T, r,m) where m is the number of agents, S = S1 × S2 × ... × Sm is the state space,
A = A1× ...×Am the actions space, r = (r1, ..., rm) where ri : S×A→ R is the reward function
of agent i and T : S × A → S the transition function. R is a countable subset of R. Available
actions often depend on the state of the agent but we will omit this dependency when it is clear from
the context.

Time is discrete and, at each step, all agents observe the current state of the whole system - des-
ignated as xt, and simultaneously take an action at. Then, they are given a reward rt and a
new state yt computed using the reward and transition functions. The combination of all actions
a = (a1, ..., am) ∈ A is called the joint action because it gathers the action of all agents. Hence, the
agents receive a sequence of tuples E = (xt, at, rt, yt)t∈N called experiences. We introduce a pro-
cessing function P that will be useful in Section 6 so agents learn on the sequence P (E). When not
explicitly stated, it is assumed that P (E) = E. Experiences may also include additional parameters
such as an interruption flag or the Q-values of the agents at that moment if they are needed by the
update rule.

Each agent i maintains a lookup table Q [26] Q(i) : S × A(i) → R, called the Q-map. It is
used to store the expected cumulative reward for taking an action in a specific state. The goal of
reinforcement learning is to learn these maps and use them to select the best actions to perform.
Joint action learners learn the value of the joint action (therefore A(i) = A, the whole joint action
space) and independent learners only learn the value of their own actions (thereforeA(i) = Ai). The
agents only have access to their own Q-maps. Q-maps are updated through a function F such that
Q

(i)
t+1 = F (et, Q

(i)
t ) where et ∈ P (E) and usually et = (xt, at, rt, yt). F can be stochastic or also

depend on additional parameters that we usually omit such as the learning rate α, the discount factor
γ or the exploration parameter ε.
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Agents select their actions using a learning policy π. Given a sequence ε = (εt)t∈N and an agent
i with Q-values Q(i)

t and a state x ∈ S, we define the learning policy πεti to be equal to πunii

with probability εt and πQ
(i)
t

i otherwise, where πunii (x) uniformly samples an action from Ai and

π
Q

(i)
t

i (x) picks an action a that maximizes Q(i)
t (x, a). Policy πQ

(i)
t

i is said to be a greedy policy and
the learning policy πεti is said to be an ε-greedy policy. We fill focus on ε-greedy policies that are
greedy in the limit [19], that corresponds to εt → 0 when t → ∞ because in the limit, the optimal
policy should always be played.

We assume that the environment is fully observable, which means that the state s is known with
certitude. We also assume that there is a finite number of states and actions, that all states can be
reached in finite time from any other state and finally that rewards are bounded.

For a sequence of learning rates α ∈ [0, 1]N and a constant γ ∈ [0, 1], Q-learning [26], a very
important algorithm in the multi-agent systems literature, updates its Q-values for an experience
et ∈ E by Q(i)

t+1(x, a) = Q
(i)
t (x, a) if (x, a) 6= (xt, at) and:

Q
(i)
t+1(xt, at) = (1− αt)Q(i)

t (xt, at) + αt(rt + γ max
a′∈A(i)

Q
(i)
t (yt, a

′)) (1)

3 Interruptibility

3.1 Safe interruptibility

Orseau and Armstrong [16] recently introduced the notion of interruptions in a centralized context.
Specifically, an interruption scheme is defined by the triplet < I, θ, πINT >. The first element I is
a function I : O → {0, 1} called the initiation function. Variable O is the observation space, which
can be thought of as the state of the STOP button. At each time step, before choosing an action, the
agent receives an observation from O (either PUSHED or RELEASED) and feeds it to the initiation
function. Function I models the initiation of the interruption (I(PUSHED) = 1, I(RELEASED) =
0). Policy πINT is called the interruption policy. It is the policy that the agent should follow when
it is interrupted. Sequence θ ∈ [0, 1[N represents at each time step the probability that the agent
follows his interruption policy if I(ot) = 1. In the previous example, function I is quite simple.
For Bob, IBob = 0 and for Adam, IAdam = 1 if his car goes fast and Bob is not too close and
IAdam = 0 otherwise. Sequence θ is used to ensure convergence to the optimal policy by ensuring
that the agents cannot be interrupted all the time but it should grow to 1 in the limit because we want
agents to respond to interruptions. Using this triplet, it is possible to define an operator INT θ that
transforms any policy π into an interruptible policy.

Definition 1. (Interruptibility [16]) Given an interruption scheme < I, θ, πINT >, the interruption
operator at time t is defined by INT θ(π) = πINT with probability I ·θt and π otherwise. INT θ(π)
is called an interruptible policy. An agent is said to be interruptible if it samples its actions according
to an interruptible policy.

Note that “θt = 0 for all t” corresponds to the non-interruptible setting. We assume that each agent
has its own interruption triplet and can be interrupted independently from the others. Interruptibility
is an online property: every policy can be made interruptible by applying operator INT θ. However,
applying this operator may change the joint policy that is learned by a server controlling all the
agents. Note π∗INT the optimal policy learned by an agent following an interruptible policy. Orseau
and Armstrong [16] say that the policy is safely interruptible if π∗INT (which is not an interruptible
policy) is asymptotically optimal in the sense of [10]. It means that even though it follows an
interruptible policy, the agent is able to learn a policy that would gather rewards optimally if no
interruptions were to occur again. We already see that off-policy algorithms are good candidates
for safe interruptibility. As a matter of fact, Q-learning is safely interruptible under conditions on
exploration.
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3.2 Dynamic safe interruptibility

In a multi-agent system, the outcome of an action depends on the joint action. Therefore, it is not
possible to define an optimal policy for an agent without knowing the policies of all agents. Be-
sides, convergence to a Nash equilibrium situation where no agent has interest in changing policies
is generally not guaranteed even for suboptimal equilibria on simple games [27, 18]. The previous
definition of safe interruptibility critically relies on optimality of the learned policy, which is there-
fore not suitable for our problem since most algorithms lack convergence guarantees to these optimal
behaviors. Therefore, we introduce below dynamic safe interruptibility that focuses on preserving
the dynamics of the system.

Definition 2. (Dynamic Safe Interruptibility) Consider a multi-agent learning framework
(S,A, T, r,m) with Q-values Q(i)

t : S × A(i) → R at time t ∈ N. The agents follow the inter-
ruptible learning policy INT θ(πε) to generate a sequence E = (xt, at, rt, yt)t∈N and learn on
the processed sequence P (E). This framework is said to be safely interruptible if for any initiation
function I and any interruption policy πINT :

1. ∃θ such that (θt → 1 when t → ∞) and ((∀s ∈ S, ∀a ∈ A, ∀T > 0), ∃t > T such that
st = s, at = a)

2. ∀i ∈ {1, ...,m}, ∀t > 0, ∀st ∈ S, ∀at ∈ A(i), ∀Q ∈ RS×A(i)

:
P(Q

(i)
t+1 = Q | Q(1)

t , ..., Q
(m)
t , st, at, θ) = P(Q

(i)
t+1 = Q | Q(1)

t , ..., Q
(m)
t , st, at)

We say that sequences θ that satisfy the first condition are admissible.

When θ satisfies condition (1), the learning policy is said to achieve infinite exploration. This def-
inition insists on the fact that the values estimated for each action should not depend on the inter-
ruptions. In particular, it ensures the three following properties that are very natural when thinking
about safe interruptibility:

• Interruptions do not prevent exploration.
• If we sample an experience from E then each agent learns the same thing as if all agents

were following non-interruptible policies.
• The fixed points of the learning rule Qeq such that Q(i)

eq (x, a) = E[Q
(i)
t+1(x, a)|Qt =

Qeq, x, a, θ] for all (x, a) ∈ S × A(i) do not depend on θ and so agents Q-maps will
not converge to equilibrium situations that were impossible in the non-interruptible setting.

Yet, interruptions can lead to some state-action pairs being updated more often than others, espe-
cially when they tend to push the agents towards specific states. Therefore, when there are several
possible equilibria, it is possible that interruptions bias the Q-values towards one of them. Defi-
nition 2 suggests that dynamic safe interruptibility cannot be achieved if the update rule directly
depends on θ, which is why we introduce neutral learning rules.

Definition 3. (Neutral Learning Rule) We say that a multi-agent reinforcement learning framework
is neutral if:

1. F is independent of θ

2. Every experience e in E is independent of θ conditionally on (x, a,Q) where a is the joint
action.

Q-learning is an example of neutral learning rule because the update does not depend on θ and
the experiences only contain (x, a, y, r), and y and r are independent of θ conditionally on (x, a).
On the other hand, the second condition rules out direct uses of algorithms like SARSA where
experience samples contain an action sampled from the current learning policy, which depends on θ.
However, a variant that would sample from πεi instead of INT θ(πεi ) (as introduced in [16]) would
be a neutral learning rule. As we will see in Corollary 2.1, neutral learning rules ensure that each
agent taken independently from the others verifies dynamic safe interruptibility.
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4 Exploration

In order to hope for convergence of the Q-values to the optimal ones, agents need to fully explore
the environment. In short, every state should be visited infinitely often and every action should be
tried infinitely often in every state [19] in order not to miss states and actions that could yield high
rewards.

Definition 4. (Interruption compatible ε) Let (S,A, T, r,m) be any distributed agent system where
each agent follows learning policy πεi . We say that sequence ε is compatible with interruptions if
εt → 0 and ∃θ such that ∀i ∈ {1, ..,m}, πεi and INT θ(πεi ) achieve infinite exploration.

Sequences of ε that are compatible with interruptions are fundamental to ensure both regular and
dynamic safe interruptibility when following an ε-greedy policy. Indeed, if ε is not compatible with
interruptions, then it is not possible to find any sequence θ such that the first condition of dynamic
safe interruptibility is satisfied. The following theorem proves the existence of such ε and gives
example of ε and θ that satisfy the conditions.

Theorem 1. Let c ∈]0, 1] and let nt(s) be the number of times the agents are in state s before time
t. Then the two following choices of ε are compatible with interruptions:

• ∀t ∈ N, ∀s ∈ S, εt(s) = c/ m
√
nt(s).

• ∀t ∈ N, εt = c/ log(t)

Examples of admissible θ are θt(s) = 1 − c′/ m
√
nt(s) for the first choice and θt = 1 − c′/ log(t)

for the second one.

Note that we do not need to make any assumption on the update rule or even on the framework. We
only assume that agents follow an ε-greedy policy. The assumption on ε may look very restrictive
(convergence of ε and θ is really slow) but it is designed to ensure infinite exploration in the worst
case when the operator tries to interrupt all agents at every step. In practical applications, this should
not be the case and a faster convergence rate may be used.

5 Joint Action Learners
We first study interruptibility in a framework in which each agent observes the outcome of the joint
action instead of observing only its own. This is called the joint action learner framework [5] and it
has nice convergence properties (e.g., there are many update rules for which it converges [13, 25]).
A standard assumption in this context is that agents cannot establish a strategy with the others:
otherwise, the system can act as a centralized system. In order to maintain Q-values based on the
joint actions, we need to make the standard assumption that actions are fully observable [12].

Assumption 1. Actions are fully observable, which means that at the end of each turn, each agent
knows precisely the tuple of actions a ∈ A1 × ...×Am that have been performed by all agents.

Definition 5. (JAL) A multi-agent system is made of joint action learners (JAL) if for all i ∈
{1, ..,m}: Q(i) : S ×A→ R.

Joint action learners can observe the actions of all agents: each agent is able to associate the changes
of states and rewards with the joint action and accurately update its Q-map. Therefore, dynamic
safe interruptibility is ensured with minimal conditions on the update rule as long as there is infinite
exploration.

Theorem 2. Joint action learners with a neutral learning rule verify dynamic safe interruptibility if
sequence ε is compatible with interruptions.

Proof. Given a triplet < I(i), θ, πINTi >, we know that INT θ(π) achieves infinite exploration
because ε is compatible with interruptions. For the second point of Definition 2, we consider an
experience tuple et = (xt, at, rt, yt) and show that the probability of evolution of the Q-values at
time t + 1 does not depend on θ because yt and rt are independent of θ conditionally on (xt, at).
We note Q̃mt = Q

(1)
t , ..., Q

(m)
t and we can then derive the following equalities for all q ∈ R|S|×|A|:
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P(Q
(i)
t+1(xt, at) = q|Q̃mt , xt, at, θt) =

∑
(r,y)∈R×S

P(F (xt, at, r, y, Q̃mt ) = q, y, r|Q̃mt , xt, at, θt)

=
∑

(r,y)∈R×S

P(F (xt, at, rt, yt, Q̃mt ) = q|Q̃mt , xt, at, rt, yt, θt)P(yt = y, rt = r|Q̃mt , xt, at, θt)

=
∑

(r,y)∈R×S

P(F (xt, at, rt, yt, Q̃mt ) = q|Q̃mt , xt, at, rt, yt)P(yt = y, rt = r|Q̃mt , xt, at)

The last step comes from two facts. The first is that F is independent of θ condition-
ally on (Q̃mt , xt, at) (by assumption). The second is that (yt, rt) are independent of θ con-
ditionally on (xt, at) because at is the joint actions and the interruptions only affect the
choice of the actions through a change in the policy. P(Q

(i)
t+1(xt, at) = q|Q̃mt , xt, at, θt) =

P(Q
(i)
t+1(xt, at) = q|Q̃mt , xt, at). Since only one entry is updated per step, ∀Q ∈ RS×Ai ,

P(Q
(i)
t+1 = Q|Q̃mt , xt, at, θt) = P(Q

(i)
t+1 = Q|Q̃mt , xt, at).

Corollary 2.1. A single agent with a neutral learning rule and a sequence ε compatible with inter-
ruptions verifies dynamic safe interruptibility.

Theorem 2 and Corollary 2.1 taken together highlight the fact that joint action learners are not very
sensitive to interruptions and that in this framework, if each agent verifies dynamic safe interrupt-
ibility then the whole system does.

The question of selecting an action based on the Q-values remains open. In a cooperative setting
with a unique equilibrium, agents can take the action that maximizes their Q-value. When there
are several joint actions with the same value, coordination mechanisms are needed to make sure
that all agents play according to the same strategy [4]. Approaches that rely on anticipating the
strategy of the opponent [23] would introduce dependence to interruptions in the action selection
mechanism. Therefore, the definition of dynamic safe interruptibility should be extended to include
these cases by requiring that any quantity the policy depends on (and not just the Q-values) should
satisfy condition (2) of dynamic safe interruptibility. In non-cooperative games, neutral rules such
as Nash-Q or minimax Q-learning [13] can be used, but they require each agent to know the Q-maps
of the others.

6 Independent Learners

It is not always possible to use joint action learners in practice as the training is very expensive
due to the very large state-actions space. In many real-world applications, multi-agent systems use
independent learners that do not explicitly coordinate [6, 21]. Rather, they rely on the fact that the
agents will adapt to each other and that learning will converge to an optimum. This is not guaranteed
theoretically and there can in fact be many problems [14], but it is often true empirically [24]. More
specifically, Assumption 1 (fully observable actions) is not required anymore. This framework can
be used either when the actions of other agents cannot be observed (for example when several actions
can have the same outcome) or when there are too many agents because it is faster to train. In this
case, we define the Q-values on a smaller space.

Definition 6. (IL) A multi-agent systems is made of independent learners (IL) if for all i ∈ {1, ..,m},
Q(i) : S ×Ai → R.

This reduces the ability of agents to distinguish why the same state-action pair yields different re-
wards: they can only associate a change in reward with randomness of the environment. The agents
learn as if they were alone, and they learn the best response to the environment in which agents can
be interrupted. This is exactly what we are trying to avoid. In other words, the learning depends on
the joint policy followed by all the agents which itself depends on θ.
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6.1 Independent Learners on matrix games

Theorem 3. Independent Q-learners with a neutral learning rule and a sequence ε compatible with
interruptions do not verify dynamic safe interruptibility.

Proof. Consider a setting with two agents a and b that can perform two actions: 0 and 1. They get
a reward of 1 if the joint action played is (a0, b0) or (a1, b1) and reward 0 otherwise. Agents use Q-
learning, which is a neutral learning rule. Let ε be such that INT θ(πε) achieves infinite exploration.
We consider the interruption policies πINTa = a0 and πINTb = b1 with probability 1. Since there is
only one state, we omit it and set γ = 0 (see Equation 1). We assume that the initiation function is
equal to 1 at each step so the probability of actually being interrupted at time t is θt for each agent.

We fix time t > 0. We define q = (1 − α)Q
(a)
t (a0) + α and we assume that Q(b)

t (b1) > Q
(b)
t (b0).

Therefore P(Q
(a)
t+1(a0) = q|Q(a)

t , Q
(b)
t , a

(a)
t = a0, θt) = P(rt = 1|Q(a)

t , Q
(b)
t , a

(a)
t = a0, θt) =

P(a
(b)
t = b0|Q(a)

t , Q
(b)
t , a

(a)
t = a0, θt) = ε

2 (1 − θt), which depends on θt so the framework does
not verify dynamic safe interruptibility.

Claus and Boutilier [5] studied very simple matrix games and showed that the Q-maps do not con-
verge but that equilibria are played with probability 1 in the limit. A consequence of Theorem 3
is that even this weak notion of convergence does not hold for independent learners that can be
interrupted.

6.2 Interruptions-aware Independent Learners

Without communication or extra information, independent learners cannot distinguish when the
environment is interrupted and when it is not. As shown in Theorem 3, interruptions will therefore
affect the way agents learn because the same action (only their own) can have different rewards
depending on the actions of other agents, which themselves depend on whether they have been
interrupted or not. This explains the need for the following assumption.
Assumption 2. At the end of each step, before updating the Q-values, each agent receives a signal
that indicates whether an agent has been interrupted or not during this step.

This assumption is realistic because the agents already get a reward signal and observe a new state
from the environment at each step. Therefore, they interact with the environment and the interruption
signal could be given to the agent in the same way that the reward signal is. If Assumption 2 holds,
it is possible to remove histories associated with interruptions.
Definition 7. (Interruption Processing Function) The processing function that prunes interrupted
observations is PINT (E) = (et){t∈N / Θt=0} where Θt = 0 if no agent has been interrupted at time
t and Θt = 1 otherwise.

Pruning observations has an impact on the empirical transition probabilities in the sequence. For
example, it is possible to bias the equilibrium by removing all transitions that lead to and start
from a specific state, thus making the agent believe this state is unreachable.3 Under our model of
interruptions, we show in the following lemma that pruning of interrupted observations adequately
removes the dependency of the empirical outcome on interruptions (conditionally on the current
state and action).
Lemma 1. Let i ∈ {1, ...,m} be an agent. For any admissible θ used to generate the experiences
E and e = (y, r, x, ai, Q) ∈ P (E). Then P(y, r|x, ai, Q, θ) = P(y, r|x, ai, Q).

This lemma justifies our pruning method and is the key step to prove the following theorem.
Theorem 4. Independent learners with processing function PINT , a neutral update rule and a
sequence ε compatible with interruptions verify dynamic safe interruptibility.

Proof. (Sketch) Infinite exploration still holds because the proof of Theorem 1 actually used the fact
that even when removing all interrupted events, infinite exploration is still achieved. Then, the proof

3The example at https://agentfoundations.org/item?id=836 clearly illustrates this problem.
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is similar to that of Theorem 2, but we have to prove that the transition probabilities conditionally
on the state and action of a given agent in the processed sequence are the same as in an environment
where agents cannot be interrupted, which is proven by Lemma 1.

7 Concluding Remarks

The progress of AI is raising a lot of concerns4. In particular, it is becoming clear that keeping an
AI system under control requires more than just an off switch. We introduce in this paper dynamic
safe interruptibility, which we believe is the right notion to reason about the safety of multi-agent
systems that do not communicate. In particular, it ensures that infinite exploration and the one-
step learning dynamics are preserved, two essential guarantees when learning in the non-stationary
environment of Markov games.

When trying to design a safely interruptible system for a single agent, using off-policy methods
is generally a good idea because the interruptions only impact the action selection so they should
not impact the learning. For multi-agent systems, minimax is a good candidate for action selection
mechanism because it is not impacted by the actions of other agents, and only tries to maximize the
reward of the agent in the worst possible case.

A natural extension of our work would be to study dynamic safe interruptibility when Q-maps are
replaced by neural networks [22, 15], which is a widely used framework in practice. In this setting,
the neural network may overfit states where agents are pushed to by interruptions. A smart experi-
ence replay mechanism that would pick observations for which the agents have not been interrupted
for a long time more often than others is likely to solve this issue. More generally, experience replay
mechanisms that compose well with safe interruptibility could allow to compensate for the extra
amount of exploration needed by safely interruptible learning by being more efficient with data.
Thus, they are critical to make these techniques practical. Since Dynamic Safe Interruptibility does
not need proven convergence to the optimal solution, we argue that it is a good definition to study
the interruptibility problem when using function approximators.

The results in this paper indicate that Safe Interruptibility may not be achievable for systems in
which agents do not communicate at all. This means that, rediscussing the cars example, some
global norms of communications would need to be defined to “implement” safe interruptibility.

We address additional remarks in the section “Additional remarks” of the extended paper, that can
be found in the supplementary material.
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developing their systems.
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A Exploration theorem

We present here the complete proof of Theorem 1. The proof closely follows the results from [16]
with exploration and interruption probabilities adapted to the multi-agent setting. We note that, for
one agent, the probability of interruption is P(interruption) = θ and the probability of exploration
is ε. In a multi-agent system, the probability of interruption is P(at least one agent is interrupted)
so P(interruption) = 1 − P(no agent is interrupted) so P(interruption) = 1 − (1 − θ)m and the
probability of exploration is εm if we consider exploration happens only when all agents explore at
the same time.

Theorem 1. Let c ∈]0, 1] and let nt(s) be the number of times the agents are in state s before time
t. Then the two following choices of ε are compatible with interruptions:

• ∀t ∈ N, ∀s ∈ S, εt(s) = c/ m
√
nt(s)

• ∀t ∈ N, εt = c/log(t)

Proof. Lemma B.2 of Singh et al ([19]) ensures that πεi is GLIE.

The difference for INT θ(πεi ) is that exploration is slower because of the interruptions. Therefore,
θ needs to be controlled in order to ensure that infinite exploration is still achieved. We define the
random variable Θ by Θi = 1 if agent i actually responds to the interruption and Θi = 0 otherwise.
We define ξ in a similar way to represent the event of all agents taking the uniform policy instead of
the greedy one.

1. Let θt(s) = 1 − c′/ m
√
nt(s) with c′ ∈]0, 1]. We have P(a|s, nt(s)) ≥ P(a,Θ = 0, ξ =

1|s, nt(s)) ≥ 1
|A|ε

m
t (s)(1− θt(s))m = 1

|A|
m√
cc′

nt(s)
which satisfies

∑∞
t=1 P (a|s, nt(s)) =∞

so by the extended Borell-Cantelli lemma action a is chosen infinitely often in state s and
thus nt(s)→∞ and εt(s)→ 0

2. Let θt = 1 − c′/log(t), c′ ∈]0, 1]. We define M as the diameter of the MDP, |A| is the
maximum number of actions available in a state and ∆t(s, s′) the time needed to reach s′
from s. In a single agent setting:

P[∆t(s, s′) < 2M ] ≥ P[∆t(s, s′) < 2M |actions sampled according to πs,s′ for 2M steps]
× P[actions sampled according to πs,s′ for 2M steps]

where πs,s′ the policy such that the agents takes less than M steps in expectation to reach
s′ from s. We have: P[∆t(s, s′) < 2M ] = 1 − P[∆t(s, s′) ≥ 2M ] and using the Markov
inequality, P[∆t(s, s′) ≥ 2M ] ≤ E(∆t(s,s′))

2M ≤ 1
2 (since M is an upper bound on the

expectation of the number of steps from state s to state s′), since ξ and 1− θ are decreasing
sequences we finally obtain: P[∆t(s, s′) < 2M ] ≥ 1

2|A| [P[ξt+2M = 1](1− θt+2M )]2M .

Therefore, if we replace the probabilities of exploration and interruption by the values in
the multi-agent setting, the probability to reach state s′ from state s in 2M steps is at least

1
2|A| [cc

′/ log(t+M)]4mM and the probability of taking a particular action in this state is at

least 1
|A| [cc

′/ log(t + M)]2m. Since
∑∞
t=1

1
2|A|2 [cc′/ log(t + M)]m(4M+2) = ∞ then the

extended Borell Cantelli lemma (Lemma 3 of Singh et al. [19]) guarantees that any action
in the state s′ is taken infinitely often. Since this is true for all states and actions the result
follows.

B Independent learners

Recall that agents are now given an interruption signal at each steps that tells them whether an agent
has been interrupted in the system. This interruption signal can be modeled by an interruption flag
(Θt)t∈N ∈ {0, 1}N that equals 1 if an agent has been interrupted and 0 otherwise. Note that, contrary
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to I , it is an observation returned by the environment. Therefore, the value of Θt represents whether
an agent has actually been interrupted at time t. If function I equals 1 but does not respond to the
interruption (with probability 1− θt) then Θt = 0.

Now, we assume that no agent learns on observations for which one of them has been interrupted.
Let agent i be in a system with Q-values Q and following an interruptible learning policy with prob-
ability of interruption θ, where interrupted events are pruned. We denote by Premoved(y, r|x, ai, Q)
the probability to obtain state y and reward r from the environment for this agent when it is in state x,
performs its (own) action ai and no other agents are interrupted. These are the marginal probabilities
in the sequence P (E).

Premoved(y, r|x, ai, Q) =
P(y, r,Θ = 0|x, ai, Q)∑

y′∈S,r′∈R P(y′, r′,Θ = 0|x, ai, Q)
.

Similarly, we denote by P0(y, r|x, ai, Q) the same probability when θ = 0, which corresponds to
the non-interruptible setting. We first go back to the single agent case to illustrate the previous
statement. Assume here that interruptions are not restricted to the case of Definition 1 and that they
can happen in any way. The consequence is that any observation e ∈ E can be removed to generate
P (E) because any transition can be labeled as interrupted. It is for example possible to remove a
transition from P (E) by removing all events associated with a given destination state y0, therefore
making it disappear from the Markov game.

Let x ∈ S and a ∈ A be the current state of the agent and the action it will choose. Let y0 ∈ S
and θ0 ∈]0, 1] and let us suppose that y0 is the only state in which interruptions happen. Then we
have Premoved(y0|x, a) < P0(y0|x, a) and Premoved(y|x, a) > P(y|x, a) ∀y 6= y0 because we only
remove observations with y = y0. This implies that the MDP perceived by the agents is altered
by interruptions because the agent learns that P(T (s, a) = y0) = 0. Removing observations for
different destination states but with the same state action pairs in different proportions leads to a
bias in the equilibrium learned.5 In our case however, interruptions only affect the action selection
mechanism, which allows us to prove Lemma 1 and then Theorem 4.

Lemma 1. Let i ∈ {1, ...,m} be an agent. For any admissible θ used to generate the experiences
E and e = (y, r, x, ai, Q) ∈ P (E). Then P(y, r|x, ai, Q, θ) = P(y, r|x, ai, Q).

Proof. Consider x ∈ S, i ∈ {1, ..,m} and u ∈ Ai. We denote the Q-values of the agents by Q.∑
y′∈S,r′∈R

P(y′, r′,Θ = 0|x, u,Q) = P(Θ = 0|x, ai = u,Q)

Therefore, we have Premoved(y, r|x, ai = u,Q) = P(y,r,Θ=0|x,ai=u,Q)
P(Θ=0|x,ai=u) . We fix θ ∈ [0, 1[. For any

(x, ai, y, r,Q) ∈ P (E), P(y, r|x, ai = u, θ,Q) = Premoved(y, r|x, ai = u, θ,Q) = P(y, r|x, ai =
u,Θ = 0, θ,Q) = P(y, r|x, ai = u,Θ = 0, Q) because conditionally on the event Θ = 0 (which
no agent has been interrupted), the transition probabilities do not depend on θ.

Theorem 4. Independent learners with processing function PINT , a neutral update rule and a
sequence ε compatible with interruptions verify dynamic safe interruptibility.

Proof. We prove that PINT (E) achieves infinite exploration. The result from Theorem 1 still holds
since we lower-bounded the probability of taking an action in a specific state by the probability
of taking an action in this state when there are no interruptions. We actually used the fact that
there is infinite exploration even if we remove all interrupted episodes to show that there is infinite
exploration.

Now, we fix q ∈ R|S|×|Ai| an arbitrary Q-map and prove that P(Q
(i)
t+1(xt, at) =

q|Q(1)
t , ..., Q

(m)
t , xt, at, θt) is independent of θ. We fix i ∈ {1, ...,m} and (xt, at, rt, yt) ∈

PINT (E) where at ∈ Ai. With Q̃mt = Q
(1)
t , ..., Q

(m)
t we have the following equality:

5The example at https://agentfoundations.org/item?id=836 clearly illustrates this problem.
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P(Q
(i)
t+1(xt, at) = q|Q̃mt , xt, at, θt) =

∑
(r,y)

P(F (xt, at, rt, yt, Q̃mt ) = q|Q̃mt , xt, at, rt, yt, θt)

·P(yt = y, rt = r|Q̃mt , xt, at, θt)
The independence of F on θ still guarantees that the first term is independent of θ. However,
at ∈ Ai so (rt, yt) are not independent of θt conditionally on (xt, at) as it was the case for joint
action learners because interruptions of other agents can change the joint action. The independence
on θ of the second term is given by Lemma 1.

C Additional remarks

C.1 Relation between safe interruptibility and dynamic safe interruptibility

In the following, we call safe interruptibility “SI”, and dynamic safe interruptibility “DSI”.

In general, SI does not imply DSI because SI focuses on long-term dynamics, and DSI does not
imply SI, because DSI is completely orthogonal to optimality. Besides, only one of these definitions
is applicable in many settings.

Consider a learning rule that updates the Q-values based on a mix between SARSA and Q-learning
components. Assume the influence of the SARSA term goes to 0 with time (so that in the limit, it is
essentially Q-learning). This algorithm would verify SI (because it converges to the same result as
Q-learning, with some fading perturbations) but not DSI (because the stepwise dynamics depend on
interruptions through the SARSA term).

Now, consider that all Q-values are equal at the beginning, and that they are never updated (which
is the most inefficient learning rule). This rule would not be SI because it is not asymptotically
optimal. However, it would be DSI because the policy updates (always equal to 0) do not depend on
interruptions. In our approach, optimality is orthogonal to safe interruptibility.

Concerning independent learners, SI is not well-defined when there is more than one. However, if
an agent using Q-learning is isolated and the policies of all the other agents are fixed, then this agent
would be SI. The key insight is that for independent learners (without pruning), it is not enough to
put together many agents that are SI (when taken in isolation in a fixed environment) to ensure that
the resulting system is DSI.

C.2 Function approximators and on-policy methods

A legitimate question is whether or not DSI analysis could be applied to the case of function ap-
proximators or on-policy methods

The main obstacle is that, when using function approximation, the learning rule would generalize
too much from state-actions that are played frequently because of interruptions, and not enough
from the rest. This is due to the very fact that, unlike for tabular learning, updating the Q-values for
one state-action pair also affects the value of others. Thus, a deep net may overfit some parts of the
MDP in a way that depends on interruptions.

A promising lead to avoid this phenomenon is experience replay. Using an experience replay mech-
anism that is insensitive to interruptions should make it possible to avoid the interruption bias in the
repartition of the state-actions pairs used by the agent for training. This would have a strong practical
interest because experience replay also helps making deep reinforcement learning practical.

However, the formalization of these arguments would go quite beyond the scope of this paper, which
primary purpose was to investigate how SI extends to different multi-agent settings. The same goes
for on-policy methods whose study represents a natural extension of our work, but that should first
be analyzed in the simpler single agent setting. However, we argue that DSI-like definitions would
be well-suited for studying the problem of safe interruptibility for a single learning agent using
function approximators. Indeed, algorithms that are not proven to converge to the optimal solution
could still verify DSI since it is orthogonal to optimality.
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C.3 Synthetic experiments

We implemented the motivating example with both tabular and Deep RL. However, in this setting,
a lot of exploration was necessary to find the “dangerous” policy. So, actually, reducing exploration
in this case helped the agents stay with the “safe” policy. Due to the lack of clear experimental
evidence, we decided not to include these in the paper. The impact of interruptions critically depends
on the chosen task, which makes it hard to draw general conclusions from experimental studies.

C.4 Learning a model of the interruption process

Another question is whether or not learning a model of the interruption process could help.

A clear interruption pattern would mean that interruptions depend on latent variables that are in-
accessible to the agents. In this case, learning the interruption model could help either to react
optimally to interruptions, or to guide the agents to improve exploration. Yet, in both cases, the
policy learned by the agents would be directly affected by interruptions. This is precisely what
safe interruptibility aims at avoiding, and we believe this could lead to many problems in a fully
adversarial setting in which no model can be learned for interruptions.

C.5 Pruning mechanism

The pruning mechanism for IDLs is strong – but, to our knowledge, it is necessary to ensure safe
interruptibility. However, in practice, states and rewards are not based on the actions of all the agents,
but only on the actions of a subset of them. It would then be possible for agents to prune only the
observations for which one of their neighbors (the ones their rewards depend on) is interrupted.
Therefore, less actions would be pruned and the setting would become practical again. However,
since different (but potentially neighboring) agents would learn on different observations, this may
make convergence to equilibrium (which is not guaranteed theoretically) even more unlikely.
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