
A Supplementary experimental results

Due to limited space, we considered the surrogate loss without the zero-one loss in Figure 1. Here,
we include the zero-one loss and show the extended version of Figure 1 in Figure 4. In general, the
curves of risks w.r.t. `01 look quite similar to (but less smooth than) those w.r.t. `sig. Therefore, the
curves of risks w.r.t. `sig are more visually appealing as the illustrative experimental results.
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(a) Linear model, risks w.r.t. `sig
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(b) Linear model, risks w.r.t. `01
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(c) MLP, risks w.r.t. `sig
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(d) MLP, risks w.r.t. `01

Figure 4: The extended version of Figure 1.

B Proofs

In this appendix, we prove all the theoretical results in Section 4.

B.1 Proof of Lemma 1

Let

pp(Xp) = pp(xp1) · · · pp(xpnp
), p(Xu) = p(xu1) · · · p(xunu

)

be the probability density functions of Xp and Xu. Then let Fp(Xp) be the cumulative distribution
function of Xp, Fu(Xu) be that of Xu, and

F (Xp,Xu) = Fp(Xp) · Fu(Xu)

be the joint cumulative distribution function of (Xp,Xu). Given the above definitions, the measure
of D−(g) is defined by

Pr(D−(g)) =

∫
(Xp,Xu)∈D−(g)

dF (Xp,Xu),
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where Pr denotes the probability. Since R̃pu(g) is identical to R̂pu(g) on D+(g) and different from
R̂pu(g) on D−(g), we have Pr(D−(g)) = Pr{R̃pu(g) 6= R̂pu(g)}. That is, the measure of D−(g)

is non-zero if and only if R̃pu(g) differs from R̂pu(g) with a non-zero probability.

Based on the facts that R̂pu(g) is unbiased and R̃pu(g)− R̂pu(g) = 0 on D+(g), we have

E[R̃pu(g)]−R(g) = E[R̃pu(g)− R̂pu(g)]

=

∫
(Xp,Xu)∈D+(g)

R̃pu(g)− R̂pu(g) dF (Xp,Xu)

+

∫
(Xp,Xu)∈D−(g)

R̃pu(g)− R̂pu(g) dF (Xp,Xu)

=

∫
(Xp,Xu)∈D−(g)

R̃pu(g)− R̂pu(g) dF (Xp,Xu).

As a result, E[R̃pu(g)] − R(g) > 0 if and only if
∫
(Xp,Xu)∈D−(g) dF (Xp,Xu) > 0 due to the fact

R̃pu(g) − R̂pu(g) > 0 on D−(g). That is, the bias of R̃pu(g) is positive if and only if the measure
of D−(g) is non-zero.

We prove (7) by the method of bounded differences, for that

E[R̂−u (g)− πpR̂−p (g)] = R−u (g)− πpR−p (g) = R−n (g) ≥ α.

We have assumed that 0 ≤ `(t,±1) ≤ C`, and thus the change of R̂−p (g) will be no more than
C`/np if some xpi ∈ Xp is replaced, or the change of R̂−u (g) will be no more than C`/nu if some
xui ∈ Xu is replaced. Subsequently, McDiarmid’s inequality [47] implies

Pr{R−n (g)− (R̂−u (g)− πpR̂−p (g)) ≥ α} ≤ exp

(
− 2α2

np(C`πp/np)2 + nu(C`/nu)2

)
= exp

(
− 2α2/C2

`

π2
p/np + 1/nu

)
.

Taking into account that

Pr(D−(g)) = Pr{R̂−u (g)− πpR̂−p (g) < 0}

≤ Pr{R̂−u (g)− πpR̂−p (g) ≤ R−n (g)− α}

= Pr{R−n (g)− (R̂−u (g)− πpR̂−p (g)) ≥ α},
we complete the proof.

B.2 Proof of Theorem 2

It has been proven in Lemma 1 that

E[R̃pu(g)]−R(g) =

∫
(Xp,Xu)∈D−(g)

R̃pu(g)− R̂pu(g) dF (Xp,Xu),

and thus the exponential decay of the bias in (8) is obtained via

E[R̃pu(g)]−R(g) ≤ sup(Xp,Xu)∈D−(g)(R̃pu(g)− R̂pu(g)) ·
∫
(Xp,Xu)∈D−(g)

dF (Xp,Xu)

= sup(Xp,Xu)∈D−(g)(πpR̂
−
p (g)− R̂−u (g)) · Pr(D−(g))

≤ C`πp∆g.

The deviation bound (9) is due to

|R̃pu(g)−R(g)| ≤ |R̃pu(g)− E[R̃pu(g)]|+ |E[R̃pu(g)]−R(g)|
≤ |R̃pu(g)− E[R̃pu(g)]|+ C`πp∆g.
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The change of R̃pu(g) will be no more than 2C`/np if some xpi ∈ Xp is replaced, or it will be no
more than C`/nu if some xui ∈ Xu is replaced, and McDiarmid’s inequality gives us

Pr{|R̃pu(g)− E[R̃pu(g)]| ≥ ε} ≤ 2 exp

(
− 2ε2

np(2C`πp/np)2 + nu(C`/nu)2

)
,

or equivalently, with probability at least 1− δ,

|R̃pu(g)− E[R̃pu(g)]| ≤

√
ln(2/δ)C2

`

2

(
4π2

p

np
+

1

nu

)
≤ Cδ

(
2πp√
np

+
1
√
nu

)
= Cδ · χnp,nu

.

On the other hand, the deviation bound (10) is due to

|R̃pu(g)−R(g)| ≤ |R̃pu(g)− R̂pu(g)|+ |R̂pu(g)−R(g)|,

where |R̃pu(g) − R̂pu(g)| > 0 with probability at most ∆g , and |R̂pu(g) − R(g)| shares the same
concentration inequality with |R̃pu(g)− E[R̃pu(g)]|.

B.3 Proof of Theorem 3

For convenience, let A = πpR̂
+
p (g) and B = R̂−u (g)− πpR̂−p (g), so that

R(g) = E[A+B], R̂pu(g) = A+B, R̃pu(g) = A+B+,

where B+ = max{0, B}. Subsequently, let R = R(g) for short, and then by definition,

MSE(R̂pu(g)) = E[(A+B −R)2]

= E[(A+B)2]− 2R · E[A+B] +R2,

MSE(R̃pu(g)) = E[(A+B+ −R(g))2]

= E[(A+B+)2]− 2R · E[A+B+] +R2.

Hence,

MSE(R̂pu(g))−MSE(R̃pu(g)) = E[(A+B)2]− E[(A+B+)2]

− 2R · (E[A+B]− E[A+B+]).

The first part E[(A+B)2]− E[(A+B+)2] can be rewritten as

E[(A+B)2]− E[(A+B+)2] = E[2A(B −B+) +B2 −B2
+]

=

∫
(Xp,Xu)∈D+(g)

2A(B −B) +B2 −B2 dF (Xp,Xu)

+

∫
(Xp,Xu)∈D−(g)

2A(B − 0) +B2 − 02 dF (Xp,Xu)

=

∫
(Xp,Xu)∈D−(g)

2AB +B2 dF (Xp,Xu).

The second part 2R · (E[A+B]− E[A+B+]) can be rewritten as

2R · (E[A+B]− E[A+B+]) = 2R · E[B −B+]

= 2R ·
∫
(Xp,Xu)∈D+(g)

B −B dF (Xp,Xu)

+ 2R ·
∫
(Xp,Xu)∈D−(g)

B − 0 dF (Xp,Xu)

=

∫
(Xp,Xu)∈D−(g)

2RB dF (Xp,Xu).
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As a consequence,

MSE(R̂pu(g))−MSE(R̃pu(g)) =

∫
(Xp,Xu)∈D−(g)

(2A+B − 2R)B dF (Xp,Xu),

which is exactly the left-hand side of (11) since R̃pu(g) = A on D−(g).

In order to prove the rest, it suffices to show that A − R ≤ B on D−(g). By the assumption that `
satisfies (3),

A−R = A− E[A]− E[B]

= πpR̂
+
p (g)− πpR+

p (g)− E[B]

= πpR
−
p (g)− πpR̂−p (g)− E[B].

Thus, with probability one,

A−R = πpR
−
p (g)− πpR̂−p (g)− E[B] + (R̂−u (g)− R̂−u (g)) + (R−u (g)−R−u (g))

= (R̂−u (g)− πpR̂−p (g))− (R−u (g)− πpR−p (g))− E[B] + (R−u (g)− R̂−u (g))

= B − 2E[B] + (R−u (g)− R̂−u (g))

≤ B,

where we used the assumptions that E[B] ≥ α and R−u (g)− R̂−u (g) ≤ 2α almost surely on D−(g).
To sum up, we have established that∫

(Xp,Xu)∈D−(g)
(2A+B − 2R)B dF (Xp,Xu) ≥ 3

∫
(Xp,Xu)∈D−(g)

B2 dF (Xp,Xu).

Due to the fact that B2 > 0 on D−(g) and the assumption that Pr(D−(g)) > 0, we know Eq. (11)
is valid. Finally, for any 0 ≤ β ≤ C`πp, it is clear that

{(Xp,Xu) | B < −β} ⊆ {(Xp,Xu) | B < 0} = D−(g),

and B < −β if and only if R̃pu(g)− R̂pu(g) > β. These two facts imply that∫
(Xp,Xu)∈D−(g)

B2 dF (Xp,Xu) ≥
∫
(Xp,Xu)|B<−β

B2 dF (Xp,Xu)

≥ β2

∫
(Xp,Xu)|B<−β

dF (Xp,Xu)

= β2Pr{B < −β}
= β2Pr{R̃pu(g)− R̂pu(g) > β},

which proves (12) and the whole theorem.

B.4 Proof of Lemma 5

Preliminary An alternative definition of the Rademacher complexity will be used in the proof:

R′n,q(G) = EXEσ1,...,σn

[
supg∈G

∣∣∣∣ 1n∑xi∈X
σig(xi)

∣∣∣∣] .
For the sake of comparison, the one we have used in the statements of theoretical results is

Rn,q(G) = EXEσ1,...,σn

[
supg∈G

1

n

∑
xi∈X

σig(xi)

]
.

This alternative version comes from [35, 36] of which authors are the pioneers of error bounds based
on the Rademacher complexity. Without any composition, R′n,q(G) ≥ Rn,q(G) for arbitrary G and
R′n,q(G) = Rn,q(G) if G is closed under negation. However, with a composition

` ◦ G = {` ◦ g | g ∈ G}
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where the loss ` is non-negative, the Rademacher complexity of the composite function class would
generally not satisfy R′n,q(` ◦ G) = Rn,q(` ◦ G) since ` ◦ G is generally not closed under negation.
Furthermore, a vital disagreement arises when considering the contraction principle or property: if
ψ : R→ R is a Lipschitz continuous function with a Lipschitz constant Lψ and satisfies ψ(0) = 0,
we have

Rn,q(ψ ◦ G) ≤ LψRn,q(G),

R′n,q(ψ ◦ G) ≤ 2LψR
′
n,q(G),

according to Talagrand’s contraction lemma [48] and its extension [28, 49]. Here, for Rn,q(ψ ◦ G)
we can use Lemma 4.2 in [28] or Lemma 26.9 in [49] where ψ(0) = 0 is safely dropped, while for
R′n,q(ψ ◦ G) we have to use the original Theorem 4.12 in [48] where ψ(0) = 0 is required. In fact,
the name of the lemma is after that ψ is a contraction if ψ(0) = 0 and Lψ = 1.

Proof Firstly, we deal with the bias of R̃pu(g):

supg∈G |R̃pu(g)−R(g)| ≤ supg∈G |R̃pu(g)− E[R̃pu(g)]|+ supg∈G |E[R̃pu(g)]−R(g)|

≤ supg∈G |R̃pu(g)− E[R̃pu(g)]|+ C`πp∆, (16)

where we followed the assumption that infg∈G R
−
n (g) ≥ α > 0 and Theorem 2.

Secondly, we apply McDiarmid’s inequality to the uniform deviation supg∈G |R̃pu(g)−E[R̃pu(g)]|
to get that with probability at least 1− δ,

supg∈G |R̃pu(g)− E[R̃pu(g)]| − E[supg∈G |R̃pu(g)− E[R̃pu(g)]|] ≤ C ′δ · χnp,nu
. (17)

Notice that this concentration inequality is single-sided even though the uniform deviation itself is
double-sided, which is different from the non-uniform deviation in Theorem 2.

Thirdly, we make symmetrization [50]. Suppose that (X ′p,X ′u) is a ghost sample, then

E[supg∈G |R̃pu(g)− E[R̃pu(g)]|] = E(Xp,Xu)[supg∈G |R̃pu(g)− E(X ′p,X ′u)[R̃pu(g)]|]

≤ E(Xp,Xu),(X ′p,X ′u)[supg∈G |R̃pu(g;Xp,Xu)− R̃pu(g;X ′p,X ′u)|],

where we applied Jensen’s inequality twice since the absolute value and the supremum are convex.
By decomposing the difference |R̃pu(g;Xp,Xu)− R̃pu(g;X ′p,X ′u)|, we can know that

|R̃pu(g;Xp,Xu)− R̃pu(g;X ′p,X ′u)|

= |πpR̂+
p (g;Xp)− πpR̂+

p (g;X ′p)

+ max{0, R̂−u (g;Xu)− πpR̂−p (g;Xp)} −max{0, R̂−u (g;X ′u)− πpR̂−p (g;X ′p)}|

≤ πp|R̂+
p (g;Xp)− R̂+

p (g;X ′p)|+ πp|R̂−p (g;Xp)− R̂−p (g;X ′p)|+ |R̂−u (g;Xu)− R̂−u (g;X ′u)|

where we employed |max{0, z} −max{0, z′}| ≤ |z − z′|. This decomposition results in

E[supg∈G |R̃pu(g)− E[R̃pu(g)]|] ≤ πpEXp,X ′p [supg∈G |R̂+
p (g;Xp)− R̂+

p (g;X ′p)|]

+ πpEXp,X ′p [supg∈G |R̂−p (g;Xp)− R̂−p (g;X ′p)|]

+ EXu,X ′u [supg∈G |R̂−u (g;Xu)− R̂−u (g;X ′u)|]. (18)

Fourthly, we relax those expectations in (18) to Rademacher complexities. The original ` may miss
the origin, i.e., `(0, y) 6= 0, with which we need to cope. Let

˜̀(t, y) = `(t, y)− `(0, y)

be a shifted loss so that ˜̀(0, y) = 0. Note that for all t, t′ ∈ R and y = ±1,

`(t, y)− `(t′, y) = ˜̀(t, y)− ˜̀(t′, y).
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Hence,

R̂+
p (g;Xp)− R̂+

p (g;X ′p) = (1/np)
∑
xi∈Xp

`(g(xi),+1)− (1/np)
∑
x′i∈X ′p

`(g(x′i),+1)

= (1/np)
∑np

i=1(`(g(xi),+1)− `(g(x′i),+1))

= (1/np)
∑np

i=1(˜̀(g(xi),+1)− ˜̀(g(x′i),+1)).

This is already a standard form where we can attach Rademacher variables to every ˜̀(g(xi),+1)−
˜̀(g(x′i),+1), and it is a routine work to show that

EXp,X ′p [supg∈G |R̂+
p (g;Xp)− R̂+

p (g;X ′p)|] ≤ 2Rnp,pp(˜̀(·,+1) ◦ G).

The other two expectations can be handled analogously. As a result, (18) can be reduced to

E[supg∈G |R̃pu(g)− E[R̃pu(g)]|] ≤ 2πpR
′
np,pp(˜̀(·,+1) ◦ G)

+ 2πpR
′
np,pp(˜̀(·,−1) ◦ G) + 2R′nu,p(

˜̀(·,−1) ◦ G). (19)

Finally, we transform the Rademacher complexities of composite function classes in (19) to those
of the original function class. It is obvious that ˜̀shares the same Lipschitz constant L` with `, and
consequently

R′np,pp(˜̀(·,+1) ◦ G) ≤ 2L`R
′
np,pp(G) = 2L`Rnp,pp(G)

R′np,pp(˜̀(·,−1) ◦ G) ≤ 2L`R
′
np,pp(G) = 2L`Rnp,pp(G) (20)

R′nu,p(
˜̀(·,−1) ◦ G) ≤ 2L`R

′
nu,p(G) = 2L`Rnu,p(G),

where we used Talagrand’s contraction lemma and the assumption that G is closed under negation.
Combining (16), (17), (19) and (20) finishes the proof of the uniform deviation bound (15).

B.5 Proof of Theorem 4

Based on Lemma 5, the estimation error bound (13) is proven through

R(g̃pu)−R(g∗) =
(
R̃pu(g̃pu)− R̃pu(g∗)

)
+
(
R(g̃pu)− R̃pu(g̃pu)

)
+
(
R̃pu(g∗)−R(g∗)

)
≤ 0 + 2 supg∈G |R̃pu(g)−R(g)|
≤ 16L`πpRnp,pp(G) + 8L`Rnu,p(G) + 2C ′δ · χnp,nu

+ 2C`πp∆,

where R̃pu(g̃pu) ≤ R̃pu(g∗) by the definition of g̃pu.
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