
8 Appendix

8.1 Proof of Proposition 1

Proof. Given an optimal solutionD = (w, f) for the supervised objective, due to the infinite capacity
of the discriminator, there exists D∗ = (w∗, f∗) such that for all x and k ≤ K,

exp(w∗>k f∗(x)) =
exp(w>k f(x))∑
k′ exp(w>k′f(x))

(6)

For all x,

PD∗(y|x, y ≤ K) =
exp(w∗>k f∗(x))∑
k′ exp(w∗>k′ f

∗(x))
=

exp(w>k f(x))∑
k′ exp(w>k′f(x))

= PD(y|x, y ≤ K)

Let LD be the supervised objective in Eq. (1). Since p = pG, the objective in Eq. (1) can be written
as

JD = LD + Ex∼p [logPD(K + 1|x) + log(1− PD(K + 1|x))]

Given Eq. (6), we have

PD∗(K + 1|x) =
1

1 +
∑

k expw∗>k f∗(x)
=

1

2

Therefore, D∗ maximizes the second term of JD. Because D maximizes LD, D∗ also maximizes
LD. It follows that D∗ maximizes JD.

8.2 On the Feature Space Bound Assumption

To obtain our theoretical results, we assume that ∪Kk=1Fk is bounded by a convex set B. And the
definition of complement generator requires that FG = B − ∪Kk=1Fk. Now we justify the necessity
of the introduction of B.

The bounded B is introduced to ensure that Assumption 1 is realizable. We first show that for
Assumption 1 to hold, FG must be a convex set.

We define S = {f : maxK
k=1 w

>
k f < 0}.

Lemma 2. S is a convex set.

Proof. We prove it by contradiction. Suppose S is a non-convex set, then there exists f1, f2 ∈ S, and
0 < α < 1, such that f = αf1 + (1− α)f2 6∈ S. For all k, we have w>k f1 < 0 and w>k f2 < 0, and
thus it follows

w>k f = αw>k f1 + (1− α)w>k f2 < 0

Therefore, maxK
k=1 w

>
k f < 0, and we have f ∈ S, leading to contradiction.

We conclude that S is a convex set.

If the feature space is unbounded and FG is defined as Rd − ∪Kk=1Fk, where d is the feature space
dimension, then by Assumption 1, we have S = FG. Since FG is the complement set of ∪Kk=1Fk and
Fk’s are disjoint, FG is a non-convex set, if K ≥ 2. However, by Lemma 2, FG is convex, leading to
contradiction. We therefore define the complement generator using a bound B.

8.3 The Reasonableness of Assumption 1

Here, we justify the proposed Assumption 1.

Classification correctness on L For (1), it assumes the correctness of classification on labeled
data L. This only requires the transformation f(x) to have high enough capacity, such that the
limited amount of labeled data points are linearly separable in the feature space. Under the setting of
semi-supervised learning, where |L| is quite limited, this assumption is usually reasonable.
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True-Fake correctness on G For (2), it assumes that on generated data, the classifier can correctly
distinguish between true and generated data. This can be seen by noticing that w>K+1f = 0, and
the assumption thus reduces to w>K+1f(x) > maxK

k=1 w
>
k f(x). For this part to hold, again we

essentially require a transformation f(x) with high enough capacity to distinguish true and fake data,
which is a standard assumption made in GAN literature.

Strong true-fake belief on U Finally, part (3) of the assumption is a little bit trickier than the other
two.

• Firstly, note that (3) is related to the true-fake correctness, because maxK
k=1 w

>
k f(x) >

0 = w>K+1f(x) is a sufficient (but not necessary) condition for x being classified as a
true data point. Instead, the actual necessary condition is that log

∑K
k=1 exp(w>k f(x)) ≥

w>K+1f(x) = 0. Thus, it means the condition (3) might be violated.

• However, using the relationship log
∑K

k=1 exp(w>k f(x)) ≤ logK maxK
k=1 exp(w>k f(x)),

to guarantee the necessary condition log
∑K

k=1 exp(w>k f(x)) ≥ 0, we must have

logK
K

max
k=1

exp(w>k f(x)) ≥ 0

=⇒ K
max
k=1

w>k f(x) ≥ log 1/K

Hence, if the condition (3) is violated, it means

log 1/K ≤ K
max
k=1

w>k f(x) ≤ 0

Note that this is a very small interval for the logit w>k f(x), whose possible range expands
the entire real line (−∞,∞). Thus, the region where such violation happens should be
limited in size, making the assumption reasonable in practice.

• Moreover, even there exists a limited violation region, as long as part (1) and part (2) in As-
sumption 1 hold, Proposition 2 always hold for regions inside U where maxK

k=1 w
>
k f(x) > 0.

This can be viewed as a further Corollary.

Figure 6: Percentage of the test samples that satisfy the assumption under our best model.

Empirically, we find that it is easy for the model to satisfy the correctness assumption on labeled data
perfectly. To verify the other two assumptions, we keep track of the percentage of test samples that
the two assumptions hold under our best models. More specifically, to verify the true-fake correctness
on G, we calculate the ratio after each epoch∑

x∼T I[maxK
i=1 w

>
i f(x) > 0]

|T |
,
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where T denotes the test set and |T | is number of sample in it. Similarly, for the strong true-fake
belief on U , we generate the same number of samples as |T | and calculate∑

x∼pG
I[maxi w

T
i f(x) < 0]

|T |

The plot is presented in Fig. 6. As we can see, the two ratios are both above 0.9 for both SVHN and
CIFAR-10, which suggests our assumptions are reasonable in practice.

8.4 Proof of Lemma 1

Proof. Let ∆f = fG− f ′G, then we have ‖∆f‖2 ≤ ε. Because w>k f
′
G < 0 by assumption, it follows

w>k fG = w>k (f ′G + ∆f) = w>k f
′
G + w>k ∆f < w>k ∆f ≤ Cε
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