
Appendix

A Proof of Theorem 1

In the appendix, we prove a slightly stronger version of Theorem 1, which also uses another com-
plexity metric E∗ defined as follows: Assume that the graph G = (V, E) includes m disconnected
subgraphs G1 = (V1, E1),G2 = (V2, E2), . . . ,Gm = (Vm, Em), which are in the descending order
based on the number of nodes |Ei|’s. We define E∗ as the number of edges in the first min{m,K}
subgraphs:

E∗ =

min{m,K}∑
i=1

|Ei|. (10)

Note that by definition, E∗ ≤ |E|. Based on E∗, we have the following slightly stronger version of
Theorem 1.

Theorem 2 Assume that (1) w(e) = xT
eθ
∗ for all e ∈ E and (2) ORACLE is an (α, γ)-approximation

algorithm. Let D be a known upper bound on ‖θ∗‖2. If we apply IMLinUCB with σ = 1 and

c ≥

√
d log

(
1 +

nE∗
d

)
+ 2 log (n(L+ 1−K)) +D, (11)

then we have

Rαγ(n) ≤ 2cC∗
αγ

√
dnE∗ log2

(
1 +

nE∗
d

)
+ 1 = Õ

(
dC∗

√
E∗n/(αγ)

)
. (12)

Moreover, if the feature matrix is of the form X = I ∈ <|E|×|E| (i.e., the tabular case), we have

Rαγ(n) ≤ 2cC∗
αγ

√
n|E| log2 (1 + n) + 1 = Õ

(
|E|C∗

√
n/(αγ)

)
. (13)

Since E∗ ≤ |E|, Theorem 2 implies Theorem 1. We prove Theorem 2 in the remainder of this section.

We now define some notation to simplify the exposition throughout this section.

Definition 1 For any source node set S ⊆ V , any probability weight function w : E → [0, 1], and
any node v ∈ V , we define f(S, w, v) as the probability that node v is influenced if the source node
set is S and the probability weight function is w.

Notice that by definition, f(S, w) =
∑
v∈V f(S, w, v) always holds. Moreover, if v ∈ S, then

f(S, w, v) = 1 for any w by the definition of the influence model.

Definition 2 For any round t and any directed edge e ∈ E , we define event

Ot(e) = {edge e is observed at round t}.

Note that by definition, an directed edge e is observed if and only if its start node is influenced and
observed does not necessarily mean that the edge is active.

A.1 Proof of Theorem 2

Proof: LetHt be the history (σ-algebra) of past observations and actions by the end of round t. By
the definition of Rαγt , we have

E [Rαγt |Ht−1] =f(Sopt, w)− 1

αγ
E [f(St, w)|Ht−1] , (14)

where the expectation is over the possible randomness of St, since ORACLE might be a randomized
algorithm. Notice that the randomness coming from the edge activation is already taken care of in the
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definition of f . For any t ≤ n, we define event ξt−1 as

ξt−1 =

{
|xT

e(θτ−1 − θ∗)| ≤ c
√
xT
eM
−1
τ−1xe, ∀e ∈ E , ∀τ ≤ t

}
, (15)

and ξt−1 as the complement of ξt−1. Notice that ξt−1 isHt−1-measurable. Hence we have

E[Rαγt ] ≤ P (ξt−1)E
[
f(Sopt, w)− f(St, w)/(αγ)

∣∣ξt−1

]
+ P

(
ξt−1

)
[L−K].

Notice that under event ξt−1, w(e) ≤ Ut(e), ∀e ∈ E , for all t ≤ n, thus we have

f(Sopt, w) ≤ f(Sopt, Ut) ≤ max
S: |S|=K

f(S, Ut) ≤
1

αγ
E [f(St, Ut)|Ht−1] ,

where the first inequality follows from the monotonicity of f in the probability weight, and the last
inequality follows from the fact that ORACLE is an (α, γ)-approximation algorithm. Thus, we have

E[Rαγt ] ≤ P (ξt−1)

αγ
E [f(St, Ut)− f(St, w)|ξt−1] + P

(
ξt−1

)
[L−K]. (16)

Notice that based on Definition 1, we have

f(St, Ut)− f(St, w) =
∑

v∈V\St

[f(St, Ut, v)− f(St, w, v)] .

Recall that for a given graph G = (V, E) and a given source node set S ⊆ V , we say an edge e ∈ E
and a node v ∈ V \ S are relevant if there exists a path p from a source node s ∈ S to v such that (1)
e ∈ p and (2) p does not contain another source node other than s. We use ES,v ⊆ E to denote the set
of edges relevant to node v under the source node set S , and use VS,v ⊆ V to denote the set of nodes

connected to at least one edge in ES,v. Notice that GS,v
∆
= (VS,v, ES,v) is a subgraph of G, and we

refer to it as the relevant subgraph of node v under the source node set S.

Based on the notion of relevant subgraph, we have the following theorem, which bounds f(St, Ut, v)−
f(St, w, v) by edge-level gaps Ut(e)− w(e) on the observed edges in the relevant subgraph GSt,v
for node v;

Theorem 3 For any t, any historyHt−1 and St such that ξt−1 holds, and any v ∈ V \ St, we have

f(St, Ut, v)− f(St, w, v) ≤
∑

e∈ESt,v

E [1 {Ot(e)} [Ut(e)− w(e)]|Ht−1,St] ,

where ESt,v is the edge set of the relevant subgraph GSt,v .

Please refer to Section A.2 for the proof of Theorem 3. Notice that under favorable event ξt−1, we

have Ut(e)− w(e) ≤ 2c
√
xT
eM
−1
t−1xe for all e ∈ E . Therefore, we have

E[Rαγt ] ≤ 2c

αγ
P (ξt−1)E

 ∑
v∈V\St

∑
e∈ESt,v

1{Ot(e)}
√
xT
eM
−1
t−1xe

∣∣∣∣∣∣ξt−1

+ P
(
ξt−1

)
[L−K]

≤ 2c

αγ
E

 ∑
v∈V\St

∑
e∈ESt,v

1{Ot(e)}
√
xT
eM
−1
t−1xe

+ P
(
ξt−1

)
[L−K]

=
2c

αγ
E

∑
e∈E

1{Ot(e)}
√
xT
eM
−1
t−1xe

∑
v∈V\St

1 {e ∈ ESt,v}

+ P
(
ξt−1

)
[L−K]

=
2c

αγ
E

[∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe

]
+ P

(
ξt−1

)
[L−K], (17)
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where NSt,e =
∑
v∈V\S 1 {e ∈ ESt,v} is defined in Equation 1. Thus we have

Rαγ(n) ≤ 2c

αγ
E

[
n∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe

]
+ [L−K]

n∑
t=1

P
(
ξt−1

)
. (18)

In the following lemma, we give a worst-case bound on
∑n
t=1

∑
e∈E 1{Ot(e)}NSt,e

√
xT
eM
−1
t−1xe.

Lemma 1 For any round t = 1, 2, . . . , n, we have

n∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe ≤

√√√√( n∑
t=1

∑
e∈E

1{Ot(e)}N2
St,e

)
dE∗ log

(
1 + nE∗

dσ2

)
log
(
1 + 1

σ2

) ·

Moreover, if X = I ∈ <|E|×|E|, then we have

n∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe ≤

√√√√( n∑
t=1

∑
e∈E

1{Ot(e)}N2
St,e

)
|E| log

(
1 + n

σ2

)
log
(
1 + 1

σ2

) ·
Please refer to Section A.3 for the proof of Lemma 1. Finally, notice that for any t,

E

[∑
e∈E

1{Ot(e)}N2
St,e

∣∣∣∣∣St
]

=
∑
e∈E

N2
St,eE [1{Ot(e)}|St] =

∑
e∈E

N2
St,ePSt,e ≤ C

2
∗ ,

thus taking the expectation over the possibly randomized oracle and Jensen’s inequality, we get

E

√√√√ n∑
t=1

∑
e∈E

1{Ot(e)}N2
St,e

 ≤
√√√√ n∑

t=1

E

[∑
e∈E

1{Ot(e)}N2
St,e

]
≤

√√√√ n∑
t=1

C2
∗ = C∗

√
n. (19)

Combining the above with Lemma 1 and (18), we obtain

Rαγ(n) ≤ 2cC∗
αγ

√
dnE∗ log

(
1 + nE∗

dσ2

)
log
(
1 + 1

σ2

) + [L−K]

n∑
t=1

P
(
ξt−1

)
. (20)

For the special case when X = I , we have

Rαγ(n) ≤ 2cC∗
αγ

√
n|E| log

(
1 + n

σ2

)
log
(
1 + 1

σ2

) + [L−K]

n∑
t=1

P
(
ξt−1

)
. (21)

Finally, we need to bound the failure probability of upper confidence bound being wrong∑n
t=1 P

(
ξt−1

)
. We prove the following bound on P

(
ξt−1

)
:

Lemma 2 For any t = 1, 2, . . . , n, any σ > 0, any δ ∈ (0, 1), and any

c ≥ 1

σ

√
d log

(
1 +

nE∗
dσ2

)
+ 2 log

(
1

δ

)
+ ‖θ∗‖2,

we have P
(
ξt−1

)
≤ δ.

Please refer to Section A.4 for the proof of Lemma 2. From Lemma 2, for a known upper bound D

on ‖θ∗‖2, if we choose σ = 1 and c ≥
√
d log

(
1 + nE∗

d

)
+ 2 log (n(L+ 1−K)) + D, which

corresponds to δ = 1
n(L+1−K) in Lemma 2, then we have

[L−K]

n∑
t=1

P
(
ξt−1

)
< 1.

14



This concludes the proof of Theorem 2. �

A.2 Proof of Theorem 3

Recall that we use GSt,v = (VSt,v, ESt,v) to denote the relevant subgraph of node v under the source
node set St. Since Theorem 3 focuses on the influence from St to v, and by definition all the paths
from St to v are in GSt,v, thus, it is sufficient to restrict to GSt,v and ignore other parts of G in this
analysis.

We start by defining some useful notations.

Influence Probability with Removed Nodes: Recall that for any weight function w : E → [0, 1],
any source node set S ⊂ V and any target node v ∈ V , f(S, w, v) is the probability that S will
influence v under weight w (see Definition 1). We now define a similar notation for the influence
probability with removed nodes. Specifically, for any disjoint node set V1,V2 ⊆ VSt,v ⊆ V , we
define h(V1,V2, w) as follows:

• First, we remove nodes V2, as well as all edges connected to/from V2, from GSt,v , and obtain
a new graph G′.

• h(V1,V2, w) is the probability that V1 will influence the target node v in graph G′ under the
weight (activation probability) w(e) for all e ∈ G′.

Obviously, a mathematically equivalent way to define h(V1,V2, w) is to define it as the probability
that V1 will influence v in GSt,v under a new weight w̃, defined as

w̃(e) =

{
0 if e is from or to a node in V2

w(e) otherwise

Note that by definition, f(St, w, v) = h(St, ∅, w). Also note that h(V1,V2, w) implicitly depends
on v, but we omit v in this notation to simplify the exposition.

Edge Set E(V1,V2): For any two disjoint node sets V1,V2 ⊆ VSt,v , we define the edge set E(V1,V2)
as

E(V1,V2) = {e = (u1, u2) : e ∈ ESt,v, u1 ∈ V1, and u2 /∈ V2} .
That is, E(V1,V2) is the set of edges in GSt,v from V1 to VSt,v \ V2.

Diffusion Process: Note that under any edge activation realization w(e), e ∈ ESt,v, on the relevant
subgraph GSt,v , we define a finite-length sequence of disjoint node sets S0,S1, . . . ,S τ̃ as

S0 ∆
=St

Sτ+1 ∆
=
{
u2 ∈ VSt,v : u2 /∈ ∪ττ ′=0Sτ

′
and ∃e = (u1, u2) ∈ ESt,v s.t. u1 ∈ Sτ and w(e) = 1

}
,

(22)

∀τ = 0, . . . , τ̃ − 1. That is, under the realization w(e), e ∈ ESt,v, Sτ+1 is the set of nodes directly
activated by Sτ . Specifically, any node u2 ∈ Sτ+1 satisfies u2 /∈

⋃τ
τ ′=0 Sτ

′
(i.e. it was not activated

before), and there exists an activated edge e from Sτ to u2 (i.e. it is activated by some node in Sτ ).
We define S τ̃ as the first node set in the sequence s.t. either S τ̃ = ∅ or v ∈ S τ̃ , and assume this
sequence terminates at S τ̃ . Note that by definition, τ̃ ≤ |VSt,v| always holds. We refer to each
τ = 0, 1, . . . , τ̃ as a diffusion step in this section.

To simplify the exposition, we also define S0:τ ∆
=
⋃τ
τ ′=0 S

τ ′ for all τ ≥ 0 and S0:−1 ∆
= ∅. Since w

is random, (Sτ )
τ̃
τ=0 is a stochastic process, which we refer to as the diffusion process. Note that τ̃

is also random; in particular, it is a stopping time.

Based on the shorthand notations defined above, we have the following lemma for the diffusion
process (Sτ )

τ̃
τ=0 under any weight function w:
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Lemma 3 For any weight function w : E → [0, 1], any step τ = 0, 1, . . . , τ̃ , any Sτ and S0:τ−1, we
have

h
(
Sτ ,S0:τ−1, w

)
=

 1 if v ∈ Sτ
0 if Sτ = ∅
E
[
h
(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]

otherwise
,

where the expectation is over Sτ+1 under weight w. Note that the tuple (Sτ ,S0:τ−1) in the condi-
tional expectation means that Sτ is the source node set and nodes in S0:τ−1 have been removed.

Proof: Notice that by definition, h
(
Sτ ,S0:τ−1, w

)
= 1 if v ∈ Sτ and h

(
Sτ ,S0:τ−1, w

)
= 0 if

Sτ = ∅. Also note that in these two cases, τ̃ = τ .

Otherwise, we prove that h
(
Sτ ,S0:τ−1, w

)
= E

[
h
(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]
. Recall that by

definition, h
(
Sτ ,S0:τ−1, w

)
is the probability that v will be influenced conditioning on

source node set Sτ and removed node set S0:τ−1, (23)

that is
h
(
Sτ ,S0:τ−1, w

)
= E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1)
]

(24)

Let w(e), ∀e ∈ E(Sτ ,S0:τ ) be any possible realization. Now we analyze the probability that v will
be influenced conditioning on

source node set Sτ , removed node set S0:τ−1, and w(e) for all e ∈ E(Sτ ,S0:τ ). (25)

Specifically, conditioning on Equation 25, we can define a new weight function w′ as

w′(e) =

{
w(e) if e ∈ E(Sτ ,S0:τ )
w(e) otherwise (26)

then h
(
Sτ ,S0:τ−1, w′

)
is the probability that v will be influenced conditioning on Equation 25. That

is,

h
(
Sτ ,S0:τ−1, w′

)
= E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1),w(e)∀e ∈ E(Sτ ,S0:τ )
]
, (27)

for any possible realization of w(e), ∀e ∈ E(Sτ ,S0:τ ). Notice that on the lefthand of Equation 27,
w′ encodes the conditioning on w(e) for all e ∈ E(Sτ ,S0:τ ) (see Equation 26).

From here to Equation 29, we focus on an arbitrary but fixed realization of w(e), ∀e ∈ E(Sτ ,S0:τ ) (or
equivalently, an arbitrary but fixed w′). Based on the definition of Sτ+1, conditioning on Equation 25,
Sτ+1 is deterministic and all nodes in Sτ+1 can also be treated as source nodes. Thus, we have

h
(
Sτ ,S0:τ−1, w′

)
= h

(
Sτ ∪ Sτ+1,S0:τ−1, w′

)
,

conditioning on Equation 25.

On the other hand, conditioning on Equation 25, we can treat any edge e ∈ E(Sτ ,S0:τ ) with
w(e) = 0 as having been removed. Since nodes in S0:τ−1 have also been removed, and v /∈ Sτ , then
if there is a path from Sτ to v, then it must go through Sτ+1, and the last node on the path in Sτ+1

must be after the last node on the path in Sτ (note that the path might come back to Sτ for several
times). Hence, conditioning on Equation 25, if nodes in Sτ+1 are also treated as source nodes, then
Sτ is irrelevant for influence on v and can be removed. So we have

h
(
Sτ ,S0:τ−1, w′

)
= h

(
Sτ ∪ Sτ+1,S0:τ−1, w′

)
= h

(
Sτ+1,S0:τ , w

)
. (28)

Note that in the last equation we change the weight function back to w since edges in E(Sτ ,S0:τ )
have been removed. Thus, conditioning on Equation 25, we have

h
(
Sτ+1,S0:τ , w

)
=h

(
Sτ ,S0:τ−1, w′

)
=E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1),w(e)∀e ∈ E(Sτ ,S0:τ )
]
. (29)

Notice again that Equation 29 holds for any possible realization of w(e), ∀e ∈ E(Sτ ,S0:τ ).
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Finally, we have

h
(
Sτ ,S0:τ−1, w

) (a)
= E

[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1)
]

(b)
= E

[
E
[
1 (v is influenced)

∣∣(Sτ ,S0:τ−1),w(e)∀e ∈ E(Sτ ,S0:τ )
]∣∣(Sτ ,S0:τ−1)

]
(c)
= E

[
h
(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]
, (30)

where (a) follows from Equation 24, (b) follows from the tower rule, and (c) follows from Equation 29.
This concludes the proof. �

Consider two weight functions U,w : E → [0, 1] s.t.U(e) ≥ w(e) for all e ∈ E . The following
lemma bounds the difference h

(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
in a recursive way.

Lemma 4 For any two weight functions w,U : E → [0, 1] s.t. U(e) ≥ w(e) for all e ∈ E , any step
τ = 0, 1, . . . , τ̃ , any Sτ and S0:τ−1, we have

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
= 0

if v ∈ Sτ or Sτ = ∅; and otherwise

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
≤

∑
e∈E(Sτ ,S0:τ )

[U(e)− w(e)]

+E
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]
,

where the expectation is over Sτ+1 under weight w. Recall that the tuple (Sτ ,S0:τ−1) in the
conditional expectation means that Sτ is the source node set and nodes in S0:τ−1 have been removed.

Proof: First, note that if v ∈ Sτ or Sτ = ∅, then

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
= 0

follows directly from Lemma 3. Otherwise, to simplify the exposition, we overload the notation and
use w(Sτ+1) to denote the conditional probability of Sτ+1 conditioning on (Sτ ,S0:τ−1) under the
weight function w, and similarly for U(Sτ+1). That is

w(Sτ+1)
∆
= Prob

[
Sτ+1

∣∣(Sτ ,S0:τ−1);w
]

U(Sτ+1)
∆
= Prob

[
Sτ+1

∣∣(Sτ ,S0:τ−1);U
]
, (31)

where the tuple (Sτ ,S0:τ−1) in the conditional probability means that Sτ is the source node set and
nodes in S0:τ−1 have been removed, and w and U after the semicolon indicate the weight function.

Then from Lemma 3, we have

h
(
Sτ ,S0:τ−1, U

)
=
∑
Sτ+1

U(Sτ+1)h
(
Sτ+1,S0:τ , U

)
h
(
Sτ ,S0:τ−1, w

)
=
∑
Sτ+1

w(Sτ+1)h
(
Sτ+1,S0:τ , w

)
where the sum is over all possible realization of Sτ+1.
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Hence we have

h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
=
∑
Sτ+1

[
U(Sτ+1)h

(
Sτ+1,S0:τ , U

)
− w(Sτ+1)h

(
Sτ+1,S0:τ , w

)]
=
∑
Sτ+1

[
U(Sτ+1)h

(
Sτ+1,S0:τ , U

)
− w(Sτ+1)h

(
Sτ+1,S0:τ , U

)]
+
∑
Sτ+1

[
w(Sτ+1)h

(
Sτ+1,S0:τ , U

)
− w(Sτ+1)h

(
Sτ+1,S0:τ , w

)]
=
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
+
∑
Sτ+1

w(Sτ+1)
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)]
, (32)

where the sum in the above equations is also over all the possible realizations of Sτ+1. Notice that by
definition, we have

E
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)∣∣(Sτ ,S0:τ−1)
]

=∑
Sτ+1

w(Sτ+1)
[
h
(
Sτ+1,S0:τ , U

)
− h

(
Sτ+1,S0:τ , w

)]
, (33)

where the expectation in the lefthand side is over Sτ+1 under weight w, or equivalently, over w(e)
for all e ∈ E(Sτ ,S0:τ ) under weight w. Thus, to prove Lemma 4, it is sufficient to prove that∑

Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
≤

∑
e∈E(Sτ ,S0:τ )

[U(e)− w(e)] . (34)

Notice that ∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
(a)

≤
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
(b)

≤
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
(c)
=

1

2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ , (35)

where (a) holds since∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
=∑

Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
+
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
h
(
Sτ+1,S0:τ , U

)
1
[
U(Sτ+1) < w(Sτ+1)

]
,
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and the second term on the righthand side is non-positive. And (b) holds since 0 ≤
h
(
Sτ+1,S0:τ , U

)
≤ 1 by definition. To prove (c), we define shorthand notations

A+ =
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
1
[
U(Sτ+1) ≥ w(Sτ+1)

]
A− =

∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
1
[
U(Sτ+1) < w(Sτ+1)

]
Then we have

A+ +A− =
∑
Sτ+1

[
U(Sτ+1)− w(Sτ+1)

]
= 0,

since by definition
∑
Sτ+1 U(Sτ+1) =

∑
Sτ+1 w(Sτ+1) = 1. Moreover, we also have

A+ −A− =
∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ .

And hence A+ = 1
2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣. Thus, to prove Lemma 4, it is sufficient to prove

1

2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ ≤ ∑

e∈E(Sτ ,S0:τ )

[U(e)− w(e)] . (36)

Let w̃ ∈ {0, 1}|E(Sτ ,S0:τ )| be an arbitrary edge activation realization for edges in E(Sτ ,S0:τ ). Also
with a little bit abuse of notation, we use w(w̃) to denote the probability of w̃ under weight w. Notice
that

w(w̃) =
∏

e∈E(Sτ ,S0:τ )

w(e)w̃(e) [1− w(e)]
1−w̃(e)

,

and U(w̃) is defined similarly. Recall that by definition Sτ+1 is a deterministic function of source
node set Sτ , removed nodes S0:τ−1, and w̃. Hence, for any possible realized Sτ+1, let W(Sτ+1)
denote the set of w̃’s that lead to this Sτ+1, then we have

U(Sτ+1) =
∑

w̃∈W(Sτ+1)

U(w̃) and w(Sτ+1) =
∑

w̃∈W(Sτ+1)

w(w̃)

Thus, we have

1

2

∑
Sτ+1

∣∣U(Sτ+1)− w(Sτ+1)
∣∣ =

1

2

∑
Sτ+1

∣∣∣∣∣∣
∑

w̃∈W(Sτ+1)

[U(w̃)− w(w̃)]

∣∣∣∣∣∣
≤ 1

2

∑
Sτ+1

∑
w̃∈W(Sτ+1)

|U(w̃)− w(w̃)|

=
1

2

∑
w̃

|U(w̃)− w(w̃)| (37)

Finally, we prove that

1

2

∑
w̃

|U(w̃)− w(w̃)| ≤
∑

e∈E(Sτ ,S0:τ )

[U(e)− w(e)] (38)

by mathematical induction. Without loss of generality, we order the edges in E(Sτ ,S0:τ ) as
1, 2, . . . , |E(Sτ ,S0:τ )|. For any k = 1, . . . , |E(Sτ ,S0:τ )|, we use w̃k ∈ {0, 1}k to denote an
arbitrary edge activation realization for edges 1, . . . , k. Then, we prove

1

2

∑
w̃k

|U(w̃k)− w(w̃k)| ≤
k∑
e=1

[U(e)− w(e)] (39)
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for all k = 1, . . . , |E(Sτ ,S0:τ )| by mathematical induction. Notice that when k = 1, we have

1

2

∑
w̃1

|U(w̃1)− w(w̃1)| = 1

2
[|U(1)− w(1)|+ |(1− U(1))− (1− w(1))|] = U(1)− w(1).

Now assume that the induction hypothesis holds for k, we prove that it also holds for k+ 1. Note that

1

2

∑
w̃k+1

|U(w̃k+1)− w(w̃k+1)| =1

2

∑
w̃k

[|U(w̃k)U(k + 1)− w(w̃k)w(k + 1)|

+ |U(w̃k)(1− U(k + 1))− w(w̃k)(1− w(k + 1))|]
(a)

≤ 1

2

∑
w̃k

[|U(w̃k)U(k + 1)− w(w̃k)U(k + 1)|

+ |w(w̃k)U(k + 1)− w(w̃k)w(k + 1)|
+ |U(w̃k)(1− U(k + 1))− w(w̃k)(1− U(k + 1))|
+ |w(w̃k)(1− U(k + 1))− w(w̃k)(1− w(k + 1))|]

=
1

2

∑
w̃k

[U(k + 1) |U(w̃k)− w(w̃k)|+ w(w̃k) |U(k + 1)− w(k + 1)|

+ (1− U(k + 1)) |U(w̃k)− w(w̃k)|+ w(w̃k) |U(k + 1)− w(k + 1)|]

=
1

2

∑
w̃k

|U(w̃k)− w(w̃k)|+ [U(k + 1)− w(k + 1)]

(b)

≤
k∑
e=1

[U(e)− w(e)] + [U(k + 1)− w(k + 1)]

=

k+1∑
e=1

[U(e)− w(e)] , (40)

where (a) follows from the triangular inequality and (b) follows from the induction hypothesis. Hence,
we have proved Equation 39 by induction hypothesis. As we have proved above, this is sufficient to
prove Lemma 4. �

Finally, we prove the following lemma:

Lemma 5 For any two weight functions w,U : E → [0, 1] s.t. U(e) ≥ w(e) for all e ∈ E , we have

f(St, U, v)− f(St, w, v) ≤ E
[∑τ̃−1

τ=0

∑
e∈E(Sτ ,S0:τ ) [U(e)− w(e)]

∣∣∣St] ,
where τ̃ is the stopping time when Sτ = ∅ or v ∈ Sτ , and the expectation is under the weight
function w.

Proof: Recall that the diffusion process (Sτ )
τ̃
τ=0 is a stochastic process. Note that by definition,

if we treat the pair (Sτ ,S0:τ−1) as the state of the diffusion process at diffusion step τ , and as-
sume that w(e) ∼ Bern (w(e)) are independently sampled for all e ∈ ESt,v, then the sequence
(S0,S0:−1), (S0,S0:−1), . . . , (S τ̃ ,S0:τ̃−1) follows a Markov chain, specifically,

• For any state (Sτ ,S0:τ−1) s.t. v /∈ Sτ and Sτ 6= ∅, its transition probabilities to the next
state (Sτ+1,S0:τ ) depend on w(e)’s for e ∈ E

(
Sτ ,S0:τ

)
.

• Any state (Sτ ,S0:τ−1) s.t. v ∈ Sτ or Sτ = ∅ is a terminal state and the state transition
terminates once visiting such a state. Recall that by definition of the stopping time τ̃ , the
state transition terminates at τ̃ .

We define h
(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
as the “value" at state (Sτ ,S0:τ−1). Also note

that the states in this Markov chain is topologically sortable in the sense that it will never revisit a
state it visits before. Hence, we can compute h

(
Sτ ,S0:τ−1, U

)
− h

(
Sτ ,S0:τ−1, w

)
via a backward

20



induction from the terminal states, based on a valid topological order. Thus, from Lemma 4, we have

f(St, U, v)− f(St, w, v)
(a)
= h(S0, ∅, U)− h(S0, ∅, w)

(b)

≤ E

τ̃−1∑
τ=0

∑
e∈E(Sτ ,S0:τ )

[U(e)− w(e)]

∣∣∣∣∣∣S0

 , (41)

where (a) follows from the definition of h, and (b) follows from the backward induction. Since
S0 = St by definition, we have proved Lemma 5. �

Finally, we prove Theorem 3 based on Lemma 5. Recall that the favorable event at round t− 1 is
defined as

ξt−1 =

{
|xT

e(θτ−1 − θ∗)| ≤ c
√
xT
eM
−1
τ−1xe, ∀e ∈ E , ∀τ ≤ t

}
.

Also, based on Algorithm 1, we have

0 ≤ w(e) ≤ Ut(e) ≤ 1,∀e ∈ E .

Thus, from Lemma 5, we have

f(St, Ut, v)− f(St, w, v) ≤ E
[∑τ̃−1

τ=0

∑
e∈E(Sτ ,S0:τ ) [Ut(e)− w(e)]

∣∣∣St,Ht−1

]
,

where the expectation is based on the weight function w. Recall that Ot(e) is the event that edge e is
observed at round t. Recall that by definition, all edges in E(Sτ ,S0:τ ) are observed at round t (since
they are going out from an influenced node in Sτ , see Definition 2) and belong to ESt,v , so we have

f(St, Ut, v)− f(St, w, v) ≤ E

τ̃−1∑
τ=0

∑
e∈E(Sτ ,S0:τ )

[Ut(e)− w(e)]

∣∣∣∣∣∣St,Ht−1


≤ E

 ∑
e∈ESt,v

1 (Ot(e)) [Ut(e)− w(e)]

∣∣∣∣∣∣St,Ht−1

 . (42)

This completes the proof for Theorem 3.

A.3 Proof of Lemma 1

Proof: To simplify the exposition, we define zt,e =
√
xT
eM
−1
t−1xe for all t = 1, 2 . . . , n and all

e ∈ E , and use Eot denote the set of edges observed at round t. Recall that

Mt = Mt−1 +
1

σ2

∑
e∈E

xex
T

e1 {Ot(e)} = Mt−1 +
1

σ2

∑
e∈Eot

xex
T

e. (43)

Thus, for all (t, e) such that e ∈ Eot (i.e., edge e is observed at round t), we have that

det [Mt] ≥det

[
Mt−1 +

1

σ2
xex

T

e

]
= det

[
M

1
2
t−1

(
I +

1

σ2
M
− 1

2
t−1xex

T

eM
− 1

2
t−1

)
M

1
2
t−1

]
= det [Mt−1] det

[
I +

1

σ2
M
− 1

2
t−1xex

T

eM
− 1

2
t−1

]
= det [Mt−1]

(
1 +

1

σ2
xT

eM
−1
t−1xe

)
= det [Mt−1]

(
1 +

z2
t,e

σ2

)
.

Thus, we have

(det [Mt])
|Eot | ≥ (det [Mt−1])

|Eot |
∏
e∈Eot

(
1 +

z2
t,e

σ2

)
.
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Remark 1 Notice that when the feature matrix X = I, Mt’s are always diagonal matrices, and we
have

det [Mt] = det [Mt−1]
∏
e∈Eot

(
1 +

z2
t,e

σ2

)
,

which will lead to a tighter bound in the tabular (X = I) case.

Since 1) det [Mt] ≥ det [Mt−1] from Equation 43 and 2) |Eot | ≤ E∗, where E∗ is defined in
Equation 10 and |Eot | ≤ E∗ follows from its definition, we have

(det [Mt])
E∗ ≥ (det [Mt−1])

E∗
∏
e∈Eot

(
1 +

z2
t,e

σ2

)
.

Therefore, we have

(det [Mn])
E∗ ≥ (det [M0])

E∗
n∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
=

n∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
,

since M0 = I. On the other hand, we have that

trace (Mn) = trace

I +
1

σ2

n∑
t=1

∑
e∈Eot

xex
T

e

 = d+
1

σ2

n∑
t=1

∑
e∈Eot

‖xe‖22 ≤ d+
nE∗
σ2

,

where the last inequality follows from the fact that ‖xe‖2 ≤ 1 and |Eot | ≤ E∗. From the trace-
determinant inequality, we have 1

d trace (Mn) ≥ [det(Mn)]
1
d , thus we have[

1 +
nE∗
dσ2

]dE∗
≥
[

1

d
trace (Mn)

]dE∗
≥ [det(Mn)]

E∗ ≥
n∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
.

Taking the logarithm on the both sides, we have

dE∗ log

[
1 +

nE∗
dσ2

]
≥

n∑
t=1

∑
e∈Eot

log

(
1 +

z2
t,e

σ2

)
. (44)

Notice that z2
t,e = xT

eM
−1
t−1xe ≤ xT

eM
−1
0 xe = ‖xe‖22 ≤ 1, thus we have z2

t,e ≤
log

(
1+

z2t,e

σ2

)
log(1+ 1

σ2
)
· 5

Hence we have
n∑
t=1

∑
e∈Eot

z2
t,e ≤

1

log
(
1 + 1

σ2

) n∑
t=1

∑
e∈Eot

log

(
1 +

z2
t,e

σ2

)
≤
dE∗ log

[
1 + nE∗

dσ2

]
log
(
1 + 1

σ2

) . (45)

Remark 2 When the feature matrix X = I, we have d = |E|,

det [Mn] =

n∏
t=1

∏
e∈Eot

(
1 +

z2
t,e

σ2

)
, and |E| log

[
1 +

nE∗
|E|σ2

]
≥

n∑
t=1

∑
e∈Eot

log

(
1 +

z2
t,e

σ2

)
.

This implies that
n∑
t=1

∑
e∈Eot

z2
t,e ≤

|E| log
[
1 + n

σ2

]
log
(
1 + 1

σ2

) , (46)

5Notice that for any y ∈ [0, 1], we have y ≤
log
(
1+ y

σ2

)
log
(
1+ 1

σ2

) ∆
= κ(y). To see it, notice that κ(y) is a strictly

concave function, and κ(0) = 0 and κ(1) = 1.
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since E∗ ≤ |E|.

Finally, from Cauchy-Schwarz inequality, we have that
n∑
t=1

∑
e∈E

1{Ot(e)}NSt,e
√
xT
eM
−1
t−1xe =

n∑
t=1

∑
e∈Eot

NSt,ezt,e

≤

√√√√√
 n∑
t=1

∑
e∈Eot

N2
St,e

 n∑
t=1

∑
e∈Eot

z2
t,e



=

√√√√√( n∑
t=1

∑
e∈E

1 {Ot(e)}N2
St,e

) n∑
t=1

∑
e∈Eot

z2
t,e

. (47)

Combining this inequality with the above bounds on
∑n
t=1

∑
e∈Eot

z2
t,e (see Equations 45 and 46),

we obtain the statement of the lemma. �

A.4 Proof of Lemma 2

Proof: We use Eot denote the set of edges observed at round t. The first observation is that we
can order edges in Eot based on breadth-first search (BFS) from the source nodes St, as described
in Algorithm 2, where πt(St) is an arbitrary conditionally deterministic order of St. We say a node
u ∈ V is a downstream neighbor of node v ∈ V if there is a directed edge (v, u). We also assume
that there is a fixed order of downstream neighbors for any node v ∈ V .

Algorithm 2 Breadth-First Sort of Observed Edges

Input: graph G, πt(St), and wt

Initialization: node queue queueN← πt(St), edge queue queueE← ∅, dictionary of influenced
nodes dictN← St
while queueN is not empty do

node v ← queueN.dequeue()
for all downstream neighbor u of v do

queueE.enqueue((v, u))
if wt(v, u) == 1 and u /∈ dictN then

queueN.enqueue(u) and dictN← dictN ∪ {u}
Output: edge queue queueE

Let Jt = |Eot |. Based on Algorithm 2, we order the observed edges in Eot as at1, a
t
2, . . . , a

t
Jt

. We start
by defining some useful notation. For any t = 1, 2, . . . , any j = 1, 2, . . . , Jt, we define

ηt,j = wt(a
t
j)− w(atj).

One key observation is that ηt,j’s form a martingale difference sequence (MDS).6 Moreover, ηt,j’s
are bounded in [−1, 1] and hence they are conditionally sub-Gaussian with constant R = 1. We
further define that

Vt =σ2Mt = σ2I +

t∑
τ=1

Jτ∑
j=1

xaτj x
T

aτj
, and

Yt =

t∑
τ=1

Jτ∑
j=1

xaτj ηt,j = Bt −
t∑

τ=1

Jτ∑
j=1

xaτjw(atj) = Bt −

 t∑
τ=1

Jτ∑
j=1

xaτj x
T

aτj

 θ∗.
6Notice that the notion of “time" (or a round) is indexed by the pair (t, j), and follows the lexicographical

order. Based on Algorithm 2, at the beginning of round (t, j), atj is conditionally deterministic and the conditional
mean of wt(a

t
j) is w(atj).
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As we will see later, we define Vt and Yt to use the self-normalized bound developed in [1] (see
Algorithm 1 of [1]). Notice that

Mtθt =
1

σ2
Bt =

1

σ2
Yt +

1

σ2

 t∑
τ=1

Jτ∑
j=1

xaτj x
T

aτj

 θ∗ =
1

σ2
Yt + [Mt − I] θ∗,

where the last equality is based on the definition of Mt. Hence we have

θt − θ∗ = M−1
t

[
1

σ2
Yt − θ∗

]
.

Thus, for any e ∈ E , we have∣∣〈xe, θt − θ∗〉∣∣ =

∣∣∣∣xT

eM
−1
t

[
1

σ2
Yt − θ∗

]∣∣∣∣ ≤ ‖xe‖M−1
t
‖ 1

σ2
Yt − θ∗‖M−1

t

≤‖xe‖M−1
t

[
‖ 1

σ2
Yt‖M−1

t
+ ‖θ∗‖M−1

t

]
,

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality
follows from the triangle inequality. Notice that ‖θ∗‖M−1

t
≤ ‖θ∗‖M−1

0
= ‖θ∗‖2, and ‖ 1

σ2Yt‖M−1
t

=
1
σ‖Yt‖V−1

t
(since M−1

t = σ2V−1
t ), therefore we have

∣∣〈xe, θt − θ∗〉∣∣ ≤ ‖xe‖M−1
t

[
1

σ
‖Yt‖V−1

t
+ ‖θ∗‖2

]
. (48)

Notice that the above inequality always holds. We now provide a high-probability bound on ‖Yt‖V−1
t

based on self-normalized bound proved in [1]. From Theorem 1 of [1], we know that for any
δ ∈ (0, 1), with probability at least 1− δ, we have

‖Yt‖V−1
t
≤

√
2 log

(
det(Vt)1/2 det(V0)−1/2

δ

)
∀t = 0, 1, . . . .

Notice that det(V0) = det(σ2I) = σ2d. Moreover, from the trace-determinant inequality, we have

[det(Vt)]
1/d ≤ trace (Vt)

d
= σ2 +

1

d

t∑
τ=1

Jτ∑
j=1

‖xaτj ‖
2
2 ≤ σ2 +

tE∗
d
≤ σ2 +

nE∗
d
,

where the second inequality follows from the assumption that ‖xatk‖2 ≤ 1 and the fact Jt = |Eot | ≤
E∗, and the last inequality follows from t ≤ n. Thus, with probability at least 1− δ, we have

‖Yt‖V−1
t
≤

√
d log

(
1 +

nE∗
dσ2

)
+ 2 log

(
1

δ

)
∀t = 0, 1, . . . , n− 1.

That is, with probability at least 1− δ, we have

∣∣〈xe, θt − θ∗〉∣∣ ≤ ‖xe‖M−1
t

[
1

σ

√
d log

(
1 +

nE∗
dσ2

)
+ 2 log

(
1

δ

)
+ ‖θ∗‖2

]
for all t = 0, 1, . . . , n− 1 and ∀e ∈ E.

Recall that by the definition of event ξt−1, the above inequality implies that, for any t = 1, 2, . . . , n,
if

c ≥ 1

σ

√
d log

(
1 +

nE∗
dσ2

)
+ 2 log

(
1

δ

)
+ ‖θ∗‖2,

then P (ξt−1) ≥ 1− δ. That is, P (ξt−1) ≤ δ. �
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