Appendix

A Proof of Theorem (1]

In the appendix, we prove a slightly stronger version of Theorem[I] which also uses another com-
plexity metric E, defined as follows: Assume that the graph G = (V, £) includes m disconnected
subgraphs G; = (V1,&1),G2 = (V2,&2),...,Gm = (Vm, Em), which are in the descending order
based on the number of nodes |€;|’s. We define F, as the number of edges in the first min{m, K}
subgraphs:

min{m,K}
E.= Y &l (10)

=1

Note that by definition, E, < |£|. Based on E,, we have the following slightly stronger version of
Theorem 11

Theorem 2 Assume that (1) W(e) = x0* for all e € £ and (2) ORACLE is an (o, y)-approximation
algorithm. Let D be a known upper bound on ||0*||2. If we apply TMLinUCB with o = 1 and

E.
02\/dlog (1+”d)+210g(n(L+1—K))+D, (1)

then we have

R*(n) < 2cCy \/dnE* log, (1 + n§*> +1=0 (dC*\/E*n/(a'y)> . (12)

oy

Moreover, if the feature matrix is of the form X = I € RI€IXI€| (i.e., the tabular case), we have
2cC ~
RV(n) < Zivs/n|5|log2 (1+n) +1= 0 (E|Cav/n/(a)) . (13)

Since F, < |€&], Theoremimplies Theorem We prove Theoremin the remainder of this section.

‘We now define some notation to simplify the exposition throughout this section.

Definition 1 For any source node set S C V, any probability weight function w : £ — [0, 1], and
any node v € V, we define f(S,w,v) as the probability that node v is influenced if the source node
set is S and the probability weight function is w.

Notice that by definition, f(S,w) = > ., f(S,w,v) always holds. Moreover, if v € S, then
f(S,w,v) =1 for any w by the definition of the influence model.

Definition 2 For any round t and any directed edge e € &, we define event

O¢(e) = {edge e is observed at round t}.

Note that by definition, an directed edge e is observed if and only if its start node is influenced and
observed does not necessarily mean that the edge is active.

A.1 Proof of Theorem

Proof: Let H; be the history (o-algebra) of past observations and actions by the end of round ¢. By
the definition of R;"”, we have

1
E R [Hi—1] =f(S°P, @) — oTyE [f(St.w)[ Hea], (14)

where the expectation is over the possible randomness of S;, since ORACLE might be a randomized
algorithm. Notice that the randomness coming from the edge activation is already taken care of in the
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definition of f. For any ¢t < n, we define event {;_; as

§t—1= {|5C£(97-1 — 09| < ey/2IM !z, Ve € E, ¥ < t} ) (15)

and Et_l as the complement of &;_ ;. Notice that &4 is H;_1-measurable. Hence we have

E[R{7] <P (&-1) E [f(S?, W) — f(Se, W)/ (07)|&-1] + P (§,-1) [L — K.
Notice that under event &;_1, w(e) < U;(e), Ve € &, for all t < n, thus we have
1
FS™T) < FS™U) < max F(8.0) < B[S, U)| Heor]

where the first inequality follows from the monotonicity of f in the probability weight, and the last
inequality follows from the fact that ORACLE is an («, 7)-approximation algorithm. Thus, we have

E[R"] < P(fjj)ﬂi [£(Se,U) = f(Se,w)[€e1] + P (&) [L — K]. (16)
Notice that based on Definition[I] we have
F(SuU) = f(Spw) = > [f(Si,Uv) = f(Si,w,0)].

vEV\S:

Recall that for a given graph G = (V, £) and a given source node set S C V, we say an edge ¢ € £
and anode v € V \ S are relevant if there exists a path p from a source node s € S to v such that (1)
e € p and (2) p does not contain another source node other than s. We use s, C £ to denote the set
of edges relevant to node v under the source node set S, and use Vs ,, C V to denote the set of nodes

. . A .
connected to at least one edge in s ,. Notice that Gs ,, = (Vs,v, Es.v) is a subgraph of G, and we
refer to it as the relevant subgraph of node v under the source node set S.

Based on the notion of relevant subgraph, we have the following theorem, which bounds f(S;, Uy, v)—
f(S¢,w,v) by edge-level gaps U, (e) — wW(e) on the observed edges in the relevant subgraph G, ,,
for node v;

Theorem 3 For any t, any history H,—1 and S; such that &_1 holds, and any v € V \ S;, we have
F(S6,Upv) = f(Sew,0) < Y E[1{O4(e)} [Us(e) = w(e)][Hi-1. 4],
eegstw

where Es, ,, is the edge set of the relevant subgraph Gs, ..

Please refer to Section for the proof of Theorem Notice that under favorable event &;_1, we
have Uy (e) — w(e) < 2cy/2IM; Y . for all e € £. Therefore, we have

E[R;7] < EP(&H)E S Y ol arM iz |G | +P(€,) [L— K]
Y VEV\S; e€Es, 0

2c — _
< OT]E Z Z H{Oi(e)}/aTM, Lze | +P(§,_) [L - K]
v _’UGV\St eGgst,v

= 2R S o aM re S 1{ee s} P (EL) (L - K]

ay _865 vEV\S:
2 | — _
— Q—V]E > 1{O0:(e)}Ns, e\/2IM; 3 | + P (&,_,) [L — K], (17)
Lee&
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where Ns, e = > ,cy\s 1{€ € Es,,0} is defined in Equation Thus we have

ZZ H{O4u(e)}Ns, e/ 2Tz

t=1e€c&

In the following lemma, we give a worst-case bound on 3_;"_ | 3" o 1{O;(e)} N, e1/IM; " z..

R (n) < —]E

+[L - K] anﬂ” (1) (8

Lemma 1 For any roundt =1,2,...,n, we have
dE, log 1+ 2E:
221{@ )¥Ns, en/2IM; Yz, < (ZZl{Ot )}INZ, ) 1 1( 1d172).
t=1 ec& t=1ec€ Og( +F)

Moreover, if X = I € RIEIXIEl then we have

33 U0} N, 7ML, < (Zzl{Ot NG« ) W'

t=1e€e& t=1ec&

Please refer to Section for the proof of Lemmal[I] Finally, notice that for any ¢,

E Y 1{O:(e)}NG,

ec&

] STNE E[L{O(HS] = SN, Ps.e < C2,

ecf ec&

thus taking the expectation over the possibly randomized oracle and Jensen’s inequality, we get

E 221{@ INZ | < ZIE

t=1ec&

> 1{O( )}Nghel <\ |Doc2=C/n. (19
t=1

ecé

Combining the above with Lemma [T]and (I8)), we obtain

o 2¢C, [dnE,log (1—|— d(ﬂ) B n _
R (n) < m\/ oz (1+ 3] + L K];P(ft_l). (20)

For the special case when X = I, we have

N 2¢C, |n|€llog (14 %) -
R ’Y(n)g oy \/ 10g(1+#) +[L7K};P(€tfl)' (21)

Finally, we need to bound the failure probability of upper confidence bound being wrong
S P (5,&71). We prove the following bound on P (ftq):

Lemma?2 Foranyt=1,2,... ,n,anyoc >0, any d € (0,1), and any
1 nk,
¢ > —y/dlog + 2log +116%||=2,
o do? 5

Please refer to Section for the proof of Lemma[2] From Lemma[2] for a known upper bound D
on 0% |2, if we choose ¢ = 1 and ¢ > y/dlog (1 + =) + 2log (n(L + 1 — K)) + D, which

we have P (§,_) < 6.

corresponds to & = in Lemma , then we have

1
n(L+1-K)

(L _K]ZP(Et—l) <1

t=1
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This concludes the proof of Theorem 2] O

A.2 Proof of Theorem

Recall that we use Gs, , = (Vs, v, Es, v) to denote the relevant subgraph of node v under the source
node set S;. Since Theorem [3|focuses on the influence from S; to v, and by definition all the paths
from S; to v are in G, ,,, thus, it is sufficient to restrict to Gs, ,, and ignore other parts of G in this
analysis.

We start by defining some useful notations.

Influence Probability with Removed Nodes: Recall that for any weight function w : £ — [0, 1],
any source node set S C V and any target node v € V, f(S,w,v) is the probability that S will
influence v under weight w (see Definition [I). We now define a similar notation for the influence
probability with removed nodes. Specifically, for any disjoint node set V1,Vs C Vs, , € V, we
define h(V1, Vo, w) as follows:

o First, we remove nodes Vs, as well as all edges connected to/from Vs, from G, ,,, and obtain
anew graph G’.

e h(V1, Vs, w) is the probability that V; will influence the target node v in graph G’ under the
weight (activation probability) w(e) for all e € G'.

Obviously, a mathematically equivalent way to define h(V;, Vo, w) is to define it as the probability
that V; will influence v in G, ,, under a new weight w, defined as

T(e) = 0 if e is from or to a node in Vs
W= wle) otherwise

Note that by definition, f(S;, w,v) = h(S;, 0, w). Also note that h(Vy, Vs, w) implicitly depends
on v, but we omit v in this notation to simplify the exposition.

Edge Set £(V1, V,): For any two disjoint node sets V1, Vo C Vs, ,,, we define the edge set £(V1, Vs)
as
5(V1,V2> = {e = (ul,u2) S 5&,1,, u1 € V1, and uq ¢ Vg}.

That is, £(V1, V) is the set of edges in Gs, ,, from V; to Vs, ,, \ Va.

Diffusion Process: Note that under any edge activation realization w(e), e € &g, ,, on the relevant

subgraph Gs, ,, we define a finite-length sequence of disjoint node sets S°, S, ... ST as
S0 &s,
STH 2 {uz €EVs, v Uz & UT,_oS™ and Je = (uy,uz) € Es, o S.t. ug € ST and w(e) = 1},
(22)
V7 =0,...,7 — 1. That is, under the realization w(e), e € s, .,, ST is the set of nodes directly

activated by S™. Specifically, any node uy € S7 satisfies us ¢ (JI,_, S™ (i.e. it was not activated
before), and there exists an activated edge e from S™ to uy (i.e. it is activated by some node in S7).
We define S™ as the first node set in the sequence s.t. either ST = @ orv € ST, and assume this
sequence terminates at S™. Note that by definition, 7 < |Vs, ,| always holds. We refer to each
7=0,1,...,7 as a diffusion step in this section.

To simplify the exposition, we also define S%™ 2 UL_, 8™ forall 7 >0and SO~* 2 0. Since w

is random, (S T)::O is a stochastic process, which we refer to as the diffusion process. Note that 7
is also random; in particular, it is a stopping time.

Based on the shorthand notations defined above, we have the following lemma for the diffusion
process (S™)_, under any weight function w:
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Lemma 3 For any weight function w : € — [0, 1], any step 7 = 0,1,...,7, any S, and S®"~1, we
have
1 ifvedST
h(ST’SO:Tfl’,w) _ 0 lfS‘r:@ ,
E [h (ST, 8% w) |(8T, S%T1)]  otherwise

where the expectation is over ST+ under weight w. Note that the tuple (S™,S8%7~1) in the condi-
tional expectation means that ST is the source node set and nodes in S™~1 have been removed.

Proof: Notice that by definition, i (S7, 8%~ w) = 1if v € 8™ and h (87,8%" 1, w) = 0if
ST = (). Also note that in these two cases, T = T.

Otherwise, we prove that h (S7,8%7~!, w) = E [ (§7+!, 8%, w) |(S7, 8% ~1)]. Recall that by
definition, h (ST, ST -1, w) is the probability that v will be influenced conditioning on

source node set S and removed node set S%7 1, (23)

that is
h (ST, 80:7'717 ’LU) =K [1 (’U is inﬂuenced)|(57, SO:T?l)] 24

Let w(e), Ve € £(S7,8%7) be any possible realization. Now we analyze the probability that v will
be influenced conditioning on

source node set S™, removed node set S7 !, and w(e) forall e € £(S7,S"7). (25)

Specifically, conditioning on Equation [25} we can define a new weight function w’ as

iy wi(e) ifee&(ST,8%7)
w'(e) = { w(e) otherwise (26)

then h (S T SO ! ) is the probability that v will be influenced conditioning on Equation That
is,

h(ST, 8" L w') =E[1(vis inﬂuenced)|(ST,SO:T*1), w(e) Ve € £(S7,8%7)], (27)
for any possible realization of w(e), Ve € £(S™,S%7). Notice that on the lefthand of Equation
w’ encodes the conditioning on w(e) for all e € £(S™, %) (see Equation .

From here to Equation we focus on an arbitrary but fixed realization of w(e), Ve € £(S™,S%7) (or
equivalently, an arbitrary but fixed w’). Based on the definition of S™*1, conditioning on Equation 25}
S7*1 is deterministic and all nodes in S™*! can also be treated as source nodes. Thus, we have

h (ST’SO:T—l’w/) —h (87- U ST+1,SO:7—_1,U}/) ,
conditioning on Equation[25]

On the other hand, conditioning on Equation we can treat any edge e € £(S7,8%7) with
w(e) = 0 as having been removed. Since nodes in S%7~! have also been removed, and v ¢ S™, then
if there is a path from S™ to v, then it must go through S™*!, and the last node on the path in S™+!
must be after the last node on the path in S7 (note that the path might come back to S for several
times). Hence, conditioning on Equation if nodes in ST are also treated as source nodes, then
&7 is irrelevant for influence on v and can be removed. So we have

h (ST,SO:Til,’LU,) —h (S‘r U ST+1’SO:7'71’w/) —h (ST+1’801T7U}) . (28)

Note that in the last equation we change the weight function back to w since edges in £(S™,S%7)
have been removed. Thus, conditioning on Equation [25] we have

h (ST+1,80:T, w) =h (87’780!7—17“)/)
=E [1 (vis influenced) |(S7,8%" "), w(e) Ve € £(S7,8%7)] . (29)
Notice again that Equationholds for any possible realization of w(e), Ve € £(S™,S%7).
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Finally, we have

h(ST,8% 1 w) WE [1 (vis influenced)| (ST, %7 1)]
R [E [1 (v is influenced) | (ST, 8”7~ 1), w(e) Ve € £(S7,8%7)] (S, 8% 1)
GR [h (87,85, w)|(S7, 8" 1], (30)

where (a) follows from Equation[24] (b) follows from the tower rule, and (c) follows from Equation [29]
This concludes the proof. U

Consider two weight functions U,w : £ — [0,1] s.t. U(e) > w(e) for all e € £. The following
lemma bounds the difference o (ST, 8% 1, U) — h (87,8%7~1, w) in a recursive way.

Lemma 4 For any two weight functions w,U : £ — [0,1] s.t. U(e) > w(e) forall e € &, any step
7=0,1,...,7, any S, and S, we have

h (ST7SO:T_1,U) —h (ST,SO:T_l,’w) =0
ifv e S8T or 8™ = 0; and otherwise
h(S7, 8L U) = h (ST, 8" Lw) < Y [Ule) —wle)]
e€&(87,80:7)
+E [h (ST+1780:T’ U) _ h (ST—Q—l’SO:T)w)‘(87780:7—1)} )

where the expectation is over St under weight w. Recall that the tuple (S7,8%7~1) in the
conditional expectation means that S is the source node set and nodes in S ~1 have been removed.

Proof: First, note that if v € ST or ST = (), then
h (87'780:7'—17 U) —_h (87—780:7—_1771}) =0

follows directly from Lemma[3] Otherwise, to simplify the exposition, we overload the notation and
use w(S™1) to denote the conditional probability of S™+! conditioning on (87, S%™~1) under the
weight function w, and similarly for U (S7*!). That is

w(S™H) £ Prob [STH|(S7, 8% 1) ]
U(S8™1) £ Prob [STH|(87,8%7 1) U], 31)

where the tuple (S™, S%7~1) in the conditional probability means that S™ is the source node set and
nodes in S%7~1 have been removed, and w and U after the semicolon indicate the weight function.

Then from Lemmal3] we have

h (87780:7'71,[]) _ Z U(ST+1)h (ST+1’802T’U)

ST7+1

h (87780:7'7171”) — Z w(ST+1)h (ST+1’SO:’T,w)

ST+1

where the sum is over all possible realization of S™*1.
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Hence we have
(S‘r 80:771 U) _ (ST SOZT*l,lLI)

. Z S‘r+1 S-r+1 SO T ) ,w(STJrl)h (STJrl,SO:-r7 w)]
ST+l

_ Z S-r+1 ST+1 SO . ) 'lU(ST+1)h (STJrl’SO:T’ U)]
ST+

N Z ST_H ST_H,SO:T, U) _ w(ST—H)h (ST-‘rl,SOZT’T,U)]
STH1

— Z ST+1 ST-‘rl)] h (ST+17 SO:T, U)
ST+
+ Z ST+1 ST+1 SO T ) h (ST+1, 80:7'7 U))] ’ (32)

ST+1

where the sum in the above equations is also over all the possible realizations of S™*1. Notice that by
definition, we have

E [h (ST+17SO:T’ U) _ ]’L (STJrl’SO:T,w)|(87780:771)] —
Z w(ST+1) [h (STJFI,SO:T, U) —h (ST+1,SO:T,U)):| . (33)
S7+1

where the expectation in the lefthand side is over S™! under weight w, or equivalently, over w(e)
for all e € £(S7,S"™) under weight w. Thus, to prove Lemma it is sufficient to prove that

S UE™T) —w(S™TH] R (ST ST U) < > [Ule) —w(e)]. (34)
ST+1 e€E(ST,80)
Notice that

Z [U(ST-H) _ 'LU(ST+1>} h (ST-‘rl’SO:T’ U)

ST+1

&S T~ lSTH (TS U) LU > w(sT)

ST+1
(b)
< D) [US™T) —w(STH]L[UETH) > w(STH)]
Sm+1
@1 Z U(S™) —w(STHY)] (35)
ST+1
where (a) holds since
Z [U(Sr—i-l) _ w(ST-‘rl)] L (ST+17SO:T, U) _
ST+l
Z [U(ST+1) _ w(ST+1)] h (ST+1,SO:T’ U) 1 [U(ST+1) > w(ST“rl)}
ST+1
+ Z ST+1 STJrl)] h (ST+17SO:T’ U) 1 [U(STJrl) < w(STJrl)] ’

ST+1
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and the second term on the righthand side is non-positive. And (b) holds since 0 <
h (S TH ST U ) < 1 by definition. To prove (c), we define shorthand notations

AT =" [US™) = w(S™H] 1 [USTH) > w(STH)]
ST+1

A” =) [US™) —w(S™H] 1 [USTH) < w(STT)]
ST+t

Then we have
AT+ A7 =) (U™ —w(S™)] =0,

ST+1
since by definition 3" g1 U(S™H) = 3,11 w(S™T) = 1. Moreover, we also have

At A = Z |U(S'r+1) _ ’LU(ST+1)| )

ST+1

Andhence At = 13,1, |U(S™) — w(S7H)|. Thus, to prove Lemma@ it is sufficient to prove

% S UEH) —wsH) < Y Ue) —wle). (36)

ST+1 e€E(ST,50:T)

Let w € {0, 1}/€™-5"7)l be an arbitrary edge activation realization for edges in £(S™, S%7). Also
with a little bit abuse of notation, we use w(w) to denote the probability of w under weight w. Notice
that .
ww@) = [ w@¥ [ —weE)] ™,
e€E(ST,80T)

and U (W) is defined similarly. Recall that by definition S7*! is a deterministic function of source
node set S7, removed nodes S*7~1, and w. Hence, for any possible realized S+, let W (S7*1)
denote the set of W’s that lead to this S+, then we have

Ust = ) UW) and w(SH= ) w(W)
WEW (S7+1) weEW(S7T1)

Thus, we have

S WE —us =5 S| Y ) - w()

ST+1 ST+ [ WeW(S7+1)

XY U @)

STH WeW (ST H)

1 - ~
=5 D IU) - w(®)] (37)
Finally, we prove that
1 - ~
§ZIU(W) —wW)[ < Y [U(e) —w(e)] (38)
w e€E(ST,8%7)

by mathematical induction. Without loss of generality, we order the edges in £(S7,S8%7) as
1,2,...,18(87,8%)|. Forany k = 1,...,|8(S™,8%7)|, we use wp € {0,1}* to denote an

arbitrary edge activation realization for edges 1, ..., k. Then, we prove
1 k
§ZIU(V~%) —w(wy)| <Y [U(e) - w(e)] (39)
Wk e=1
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forall k =1,...,|E(S7,S8%7)| by mathematical induction. Notice that when k = 1, we have

%Z U(W1) —w(wi)| =5 [[UQ) —w@)[+[1-U®1)) = (1 —w@)]] =U(1) - w(l).

DN | =

Now assume that the induction hypothesis holds for &, we prove that it also holds for k£ + 1. Note that

% Z |U(Wkt1) — w(Wrg1)] Z% Z UWK)Uk+1) — w(wi)w(k + 1)

+ [U(Wi)(1 = U(k+1)) —w(wg)(1 —w(k + 1))

S U+ 1)~ w(w)Uk + 1)

b @)Uk + 1) — w@)wk + 1)|

+ [UWr)(1 = Uk +1)) —w(we)(1 - Uk +1))|

+ Jwwi)(1 = U(k 4+ 1)) — w(wy)(1 —w(k + 1))]]

_ % > [U (k4 1) [U(8) = w(S5)| + w(3) Uk + 1) = w(k + 1)
+ (1 =U(k+1)) [U(Wk) — w(Wi)| +w(Wg) [U(k + 1) —w(k + 1)[]
=5 U — w(@)] + U+ 1) — w(k + 1)

=) [U(e) —w(e)], (40)

where (a) follows from the triangular inequality and (b) follows from the induction hypothesis. Hence,
we have proved Equation [39|by induction hypothesis. As we have proved above, this is sufficient to
prove Lemma 4] |

Finally, we prove the following lemma:

Lemma 5 For any two weight functions w,U : € — [0,1] s.t. U(e) > w(e) forall e € E, we have

F(S1,U,0) = f(St,w0,0) S E [ X720 T eee(smsom) [U(€) = w(e)]|S:]

where T is the stopping time when 8™ = () or v € 87, and the expectation is under the weight
function w.

Proof: Recall that the diffusion process (S7)]_, is a stochastic process. Note that by definition,
if we treat the pair (S7,S%7~1) as the state of the diffusion process at diffusion step 7, and as-
sume that w(e) ~ Bern (w(e)) are independently sampled for all e € &g, ,, then the sequence
(89,8%-1),(8%,8%1), ..., (S7,8% 1) follows a Markov chain, specifically,

* For any state (57, SO:T?I) s.t. v ¢ 8™ and 8™ # (), its transition probabilities to the next
state (S7T!, S%7) depend on w(e)’s for e € £ (87, S*7).

e Any state (§7,8%77 1) s.t. v € 8" or &” = () is a terminal state and the state transition
terminates once visiting such a state. Recall that by definition of the stopping time 7, the
state transition terminates at 7.

We define h (S7,8% 1, U) — h (S7,8%7~!, w) as the “value" at state (S7,S%7~1). Also note

that the states in this Markov chain is fopologically sortable in the sense that it will never revisit a
state it visits before. Hence, we can compute i (S7,8%7~1, U) — h (87, 8%~ w) via a backward

20



induction from the terminal states, based on a valid topological order. Thus, from Lemma@ we have

f(Stanv) _f(Stvw 'U) : (SO (Z) U) (SO,(D,’(U)
(QE Ti: Z [U(e) —w(e)]|S°|, (41)
T=0 c€ (ST ,507)

where (a) follows from the definition of h, and (b) follows from the backward induction. Since
SY = S, by definition, we have proved Lemma |

Finally, we prove Theorem [3|based on Lemma 5] Recall that the favorable event at round ¢ — 1 is

defined as
§t—1= {|m£(071 — 09| < ey/2IMt x,, Ve € E, ¥ < t} .

Also, based on Algorithm|[I] we have
0<w(e) <Usle) <1,Ve€&.
Thus, from Lemma[3] we have
f(Sta Ut7v) - f(St,w,U) S E {Zi;é e€c&(87,80:T) [Ut(e) - E(e)]’St,Ht_l} s

where the expectation is based on the weight function w. Recall that O;(e) is the event that edge e is
observed at round ¢. Recall that by definition, all edges in £(S™,S%™) are observed at round ¢ (since
they are going out from an influenced node in S7, see Deﬁnition and belong to &g, ,, so we have

F(St,Us,v) — f(S,W,0) < E Z > [Uile) —w(e)]| St Hin

=0 e€£(ST,807)

<E| Y 1(0ie)) [Us(e) —w(e)]|St, Hi1 | - (42)

eefsw

This completes the proof for Theorem 3]

A.3 Proof of Lemmal[ll

Proof: To simplify the exposition, we define z; . = {/TM; !,z forallt = 1,2...,n and all
e € &, and use &7 denote the set of edges observed at round ¢. Recall that

Mt :Mt—l + Z:E xT l{Ot( )} Mt 1+ Z Te 1’ (43)

ecé ec&y?

Thus, for all (¢, e) such that e € &7 (i.e., edge e is observed at round t), we have that
1 1 1. 1 _1 1
det [M;] > det {Mt_l + 2.1‘CJUZ:| = det {Mf_l (I + 2Mt_21xexZMt_21) Mf_l}
g o

1 1 _1
=det [Mtfl] det |:I + ZMt—leelet_21:|
o

= det [M;_1] (1+ SaIM;, 1“) = det MH}( : )

Thus, we have

(det [M])¥71 > (det M1 ])'& T < 02 >

ec&y?
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Remark 1 Notice that when the feature matrix X = I, My ’s are always diagonal matrices, and we

have
det [M;] = det [M;_4] H < 02 >

ec&y

which will lead to a tighter bound in the tabular (X = 1) case.

Since 1) det [M;] > det [M;_1] from Equation #3|and 2) |£?| < E,, where E, is defined in
Equation . 10[and |£7| < E. follows from its definition, we have

(det [M])"" > (det M1 ])™ ] <1+322>

e€ky

Therefore, we have

n 22, n 22,
(det [M,])" > (det [Mo)) ™ <1+ ;2> =11 <1+ ;2> :
t=1lec&?

t=1e€&?

since M = I. On the other hand, we have that

n

trace (M,,) = trace [ I+ % z": Z rex, | = % Z Z lzell3 <

t=1 ec€? c€E?

where the last inequality follows from the fact that ||z.|2 < 1 and |£| < E,. From the trace-

5)
).

log<1+ ;C>
Notice that 27, = x{M_ e < 2IMytee = |22 < 1, thus we have 22, £ — |

determinant inequality, we have %traee (M,,) > [det(M,)] i , thus we have

T S

t=1eck&?

Taking the logarithm on the both sides, we have

S5 3E (e

t=1ec&?

dF, log [

tos 1+ %)
Hence we have

- 2.\ _ dE.log[1+ 5]
ZZZt,eSMZZIOg<1+ )_ e (11 3) (45)

t=1eck&?

Remark 2 When the feature matrix X =1, we have d =

n 2 n 2
det [M H H ( Ztie ) , and |&|log {1—1— |8|E*2} > Z log< >
=1 t=1 ec&?

ec&y

This implies that

NN < £]log [1+ 5], (46)

= log (1+52)

*Notice that for any y € [0, 1], we have y < 1 k(y). To see it, notice that x(y) is a strictly

concave function, and £(0) = 0 and (1) = 1.
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since E, < |€|.

Finally, from Cauchy-Schwarz inequality, we have that

ZZ 1{O(€)}Ns, e\/2IM; 1 2. = Z Z Ns, e2t,e

t=1 ecf t=1ec&y
n n
2 2
SHIDID IR HDID DL
t=1ec&? t=1e€&p

- (ZZl{Ot }Ng) ansz (47)

t=1 ecf& t=1ec&

Combining this inequality with the above bounds on Y~ | > . € ¢ (see Equatlons E and
we obtain the statement of the lemma.

A.4 Proof of Lemmal[2l

Proof: We use £ denote the set of edges observed at round ¢. The first observation is that we
can order edges in £ based on breadth-first search (BFS) from the source nodes S;, as described
in Algorithm where 7 (S;) is an arbitrary conditionally deterministic order of S;. We say a node
u € V is a downstream neighbor of node v € V if there is a directed edge (v, u). We also assume
that there is a fixed order of downstream neighbors for any node v € V.

Algorithm 2 Breadth-First Sort of Observed Edges
Input: graph G, 7;(S;), and w;

Initialization: node queue queueN <+ m;(S;), edge queue queueE « (), dictionary of influenced
nodes dictN <+ S;

while queueN is not empty do
node v < queueN.dequeue()
for all downstream neighbor u of v do
queueE.enqueue((v, u))
if wi(v,u) == 1and u ¢ dictN then
queueN.enqueue(u) and dictN < dictN U {u}

Output: edge queue queueE

Let J; = |£7|. Based on Algorithm [2| we order the observed edges in £/ as af, a5, ..., a’; . We start
by defining some useful notation. Forany ¢t = 1,2,...,any j = 1,2, ..., J;, we define
N, = we(aj) —w(af).

One key observation is that 7; ;’s form a martingale difference sequence (MDS)E] Moreover, 1 ;s
are bounded in [—1, 1] and hence they are conditionally sub-Gaussian with constant R = 1. We
further define that

t Jr
2 2
V; =0"M; =1 + E E xa;le;, and
T7=1j5=1
t Jr t Jr

ZZxarnt,J = B; — ZZ@"@T@(CL;) = B; — sza;m;; 0"

7=1j5=1 T=1j=1 7=1j5=1

®Notice that the notion of “time" (or a round) is indexed by the pair (¢, j), and follows the lexicographical
order. Based on Algorithm at the beginning of round (¢, 5), a§ is conditionally deterministic and the conditional
mean of we(a’) is W(a}).
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As we will see later, we define V, and Y; to use the self-normalized bound developed in [1]] (see
Algorithm 1 of [1]). Notice that

t J
— 1 1 1 z 1
M0y = =B = Y+ — arZor | 07 = =Y+ (M — 1) 6%,
00 = 30t = 3 t+02 ;;xjmaj 02t+[ ¢ — 1]
where the last equality is based on the definition of M. Hence we have

0, — 6" =M;*! ngyt —9*] :

Thus, for any e € &£, we have

|<53e70t -0 >| = |z M, ! |:O_2Yt -0 } < ”xe”MﬂHEYt —0 ”M;1
1 *
S N v

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality
follows from the triangle inequality. Notice that [|6*[| ;-1 < ||9*||M0_1 = ||6*||2, and ||#Y}||Mt_1 =

%HY}||V:1 (since M; ! = 62V 1), therefore we have

n * 1 *
(ot = 0] < foelges | Wil + 167l @)

Notice that the above inequality always holds. We now provide a high-probability bound on ||Y; ||V71

based on self-normalized bound proved in [1]. From Theorem 1 of [1l], we know that for any
d € (0,1), with probability at least 1 — , we have

det(V)1/2 det(Vg)—1/2
||Yt|vt-1<\/2log( e IR

Notice that det(Vg) = det(c?I) = ¢, Moreover, from the trace-determinant inequality, we have

t g,
1d _ trace(Vy) 5 1 9 5 tE, 5  nE,
[det(Vy)] 7 < — = + aTE:UE:l [zarllz < 0* + = <o+ 7

where the second inequality follows from the assumption that [|z,: |2 < 1 and the fact J; = [£7| <
E.,, and the last inequality follows from ¢ < n. Thus, with probability at least 1 — §, we have

E, 1
[Yelly—1 < \/dlog (HZ 2) +2log <5> Vt=0,1,...,n—1.
t o

That is, with probability at least 1 — §, we have

_ . 1 nk, 1 N
(B~ 0%)] < [l L,\/dlog (1455 ) + 2108 (5) + 16 M

forallt=0,1,...,n—1and Ve € E.
Recall that by the definition of event £;_1, the above inequality implies that, forany ¢t = 1,2,...,n,

if
1 nk, 1
> —y/dl 1 21 - 0*
ca\/ og( +d02>+ og(5>+ 2,

then P(&_1) > 1 — 4. Thatis, P(§,_;) < 4. O
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