
Supplementary Material for Learning Hierarchical
Information Flow with Recurrent Neural Modules

A Module Designs and Reading Mechanisms

20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (%
)

ThalNet FF-GRU
ThalNet FF-GRU-FF
ThalNet GRU-FF
GRU Baseline
ThalNet GRU
ThalNet FF

Sequential MNIST Testing

(a) Module designs

20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (%
)

ThalNet Weight Norm
ThalNet Linear
GRU Baseline
ThalNet Fast Softmax

Sequential MNIST Testing

(b) Reading mechanisms

Figure 5: Test performance on the Sequential MNIST task grouped by module design (left) and
reading mechanism (right). Plots show the top, median, and bottom accuracy over the other design
choices. Recurrent modules train faster than pure fully connected modules and weight normalized
reading is both stable and performs best. FF-GRU-FF modules perform similarly to FF-GRU while
limiting the size of the center.

We use a sequential variant of MNIST [21] to compare the reading mechanisms described in Sec-
tion 2.2, along with implementations of the module function. In Sequential MNIST, the model
observes handwritten digits of 28 × 28 pixels from top to bottom, one row per time step. The
prediction is given at the last time step, so that the model has to integrate and remember observed
information over the sequence. This makes the task more challenging than in the static setting with a
multi-layer recurrent network achieving ~7 % error on this task.

To implement the modules f i(ci, xi) we test various combinations of fully connected and recurrent
layers of Gated Recurrent Units (GRU) [3]. Modules require some amount of local structure to
allow them to specialize.7 We test with two fully connected layers (FF), a GRU layer (GRU), fully
connected followed by GRU (FF-GRU), GRU followed by fully connected (GRU-FF), and a GRU
sandwiched between fully connected layers (FF-GRU-FF). In addition, we compare performance to
a stacked GRU baseline with 4 layers. For all models, we pick the largest layer sizes such that the
number of parameters does not exceed 50,000.

We train for 100 epochs on batches of size 50 using RMSProp [33] with a learning rate of 10−3.
Figure 5 shows the test accuracy of module designs and reading mechanisms. ThalNet outperforms
the stacked GRU baseline in most configurations. We assume that the structure imposed by our model
acts as a regularizer. We perform a further performance comparison in Section 3.

Results for module designs are shown in Figure 5a in the appendix. We observe a benefit of recurrent
modules as they exhibit faster and more stable training than fully connected modules. This could
be explained by the fact that pure fully connected modules have to learn to use the routing center to
store information over time, which is a long feedback loop. Having a fully connected layer before the
recurrent layer also significantly improves performance. A fully connected layer after the GRU let us
produce compact feature vectors φi that scale better to large modules, although we find FF-GRU to
be beneficial in later experiments (Section 3).

7Implementing the modules as a single fully connected layer recovers a standard recurrent neural network
with one large layer.

11



Results for the reading mechanisms area shown in Figure 5b. The reading mechanism only has
a small impact on the model performance. We find weight normalized reading to yield more
stable performance than linear or fast softmax reading. For all further experiments, we use weight
normalized reading due to both its stability and predictive performance. We do not include results for
fast Gaussian reading here, as it performed below the performance range of the other methods.

B Interpretation as Recurrent Mixture of Experts

ThalNet can route information from the input to the output over multiple time steps. This enables it
to trade off shallow and deep computation paths. To understand this, we view ThalNet as a smooth
mixture of experts model [16], where the modules F = (f1, · · · , f I) are the recurrent experts. Each
module outputs its features to the center vector Φt. A linear combination of Φt is read at the next time
step, which effectively performs a mixing of expert outputs. Compared to the recurrent mixture of
experts model presented by Shazeer et al. [30], our model can recurrently route information through
the mixture of multiple times, increasing the number of mixture compounds.

To highlight two extreme cases, the modules could read from identical locations in the center. In this
case, the model does a wide and shallow computation over 1 time step, analogous to Graves [8]. In
the other extreme, each module reads from a different module, recovering a hierarchy of recurrent
layers. This gives a deep but narrow computation stretched over multiple time steps. In between, there
exist a spectrum of complex patterns of information flow with differing and dynamic computation
depths. This is comparable to DenseNet [15], which also blends information from paths of different
computational depth, although in a purely feed-forward model.

Using state-less modules, our model could still leverage the recurrence between the modules and the
center to store information over time. However, this bounds the number of distinct computation steps
that ThalNet could apply to an input. Using recurrent modules, the computation steps can change
over time, increasing the flexibility of the model. Recurrent modules give a stronger prior for using
feedback and shows improved performance in our experiments.

C Comparison to Long Short-Term Memory

When viewing the Equations 1 – 4 in the model definition (Section 2), one might think how our model
compares to Long Short-Term Memory (LSTM) [14]. However, there exists only a limited similarity
between the two models. Empirically, we observed that LSTMs performed similarly to our GRU
baselines when given the same parameter budget.

LSTM’s context vector ct is processed element-wise, while ThalNet’s routing center cross-connects
modules. LSTM’s hidden output ht is a better candidate for comparison with ThalNet’s center
features Φ, which allows us to relate the recurrent weight matrix of an LSTM layer to the linear
version of our reading mechanism.

We could relate each ThalNet module to a set of multiple LSTM units. However, LSTM units perform
separate scalar computations, while our modules can learn complex interactions between multiple
features at each time step. Alternatively, we could see LSTM units as very small ThalNet modules,
reading exactly four context elements each, namely for the input and the three gates. However, the
computational capacity and local structure of individual LSTM units is not comparable to that of the
ThalNet modules used in our work.

12


