
A Theorems from Literature

In this section we reproduce here some previous theorems and notation for reference.

A.1 Follow-the-Regularized-Leader

The Follow-the-Regularized-Leader (FTRL) framework for online optimization suggests choosing wt+1 accord-
ing to the rule:

wt+1 = argmin
W

g1:t · w + ψt(w)

where ψt(w) is a function chosen by the algorithm called a regularizer. We use the following bound on the
regret of FTRL, which is proved in [7]:

Theorem 12. Let gt, . . . , gT be an arbitrary sequence of subgradients. Define g0 = 0 for notational conve-
nience. Let ψ0, ψ1, . . . , ψT−1 be a sequence of regularizer functions, such that ψt is chosen without knowledge
of gt+1, . . . , gT . Let ψ+

1 , . . . , ψ
+
T be an arbitrary sequences of regularizer functions (possibly chosen with

knowledge of the full subgradient sequence). Define w1, . . . , wT to be the outputs of FTRL with regularizers ψt:
wt+1 = argminψt(w) + g1:t · w, and define w+

t for t = 2, . . . , T + 1 by w+
t+1 = argminψ+

t (w) + g1:t · w
Then FTRL with regularizers ψt obtains regret

T∑
t=1

gt · (wt − u) ≤ ψ+
T (u)− ψ0(w

+
2 ) +

T∑
t=1

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt · (wt − w+

t+1)

+

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

In the next subsection we recall the notion of an adaptive regularizer [7], which is a function ψ whose properties
make it an easy building block for FTRL regularizers ψt. The analysis of FREEREXMOMENTUM is based upon
the observation that its regularizers are constructed using an adaptive regularizer.

A.2 Adaptive Regularizers

Before defining adaptive regularizers, we briefly introduce a minor generalization of strong-convexity below:

Definition 13. Let W be a convex space and let σ : W 2 → R by an arbitrary function. We say a convex
function f :W → R is σ(·, ·)-strongly convex with respect to a norm ‖ · ‖ if for all x, y ∈W and g ∈ ∂f(x)
we have

f(y) ≥ f(x) + g · (y − x) + min(σ(x), σ(y))

2
‖x− y‖2

We will exclusively make use of the special case σ(w, z) = min(σ(w), σ(z)), and we will write σ-strongly
convex instead of σ(·)-strongly convex in all cases. Next we give the definition of adaptive regularizers:

Definition 14. Any differentiable function ψ : W → R is called a (σ, ‖ · ‖)-adaptive regularizer if it that
satisfies the following conditions:

1. ψ(0) = 0.

2. ψ(x) is σ-strongly-convex with respect to some norm ‖ · ‖ for some σ :W → R such that ‖x‖ ≥ ‖y‖
implies σ(x) ≤ σ(y).

3. For any C, there exists a B such that ψ(x)σ(x) ≥ C for all ‖x‖ ≥ B.

Associated to every adaptive regularizer ψ, we define the function h(w) = ψ(w)σ(w), and define h−1(x) =
maxh(x)≤x ‖x‖

Finally, we provide a general construction that converts an adaptive regularizer into a sequence of regularizers
ψt used in FTRL (and in particular in FREEREXMOMENTUM). In the following we make use of the dual norm
‖ · ‖?, which is defined by ‖x‖? = sup‖y‖=1 x · y.

10



Definition 15. Let ‖ · ‖ be a norm and ‖ · ‖? be the dual norm (‖x‖? = sup‖y‖=1 x · y). Let g1, . . . , gT be a
sequence of subgradients and set Lt = maxt′≤t ‖gt‖?. Define the sequences 1

ηt
and at recursively by:

1

η20
= 0

1

η2t
= max

(
1

η2t−1

+ 2‖gt‖2?, Lt‖g1:t‖?
)

a1 =
1

(L1η1)2

at = max

(
at−1,

1

(Ltηt)2

)
Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and k > 0. Let w1, . . . , wT be an arbitrary sequence of vectors.
Define

ψt(w) =
k

ηtat
ψ(at(w − wt))

wt+1 = argmin
w∈W

ψt(w) + g1:t · w

In order to use Theorem 12, we’ll need do define some “shadow regularizers” ψ+
t , which we do below:

Definition 16. Given a norm ‖ · ‖ and a sequence of subgradients g1, . . . , gT , define Lt and 1
ηt

as in Definition
15, and define L0 = L1. We define 1

η+t
recursively by:

1

η+0
=

1

η0

1

(η+t )
2
= max

(
1

η2t−1

+ 2‖gt‖?min(‖gt‖?, Lt−1), Lt−1‖g1:t‖?
)

Further, given a k ≥ 1 and a non-decreasing sequence of positive numbers at, define ψ+
t by:

ψ+
t (w) =

k

η+t at−1

ψ(at−1(w − wt−1))

w+
t+1 = argmin

w∈W
ψ+
t (w) + g1:t · w

The following is the key technical Lemma from [7]. That paper does not take into account the “shifting”
parameter wt and so technically the Lemma as proven there does not apply. However, by applying the change-
of-coordinates w 7→ w − wt−1 we see that the “shifting” does not effect the conclusion.

Lemma 17. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is an arbitrary sequence of sub-
gradients (possibly chosen adaptively). We use the regularizers of Definition 15. Recall that we define
h(w) = ψ(w)σ(w) and h−1(x) = argmaxh(w)≤x ‖w‖. Define

σmin = inf
‖w‖≤h−1(10/k2)

kσ(w)

and

D = 2max
t

h−1
(
5 Lt
kLt−1

)
at−1

Then

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt(wt − w+

t+1)

≤

{
‖gt‖?min(D,maxt(‖wt − w+

t+1‖)) when ‖gt‖ > 2Lt−1

3‖gt‖2?η
+
t

at−1σmin
otherwise

We copy over four final Lemmas from [7] that we include here for reference:

Proposition 18. Suppose ψ :W → R is a (σ, ‖ · ‖)-adaptive regularizer. Then ψ(aw)
a

is an increasing function
of a for all a > 0 for all w ∈W .
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Lemma 19. Let αt be defined by

α0 =
1

(L1η1)2

αt = max

(
αt−1,

1

(Ltηt)2

)
Then

2(‖g‖?)1:t
Lt

≥ at ≥
2(‖g‖2?)1:t

L2
t

Lemma 20. 1. ∑
t| ‖gt‖?≤2Lt−1

‖gt‖2?η+t ≤
2

η+T

2. Suppose αt is defined by

α0 =
1

(L1η1)2

αt = max

(
αt−1,

1

(Ltηt)2

)
then ∑

t| ‖gt‖?≤2Lt−1

‖gt‖2?
η+t
αt−1

≤ 15Lmax

Lemma 21. Let a1, . . . , aM be a sequence of non-negative numbers such that ai+1 ≥ 2ai. Then
M∑
i=1

ai ≤ 2aM

B Proof of Main Theorem

B.1 Proposition 5

First, we prove the simple Proposition 5, restated below for reference:
Proposition 5. If a, b, c and d are non-negative constants such that

x ≤ a
√
bx+ c+ d

Then
x ≤ 4a2b+ 2a

√
c+ 2d

Proof. Suppose x ≥ 2d. Then we have
x

2
≤ a
√
bx+ c

x2 ≤ 4a2bx+ 4a2c

Now we use the quadratic formula to obtain

x ≤ 4a2b

2
+

√
16a4b2 + 16a2c

2

≤ 4a2b+ 2a
√
c

Since we assumed x ≥ 2d to obtain this bound, we conclude that x is at most the maximum of 4a2b+ 2a
√
c

and 2d, which is bounded by their sum.

B.2 Proof of Theorem 1

Our strategy is based on the observation that FREEREXMOMENTUM is FTRL with regularizers ψt(w) =
k

atηt
φ(at‖w − wt‖) for φ(x) = (x+ 1) log(x+ 1)− x and k =

√
5, as can be easily verified by inspection

of the updates. We will derive results for the case of arbitrary k and wt =
∑t

t′=1
‖gt‖wt

δ+‖g‖1:t
for arbitrary δ, and then

substitute k =
√
5 and δ = 1 at the end to derive the bound for FREEREXMOMENTUM. We think this strategy

clarifies the roles of the constants in the regret bound.

The following Theorem is nearly identical to the result in [7], but is very slightly generalized to our purposes:
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Theorem 22. Suppose ψ is a (σ, ‖ · ‖)-adaptive regularizer and g1, . . . , gT is some arbitrary sequence of
subgradients.

Set
σmin = inf

‖w‖≤h−1(10/k2)
kσ(w)

D = max
t

max

(
L2
t−1

(‖g‖2?)1:t−1
h−1

(
5Lt

k2Lt−1

)
, ‖wt − w+

t+1‖
)

QT = 2
‖g‖1:T
Lmax

Then FTRL with regularizers ψt achieves regret

RT (u) ≤
k

QT ηT
ψ(QT (u− wT )) +

45Lmax

σmin
+ 2LmaxD + ψ+

T (u)− ψT (u) +
T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

Proof. Using Theorem 12 and Lemma 17, our regret is bounded by

RT (u) ≤ ψT (u) +
T∑
t=1

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt(wt − w+

t+1)

+ ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

≤ ψT (u) +
T∑
t=1

ψt−1(w
+
t+1)− ψ

+
t (w

+
t+1) + gt(wt − w+

t+1)

+ ψ+
T (u)− ψT (u) +

T∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

≤ ψT (u) +
∑

‖gt‖?≤2Lt−1

3‖gt‖2η+t
at−1σmin

+
∑

‖gt‖?>2Lt−1

‖gt‖?D′

+ ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

where D′ is defined by

D′ = 2max
t

h−1
(
5 Lt
kLt−1

)
at−1

Now we use Lemma 19 to conclude that

D′ ≤ D = max
t

L2
t−1

(‖g‖2?)1:t−1
h−1

(
5

Lt
kLt−1

)
so that we have

RT (u) ≤ ψT (u) +
∑

‖gt‖?≤2Lt−1

3‖gt‖2η+t
at−1σmin

+
∑

‖gt‖?>2Lt−1

‖gt‖?D

+ ψ+
T (u)− ψT (u) +

T∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

Now using Lemma 20 we can simplify this to

RT (u) ≤
k

aT η
+
T

ψ(aTu) +
45Lmax

σmin
+

∑
‖gt‖?>2Lt−1

‖gt‖?D

+ ψ+
T (u)− ψT (u) +

T∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)
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Next, observe that each value of ‖gt‖? in the sum
∑
‖gt‖?>2Lt−1

‖gt‖?D is at least twice the previous value,
so that by Lemma 21 we conclude

RT (u) ≤
k

aT η
+
T

ψ(aTu) +
45Lmax

σmin
+ 2LmaxD

+ ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2)

Finally, we observe that (by Lemma 19), aT ≤ 2 ‖g‖1:T
LT

= QT , which gives the first inequality in the Theorem
statement.

We need the next theorem to convert 45Lmax
σmin

to 405Lmax:

Lemma 23. Suppose ψ(w) = ((‖w‖+ 1) log(‖w‖+ 1)− ‖w‖). Then ψ is a ( 1
‖·‖+1

, ‖ · ‖)-adaptive regular-

izer. Using the terminology of Theorem 22, for k =
√
5, 45Lmax

σmin
≤ 405Lmax.

Proof. The fact that ψ is an adaptive regularizer is proved in [7] Proposition 9. For the second statement, we
have

45Lmax

σmin
=

45Lmax

inf‖w‖≤h−1(10/k2) kσ(w)

= sup
‖w‖≤h−1(10/k2)

45Lmax(‖w‖+ 1)

k

=
45Lmax(h

−1(10/k2) + 1)

k

Now it remains to compute an expression for h−1. First we compute a bound on h:

h(w) =

(
log(‖w‖+ 1)− ‖w‖

‖w‖+ 1

)
≥ log(‖w‖+ 1)− 1

so that

h−1(x/k2) ≤ exp(x/k2 + 1)− 1

Now we numerically evaluate 45Lmax
σmin

= 45Lmax(h
−1(10/k2)+1)
k

using k =
√
5 to conclude the desired

bound.

So now we go to work to bound ψ+
T (u)− ψT (u) +

∑T−1
t=1 ψ+

t (w
+
t+2)− ψt(w

+
t+2).

Lemma 24. For any increasing sequence of numbers {xt},
T∑
t=1

xt − xt−1

xt
≤ log

(
xT
x1

)

Proof. By concavity of log, we have

log(xt)− log(xt−1) ≥
xt − xt−1

xt

from which the result easily follows by telescoping a sum.

Lemma 25. Suppose {xt} and {σt} are non-negative real numbers such that
√
xtσt ≥

√
xt−1σt−1 for all t.

Then
T∑
t=1

(xt − xt−1)σt√
xt

≤
√
xTσT log

(
xT
x1

)

Proof. We have
√
xtσt ≤

√
xTσT so that

σt ≤
√
xTσT√
xt

14



Therefore
T∑
t=1

(xt − xt−1)σt√
xt

≤
T∑
t=1

(xt − xt−1)
√
xTσT

xt

≤
√
xTσT log

(
xT
x1

)

We make a suggestive definition:

Definition 26. Given some δ > 0,

xt = δ + (‖g‖?)1:t

wt =
(‖g‖?w)1:t

xt

σt =

√
δ‖wt‖2 +

∑t
t′=1 ‖gt‖?‖wt′ − wt‖2

xt

Observe that the values of wt given in the psuedo-code for FREEREXMOMENTUM match the values above for
δ = 1. We will carry through all our calculations for general δ, and then substitute δ = 1 at the very end to
obtain our regret bound.

Consider a random vector that takes on value wt 6= 0 for t ≤ T with probability proportional to ‖gt‖? and value
0 with probability proportional to δ +

∑T
wt=0 ‖gt‖?. Then the expectation of this vector is wT and σ2

T is its
variance. Thus for any vector X , by a standard bias-variance decomposition we have

δX2 +

T∑
t=1

‖gt‖?‖X − wT ‖2 = xT (σ
2
T + ‖X − wT ‖2)

Lemma 27. Using the definitions in Definition 26, for all T :

σT
√
xT − σT−1

√
xT−1 ≥

‖gT ‖?‖wT − wT ‖2

2σT
√
xT

Proof.

σT
√
xT =

√√√√δ‖wT ‖2 +
T∑
t=1

‖gt‖?‖wt − wT ‖2

≥

√√√√δ‖wT ‖2 +
T−1∑
t=1

‖gt‖?‖wt − wT ‖2 +
‖gT ‖?‖wT − wT ‖2

2
√
δ‖wT ‖2 +

∑T
t=1 ‖gt‖?‖wt − wT ‖2

=

√√√√δ‖wT ‖2 +
T−1∑
t=1

‖gt‖?‖wt − wT ‖2 +
‖gT ‖?‖wT − wT ‖2

2σT
√
xT

And also we have

δ‖wT ‖2 +
T−1∑
t=1

‖gt‖?‖wt − wT ‖2 = xT−1(σ
2
T−1 + ‖wT − wT−1‖2)

≥ xT−1σ
2
T−1

and so we can conclude the desired inequality.

Lemma 28. Again using the terms from Definition 26, we have

T∑
t=1

‖gt‖?‖wt − wt‖√
xt

≤ σT
√
xT

(
2 + log

(
xT

δ + L1

))
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Proof. From Lemma 27, we see that when ‖wt−wt‖ ≥ σt, we have ‖gt‖?‖wt−wt‖√
xt

≤ 2σt
√
xt−2σt−1

√
xt−1

so that we can write:
T∑
t=1

‖gt‖?‖wt − wt‖√
xt

≤ 2σT
√
xT +

T∑
t=1

‖gt‖?σt√
xt

Now we observe (e.g. by Lemma 27) that σt
√
xt ≥ σt−1

√
xt−1 for all t and that ‖gt‖? = xt − xt−1 so that

applying Lemma 25 we have
T∑
t=1

‖gt‖?‖wt − wt‖√
xt

≤ 2σT
√
xT + σT

√
xT log

(
xT
x1

)
as desired.

Proposition 29. Let a1, . . . , aT be non-negative numbers. Then
T∑
t=1

at
(a1:t)3/2

≤ 3√
a1
− 2√

a1:T

Proof. We proceed by induction. For the base case, we have
1∑
t=1

at
(a1:t)3/2

=
1√
a1

Suppose that
∑T
t=1

a2t
(a1:t)

3/2 ≤ 3√
a1
− 2√

a1:T
.

By concavity of − 1√
x

we have(
3√
a1
− 2
√
a1:T+1

)
−
(

3√
a1
− 2√

a1:T

)
≥ aT+1

(a1:T+1)3/2

By the induction assumption we have
T+1∑
t=1

at
(a1:t)3/2

≤ 3√
a1
− 2√

a1:T
+

aT+1

(a1:T+1)3/2

≤ 3√
a1
− 2
√
a1:T+1

as desired.

Lemma 30. Define wt as in Definition 26. Define Mt = supw,w′∈W ‖∇ψ(at(w − w′))‖?. Then using the
terminology of Definition 15, we have

ψ+
T (u)− ψT (u) +

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2) ≤ σT

√
2LmaxxT

(
2 + log

(
xT
x1

))
max
t
Mt

+ 3
Lmax

√
2Lmax√

δ + L1

max
t
‖wt−1 − wt‖max

t
Mt

Proof. From Proposition 18, we see that 1
at−1

ψ(at−1x) ≤ 1
at
ψ(atx) for all x. Therefore we have:

ψ+
t (w

+
t+2)− ψt(w

+
t+2) =

1

η+t at−1

ψ(at−1(w
+
t+2 − wt−1))−

1

ηtat
ψ(at(w

+
t+2 − wt))

≤ 1

ηtat
ψ(at(w

+
t+2 − wt−1))−

1

ηtat
ψ(at(w

+
t+2 − wt))

≤ 1

ηtat
‖∇ψ(at(w+

t+2 − wt−1))‖?at‖wt − wt−1‖

≤ ‖wt − wt−1‖
ηt

max
t
‖∇ψ(at(w+

t+2 − wt−1))‖?

≤ ‖wt − wt−1‖
√
2Lmaxxtmax

t
‖∇ψ(at(w+

t+2 − wt−1))‖?

≤ ‖wt − wt−1‖
√
2Lmaxxtmax

t
Mt
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Where in the last step we observe 1
ηt
≤
√

2Lmax(‖g‖?)1:t ≤
√
2Lmaxxt, which can be easily deduced by

induction, or from Proposition 19 of [7].

The exact same argument can be used to show

ψ+
T (u)− ψT (u) ≤ ‖wT − wT−1‖

√
2LmaxxT max

t
Mt

Next we characterize wt − wt−1:

wt−1 − wt = wt−1 −
(δ + (‖g‖?)1:t−1)wt−1 + ‖gt‖?wt

δ + (‖g‖?)1:t

=
‖gt‖?

δ + (‖g‖?)1:t
(wt−1 − wt)

We can take this calculation one step further:

ψ+
T (u)− ψT (u) + wt−1 − wt =

‖gt‖?
δ + (‖g‖?)1:t

(wt−1 − wt)

=
‖gt‖?

δ + (‖g‖?)1:t
(wt − wt) +

‖gt‖?
δ + (‖g‖?)1:t

(wt−1 − wt)

=
‖gt‖?

δ + (‖g‖?)1:t
(wt − wt) +

‖gt‖2?
(δ + (‖g‖?)1:t)2

(wt−1 − wt)

Thus we have
T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2) ≤

T∑
t=1

‖wt − wt−1‖
√
2Lmaxxtmax

t
Mt

=

T∑
t=1

√
2Lmax‖gt‖?‖wt − wt‖√

xt
max
t
Mt

T∑
t=1

√
2Lmax‖gt‖2?‖wt−1 − wt‖

x
3/2
t

max
t
Mt

≤ σT
√
2LmaxxT

(
2 + log

(
xT
x1

))
max
t
Mt

+ 3
Lmax

√
2Lmax√

δ + L1

max
t
‖wt−1 − wt‖max

t
Mt

Where we’ve used Proposition 29 to conclude that
T∑
t=1

‖gt‖2?
x
3/2
t

≤ 3Lmax√
δ + L1

and also used Lemma 28 in the last inequality.

Now if we restrict ourselves to a bounded domain of diameter B and use the regularizer ψ(w) = (‖w‖ +
1) log(‖w‖+ 1)− ‖w‖, we obtain

max
t
Mt ≤ log(BaT )

so that we have

T−1∑
t=1

ψ+
t (w

+
t+2)− ψt(w

+
t+2) ≤

√√√√2Lmax

(
δ‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)(

2 + log

(
δ + ‖g‖1:T
δ + ‖g1‖

))
log(BaT )

+ 3
Lmax

√
2Lmax√

δ + L1

B log(BaT )

Combining this with Theorem 22 and Lemma 23 and using δ = 1 and k =
√
5 we have proved a regret bound

on FTRL with regularizers ψt =
√

5
ηt
ψ(wt − wt) with ψ = (‖w‖ + 1) log(‖w‖ + 1) − ‖w‖. Recall that

FREEREXMOMENTUM is precisely FTRL with these regularizers, so we have proved Theorem 1:

17



Theorem 1. Let ψ(w) = (‖w‖ + 1) log(‖w‖ + 1) − ‖w‖. Set Lt = maxt′≤t ‖gt′‖, and QT = 2 ‖g‖1:T
Lmax

.
Define 1

ηt
and at as in the pseudo-code for FREEREXMOMENTUM (Algorithm 1). Then the regret of FREEREX-

MOMENTUM is bounded by:

T∑
t=1

gt · (wt −w?) ≤
√
5

QT ηT
ψ(QT (w

? −wT )) + 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(BaT + 1)

+

√√√√2Lmax

(
‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)(

2 + log

(
1 + ‖g‖1:T
1 + ‖g1‖

))
log(BaT + 1)

B.3 Proof of Corollaries 2 and 3

First we prove Corollary 2, restated below:

Corollary 2. Under the assumptions and notation of Theorem 1, the regret of FREEREXMOMENTUM is
bounded by:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√Lmax

(
‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2BT + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

Proof. We need the observations

ψ(w) ≤ ‖w‖ log(‖w‖+ 1)

1

ηT
≤
√

2Lmax(1 + ‖g‖1:T )

aT ≤ 2T

Using these identities with Theorem 1 gives us

T∑
t=1

gt · (wt − w?) ≤
√
5
√

2‖w? − wT ‖2Lmax(1 + ‖g‖1:T ) log(2BT + 1)

+

√√√√2Lmax

(
‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)
(2 + log (T )) log(2BT + 1)

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

Now use
√
a+
√
b ≤
√
2a+ 2b to reach the conclusion:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√Lmax

(
‖w? − wT ‖2(1 + ‖g‖1:T ) + ‖wT ‖2 +

T∑
t=1

‖gt‖‖wt − wT ‖2
)

× log(2BT + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

≤ 2
√
5

√√√√Lmax

(
‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2TB + 1)(2 + log(T ))

+ 405Lmax + 2LmaxB + 3
Lmax

√
2Lmax√

1 + L1

B log(2BT + 1)

Now we Corollary 3, again restated below:
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Corollary 3. The regret of coordinate-wise FREEREXMOMENTUM is bounded by:

T∑
t=1

gt · (wt − w?) ≤ 2
√
5

√√√√dLmax

(
d‖w?‖2 +

T∑
t=1

‖gt‖‖w? − wt‖2
)
log(2Tb+ 1)(2 + log(T ))

+ 405dLmax + 2Lmaxdb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

Proof. The Corollary follows by application of Cauchy-Schwarz inequality to Corollary 2. Recall that

RT (u) ≤
T∑
t=1

gt · (wt − u) =
d∑
i=1

T∑
t=1

gt,i(wt,i − ui)

So that the regret can be computed by summing the regret bound of Corollary 2 across dimensions:

RT (u) ≤ 2
√
5

d∑
i=1

√√√√Lmax

(
(w?i )

2 +

T∑
t=1

|gt,i|(w?i − wt,i)2
)
log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

≤ 2
√
5

√√√√dLmax

(
d‖w?‖2 +

d∑
i=1

T∑
t=1

|gt,i|(w?i − wt,i)2
)
log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

≤ 2
√
5

√√√√√dLmax

d‖w?‖2 + T∑
t=1

‖gt‖

√√√√ d∑
i=1

(w?i − wt,i)4

 log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

≤ 2
√
5

√√√√dLmax

(
d‖w?‖2 +

T∑
t=1

‖gt‖
d∑
i=1

‖w?i − wt,i)‖2
)
log(2bT + 1)(2 + log(T ))

+ d405Lmax + 2dLmaxb+ 3d
Lmax

√
2Lmax√

1 + L1

b log(2bT + 1)

where the first inequality follows from convexity of
√
x, the second from Cauchy-Schwarz, and the third because

‖x‖24 =
√∑d

i=1 x
4
i ≤ ‖x‖

2
2.
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