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Abstract

Predicated on the increasing abundance of electronic health records, we investi-
gate the problem of inferring individualized treatment effects using observational
data. Stemming from the potential outcomes model, we propose a novel multi-
task learning framework in which factual and counterfactual outcomes are mod-
eled as the outputs of a function in a vector-valued reproducing kernel Hilbert
space (vvRKHS). We develop a nonparametric Bayesian method for learning the
treatment effects using a multi-task Gaussian process (GP) with a linear coregion-
alization kernel as a prior over the vvRKHS. The Bayesian approach allows us
to compute individualized measures of confidence in our estimates via pointwise
credible intervals, which are crucial for realizing the full potential of precision
medicine. The impact of selection bias is alleviated via a risk-based empirical
Bayes method for adapting the multi-task GP prior, which jointly minimizes the
empirical error in factual outcomes and the uncertainty in (unobserved) counter-
factual outcomes. We conduct experiments on observational datasets for an inter-
ventional social program applied to premature infants, and a left ventricular assist
device applied to cardiac patients wait-listed for a heart transplant. In both experi-
ments, we show that our method significantly outperforms the state-of-the-art.

1 Introduction

Clinical trials entail enormous costs: the average costs of multi-phase trials in vital therapeutic ar-
eas such as the respiratory system, anesthesia and oncology are $115.3 million, $105.4 million, and
$78.6 million, respectively [1]. Moreover, due to the difficulty of patient recruitment, randomized
controlled trials often exhibit small sample sizes, which hinders the discovery of heterogeneous ther-
apeutic effects across different patient subgroups [2]. Observational studies are cheaper and quicker
alternatives to clinical trials [3, 4]. With the advent of electronic health records (EHRs), currently
deployed in more than 75% of hospitals in the U.S. according to the latest ONC data brief1, there is
a growing interest in using machine learning to infer heterogeneous treatment effects from readily
available observational data in EHRs. This interest glints in recent initiatives such as STRATOS
[3], which focuses on guiding observational medical research, in addition to various recent works
on causal inference from observational data developed by the machine learning community [4-11].

Motivated by the plethora of EHR data and the potentiality of precision medicine, we address the
problem of estimating individualized treatment effects (i.e. causal inference) using observational
data. The problem differs from standard supervised learning in that for every subject in an observa-
tional cohort, we only observe the "factual" outcome for a specific treatment assignment, but never
observe the corresponding "counterfactual" outcome2, without which we can never know the true

1https://www.healthit.gov/sites/default/files/briefs/
2Some works refer to this setting as the "logged bandits with feedback" [12, 13].
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treatment effect [4-9]. Selection bias creates a discrepancy in the feature distributions for the treated
and control patient groups, which makes the problem even harder. Much of the classical works have
focused on the simpler problem of estimating average treatment effects via unbiased estimators
based on propensity score weighting (see [14] and the references therein). More recent works learn
individualized treatment effects via regression models that view the subjects’ treatment assignments
as input features [4-13]. We provide a thorough review on these works in Section 3.

Contribution At the heart of this paper lies a novel conception of causal inference as a multi-task
learning problem. That is, we view a subject’s potential outcomes as the outputs of a vector-valued
function in a reproducing kernel Hilbert space (vvRKHS) [15]. We propose a Bayesian approach
for learning the treatment effects through a multi-task Gaussian process (GP) prior over the popu-
lations’ potential outcomes. The Bayesian perspective on the multi-task learning problem allows
reasoning about the unobserved counterfactual outcomes, giving rise to a loss function that quanti-
fies the Bayesian risk of the estimated treatment effects while taking into account the uncertainty
in counterfactual outcomes without explicit propensity modeling. Furthermore, we show that op-
timizing the multi-task GP hyper-parameters via risk-based empirical Bayes [16] is equivalent to
minimizing the empirical error in the factual outcomes, with a regularizer that is proportional to the
posterior uncertainty (variance) in counterfactual outcomes. We provide a feature space interpreta-
tion of our method showing its relation to previous works on domain adaptation [6, 8], empirical
risk minimization [13], and tree-based learning [4, 5, 7, 9].

The Bayesian approach allows us to compute individualized measures of confidence in our esti-
mates via pointwise credible intervals. With the exception of [5] and [9], all previous works do
not associate their estimates with confidence measures, which hinders their applicability in formal
medical research. While Bayesian credible sets do not guarantee frequentist coverage, recent results
on the "honesty" (i.e. frequentist coverage) of adaptive credible sets in nonparametric regression
may extend to our setting [16]. In particular, [Theorem 1, 16] shows that –under some extrapola-
tion conditions– adapting a GP prior via risk-based empirical Bayes guarantees honest credible sets:
investigating the validity of these results in our setting is an interesting topic for future research.

2 Problem Setup

We consider the setting in which a specific treatment is applied to a population of subjects, where
each subject i possesses a d-dimensional feature Xi ∈ X , and two (random) potential outcomes
Y

(1)
i , Y

(0)
i ∈ R that are drawn from a distribution (Y

(1)
i , Y

(0)
i )|Xi = x ∼ P(.|Xi = x), and

correspond to the subject’s response with and without the treatment, respectively. The realized causal
effect of the treatment on subject i manifests through the random variable (Y

(1)
i − Y

(0)
i ) |Xi = x.

Hence, we define the individualized treatment effect (ITE) for subjects with a feature Xi = x as

T (x) = E
[
Y

(1)
i − Y

(0)
i

∣∣∣ Xi = x
]
. (1)

Our goal is to conduct the causal inference task of estimating the function T (x) from an ob-
servational dataset D, which typically comprises n independent samples of the random tuple
{Xi,Wi, Y

(Wi)
i }, where Wi ∈ {0, 1} is a treatment assignment indicator that indicates whether or

not subject i has received the treatment under consideration. The outcomes Y (Wi)
i and Y

(1−Wi)
i are

known as the factual and the counterfactual outcomes, respectively [6, 9]. Treatment assignments
are generally dependent on features, i.e. Wi ⊥̸⊥ Xi. The conditional distribution P(Wi = 1|Xi = x),
also known as the propensity score of subject i [13, 14], reflects the underlying policy for assigning
the treatment to subjects. Throughout this paper, we respect the standard assumptions of uncon-
foundedness (or ignorability) and overlap: this setting is known in the literature as the "potential
outcomes model with unconfoundedness" [4-11].

Individual-based causal inference using observational data is challenging. Since we only observe
one of the potential outcomes for every subject i, we never observe the treatment effect Y (1)

i − Y
(0)
i

for any of the subjects, and hence we cannot resort to standard supervised learning to estimate T (x).
Moreover, the dataset D exhibits selection bias, which may render the estimates of T (x) inaccurate
if the treatment assignment for individuals with Xi = x is strongly biased (i.e. P(Wi = 1|Xi = x) is
close to 0 or 1). Since our primary motivation for addressing this problem comes from its application
potential in precision medicine, it is important to associate our estimate of T (.) with a pointwise
measure of confidence in order to properly guide therapeutic decisions for individual patients.
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3 Multi-task Learning for Causal Inference

Vector-valued Potential Outcomes Function We adopt the following signal-in-white-noise model
for the potential outcomes:

Y
(w)
i = fw(Xi) + ϵi,w, w ∈ {0, 1}, (2)

where ϵi,w ∼ N (0, σ2
w) is a Gaussian noise variable. It follows from (2) that E[Y (w)

i |Xi = x] =

fw(x), and hence the ITE can be estimated as T̂ (x) = f̂1(x) − f̂0(x). Most previous works that
estimate T (x) via direct modeling learn a single-output regression model that treats the treatment
assignment as an input feature, i.e. fw(x) = f(x,w), f(., .) : X × {0, 1} → R, and estimate
the ITE as T̂ (x) = f̂(x, 1) − f̂(x, 0) [5-9]. We take a different perspective by introducing a new
multi-output regression model comprising a potential outcomes (PO) function f(.) : X → R2, with
d inputs (features) and 2 outputs (potential outcomes); the ITE estimate is the projection of the
estimated PO function on the vector e = [−1 1]T , i.e. T̂ (x) = f̂T (x) e.

Consistent pointwise estimation of the ITE function T (x) requires restricting the PO function
f(x) to a smooth function class [9]. To this end, we model the PO function f(x) as belonging
to a vector-valued Reproducing Kernel Hilbert Space (vvRKHS) HK equipped with an inner
product ⟨., .⟩HK

, and with a reproducing kernel K : X × X → R2×2, where K is a (symmetric)
positive semi-definite matrix-valued function [15]. Our choice for the vvRKHS is motivated by
its algorithmic advantages; by virtue of the representer theorem, we know that learning the PO
function entails estimating a finite number of coefficients evaluated at the input points {Xi}ni=1 [17].

Multi-task Learning The vector-valued model for the PO function conceptualizes causal inference
as a multi-task learning problem. That is, D = {Xi,Wi, Y

(Wi)
i }ni=1 can be thought of as comprising

training data for two learning tasks with target functions f0(.) and f1(.), with Wi acting as the "task
index" for the ith training point [15]. For an estimated PO function f̂(x), the true loss functional is

L(f̂) =
∫
x∈X

(
f̂T (x) e− T (x)

)2

· P(X = x) dx. (3)

The loss functional in (3) is known as the precision in estimating heterogeneous effects (PEHE), and
is commonly used to quantify the "goodness" of T̂ (x) as an estimate of T (x) [4-6, 8]. A conspicuous
challenge that arises when learning the "PEHE-optimal" PO function f is that we cannot compute the
empirical PEHE for a particular f ∈ HK since the treatment effect samples {Y (1)

i −Y
(0)
i }ni=1 are not

available in D. On the other hand, using a loss function that evaluates the losses of f0(x) and f1(x)
separately (as in conventional multi-task learning [Sec. 3.2, 15]) can be highly problematic: in the
presence of a strong selection bias, the empirical loss for f(.) with respect to factual outcomes may
not generalize to counterfactual outcomes, leading to a large PEHE loss. In order to gain insight into
the structure of the optimal PO function, we consider an "oracle" that has access to counterfactual
outcomes. For such an oracle, the finite-sample empirical PEHE is

L̂(f̂ ;K,Y(W),Y(1−W)) =
1

n

n∑
i=1

(
f̂T (Xi) e− (1− 2Wi)

(
Y

(1−Wi)
i − Y

(Wi)
i

))2

, (4)

where Y(W) = [Y
(Wi)
i ]i and Y(1−W) = [Y

(1−Wi)
i ]i. When Y(1−W) is accessible, the PEHE-

optimal PO function f(.) is given by the following representer Theorem.

Theorem 1 (Representer Theorem for Oracle Causal Inference). For any f̂∗ ∈ HK satisfying

f̂∗ = arg min
f̂∈HK

L̂(f̂ ;K,Y(W),Y(1−W)) + λ ||̂f ||2HK
, λ ∈ R+, (5)

we have that T̂ ∗(.) = eT f̂∗(.) ∈ span{K̃(., X1), . . . , K̃(., Xn)}, where K̃(., .) = eT K(., .) e.
That is, T̂ ∗(.) admits a representation T̂ ∗(.) =

∑n
i=1 αi K̃(., Xi), α = [α1, . . . , αn]

T , where

α = (K̃(X,X) + nλ I)−1((1− 2W)⊙ (Y(1−W) −Y(W))), (6)

where ⊙ denotes component-wise product, K̃(X,X) = (K̃(Xi, Xj))i,j , W = [W1, . . . ,Wn]
T . �
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A Bayesian Perspective Theorem 1 follows directly from the generalized representer Theorem
[17] (A proof is provided in [17]), and it implies that regularized empirical PEHE minimization
in vvRKHS is equivalent to Bayesian inference with a Gaussian process (GP) prior [Sec. 2.2, 15].
Therefore, we can interpret T̂ ∗(.) as the posterior mean of T (.) given a GP prior with a covariance
kernel K̃, i.e. T ∼ GP(0, K̃). We know from Theorem 1 that K̃ = eTKe, hence the prior on T (.)
is equivalent to a multi-task GP prior on the PO function f(.) with a kernel K, i.e. f ∼ GP(0,K).

The Bayesian view of the problem is advantageous for two reasons. First, as discussed earlier, it
allows computing individualized (pointwise) measures of uncertainty in T̂ (.) via posterior credible
intervals. Second, it allows reasoning about the unobserved counterfactual outcomes in a Bayesian
fashion, and hence provides a natural proxy for the oracle learner’s empirical PEHE in (4). Let
θ ∈ Θ be a kernel hyper-parameter that parametrizes the multi-task GP kernel Kθ. We define the
Bayesian PEHE risk R(θ, f̂ ;D) for a point estimate f̂ as follows

R(θ, f̂ ;D) = Eθ

[
L̂(f̂ ;Kθ,Y

(W),Y(1−W))
∣∣∣ D]

. (7)

The expectation in (7) is taken with respect to Y(1−W)|D. The Bayesian PEHE risk R(θ, f̂ ;D) is
simply the oracle learner’s empirical loss in (4) marginalized over the posterior distribution of the
unobserved counterfactuals Y(1−W), and hence it incorporates the posterior uncertainty in coun-
terfactual outcomes without explicit propensity modeling. The optimal hyper-parameter θ∗ and
interpolant f̂∗(.) that minimize the Bayesian PEHE risk are given in the following Theorem.

Theorem 2 (Risk-based Empirical Bayes). The minimizer (f̂∗, θ∗) of R(θ, f̂ ;D) is given by

f̂∗ = Eθ∗ [ f | D ], θ∗ = arg min
θ∈Θ

∥∥∥Y(W) − Eθ[ f | D ]
∥∥∥2
2︸ ︷︷ ︸

Empirical factual error

+
∥∥∥Varθ[Y(1−W) | D ]

∥∥∥
1︸ ︷︷ ︸

Posterior counterfactual variance

 ,

where Varθ[.|.] is the posterior variance and ∥.∥p is the p-norm. �
The proof is provided in Appendix A. Theorem 2 shows that hyper-parameter selection via risk-
based empirical Bayes is instrumental in alleviating the impact of selection bias. This is because,
as the Theorem states, θ∗ minimizes the empirical loss of f̂∗ with respect to factual outcomes, and
uses the posterior variance of the counterfactual outcomes as a regularizer. Hence, θ∗ carves a
kernel that not only fits factual outcomes, but also generalizes well to counterfactuals. It comes
as no surprise that f̂∗ = Eθ∗ [ f | D ]; Eθ∗ [ f | D,Y(1−W) ] is equivalent to the oracle’s solution in
Theorem 1, hence by the law of iterated expectations, Eθ∗ [ f | D ] = Eθ∗ [Eθ∗ [ f | D,Y(1−W) ] | D ]
is the oracle’s solution marginalized over the posterior distribution of counterfactuals.

Figure 1: Pictorial depiction for model selection via risk-based empirical Bayes.

Related Works A feature space interpretation of Theorem 2 helps creating a conceptual equiv-
alence between our method and previous works. For simplicity of exposition, consider a finite-
dimensional vvRKHS in which the PO function resides: we can describe such a space in terms of
a feature map Φ : X → Rp, where K(x, x′) = ⟨Φ(x),Φ(x′)⟩ [Sec. 2.3, 15]. Every PO function
f ∈ HK can be represented as f = ⟨α,Φ(x)⟩, and hence the two response surfaces fo(.) and f1(.)
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are represented as hyperplanes in the transformed feature space as depicted in Fig. 1 (right). The
risk-based empirical Bayes method attempts to find a feature map Φ and two hyperplanes that best
fit the factual outcomes (right panel in Fig. 1) while minimizing the posterior variance in coun-
terfactual outcomes (middle panel in Fig. 1). This conception is related to that of counterfactual
regression [6, 8], which builds on ideas from co-variate shift and domain adaptation [19] in order to
jointly learn a response function f and a "balanced" representation Φ that makes the distributions
P(Φ(Xi = x)|Wi = 1) and P(Φ(Xi = x)|Wi = 0) similar. Our work differs from [6, 8] in the fol-
lowing aspects. First, our Bayesian multi-task formulation provides a direct estimate of the PEHE:
(7) is an unbiased estimator of the finite-sample version of (3). Contrarily, [Eq. 2, 6] creates a coarse
proxy for the PEHE by using the nearest-neighbor factual outcomes in replacement of counterfactu-
als, whereas [Eq. 3, 8] optimizes a generalization bound which may largely overestimate the true
PEHE for particular hypothesis classes. [6] optimizes the algorithm’s hyper-parameters by assum-
ing (unrealistically) that counterfactuals are available in a held-out sample, whereas [8] uses an ad
hoc nearest-neighbor approximation. Moreover, unlike the case in [6], our multi-task formulation
protects the interactions between Wi and Xi from being lost in high-dimensional feature spaces.

Most of the previous works estimate the ITE via co-variate adjustment (G-computation formula)
[4, 5, 7, 11, 20]; the most remarkable of these methods are the nonparametric Bayesian additive
regression trees [5] and causal forests [4, 9]. We provide numerical comparisons with both methods
in Section 5. [11] also uses Gaussian processes, but with the focus of modeling treatment response
curves over time. Counterfactual risk minimization is another framework that is applicable only
when the propensity score P(Wi = 1|Xi = x) is known [12, 13]. [25] uses deep networks to infer
counterfactuals, but requires some of the data to be drawn from a randomized trial.

4 Causal Multi-task Gaussian Processes (CMGPs)

In this Section, we provide a recipe for Bayesian causal inference with the prior f ∼ GP(0,Kθ).
We call this model a Causal Multi-task Gaussian Process (CMGP).

Constructing the CMGP Kernel As it is often the case in medical settings, the two response sur-
faces f0(.) and f1(.) may display different levels of heterogeneity (smoothness), and may have dif-
ferent relevant features. Standard intrinsic coregionalization models for constructing vector-valued
kernels impose the same covariance parameters for all outputs [18], which limits the interaction be-
tween the treatment assignments and the patients’ features. To that end, we construct a linear model
of coregionalization (LMC) [15], which mixes two intrinsic coregionalization models as follows

Kθ(x, x
′) = A0 k0(x, x

′) +A1 k1(x, x
′), (8)

where kw(x, x
′), w ∈ {0, 1}, is the radial basis function (RBF) with automatic relevance determi-

nation, i.e. kw(x, x′) = exp
(
−1

2 (x− x′)T R−1
w (x− x′)

)
, Rw = diag(ℓ21,w, ℓ

2
2,w, . . . , ℓ

2
d,w), with

ℓd,w being the length scale parameter of the dth feature in kw(., .), whereas A0 and A1 are given by

A0 =

[
β2
00 ρ0
ρ0 β2

01

]
, A1 =

[
β2
10 ρ1
ρ1 β2

11

]
. (9)

The parameters (β2
ij)ij and (ρi)i determine the variances and correlations of the two response

surfaces f0(x) and f1(x). The LMC kernel introduces degrees of freedom that allow the two re-
sponse surfaces to have different covariance functions and relevant features. When β00 >> β01 and
β11 >> β10, the length scale parameter ℓd,w can be interpreted as the relevance of the dth feature
to the response surface fw(.). The set of all hyper-parameters is θ = (σ0, σ1,R0,R1,A0,A1).

Adapting the Prior via Risk-based Empirical Bayes In order to avoid overfitting to the factual out-
comes Y(W), we evaluate the empirical error in factual outcomes via leave-one-out cross-validation
(LOO-CV) with Bayesian regularization [24]; the regularized objective function is thus given by
R̂(θ;D) = η0 Q(θ) + η1 ∥θ∥22, where

Q(θ) =
∥∥∥Varθ[Y(1−W) | D ]

∥∥∥
1
+

n∑
i=1

(
Y

(Wi)
i − Eθ[f(Xi) | D−i]

)2

, (10)

and D−i is the dataset D with subject i removed, whereas η0 and η1 are the Bayesian regularization
parameters. For the second level of inference, we use the improper Jeffrey’s prior as an ignorance
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prior for the regularization parameters, i.e. P(η0) ∝ 1
η0

and P(η1) ∝ 1
η1

. This allows us to
integrate out the regularization parameters [Sec. 2.1, 24], leading to a revised objective function
R̂(θ;D) = n log(Q(θ))+ (10+2 d) log(∥θ∥22) [Eq. (15), 24]. It is important to note that LOO-CV
with squared loss has often been considered to be unfavorable in ordinary GP regression as it leaves
one degree of freedom undetermined [Sec. 5.4.2, 5]; this problem does not arise in our setting
since the term

∥∥Varθ[Y(1−W) | D ]
∥∥
1

involves all the variance parameters, and hence the objective
function R̂(θ;D) does not depend solely on the posterior mean.

Causal Inference via CMGPs Algorithm 1 sums up the entire causal inference procedure. It
first invokes the routine Initialize-hyperparameters, which uses the sample variance and up-
crossing rate of Y(W) to initialize θ (see Appendix B). Such an automated initialization procedure
allows running our method without any user-defined inputs, which facilitates its usage by researchers
conducting observational studies. Having initialized θ (line 3), the algorithm finds a locally optimal
θ∗ using gradient descent (lines 5-12), and then estimates the ITE function and the associated credi-
ble intervals (lines 13-17). (X = [{Xi}Wi=0, {Xi}Wi=1]

T , Y = [{Y (Wi)
i }Wi=0, {Y (Wi)

i }Wi=1]
T ,

Σ = diag(σ2
0 In−n1 , σ

2
1 In1), n1 =

∑
i Wi, erf(x) = 1√

π

∫ x

−x
e−y2

dy, and Kθ(x) = (Kθ(x,Xi))i.)

We use a re-parametrized version of the
Adaptive Moment Estimation (ADAM)
gradient descent algorithm for optimiz-
ing θ [21]; we first apply a transfor-
mation ϕ = exp(θ) to ensure that
all covariance parameters remain posi-
tive, and then run ADAM to minimize
R̂(log(ϕt);D). The ITE function is es-
timated as the posterior mean of the
CMGP (line 14). The credible inter-
val Cγ(x) with a Bayesian coverage of
γ for a subject with feature x is de-
fined as Pθ(T (x) ∈ Cγ(x)) = γ, and
is computed straightforwardly using the
error function of the normal distribution
(lines 15-17). The computational bur-
den of Algorithm 1 is dominated by the
O(n3) matrix inversion in line 13; for
large observational studies, this can be
ameliorated using conventional sparse
approximations [Sec. 8.4, 23].

Algorithm 1 Causal Inference via CMGPs
1: Input: Observational dataset D, Bayesian coverage γ

2: Output: ITE function T̂ (x), credible intervals Cγ(x)
3: θ ← Initialize-hyperparameters(D)
4: ϕ0 ← exp(θ), t← 0, mt ← 0, vt ← 0,
5: repeat
6: mt+1 ← β1 mt+(1−β1) · ϕt ⊙ ∇ϕR̂(log(ϕt);D)

7: vt+1 ← β2 vt+(1−β2) · (ϕt ⊙∇ϕR̂(log(ϕt);D))2

8: m̂t+1 ← mt/(1− βt
1), v̂t+1 ← vt/(1− βt

2)
9: ϕt+1 ← ϕt ⊙ exp

(
−η · m̂t+1/(

√
v̂t+1 + ϵ)

)
10: t← t+ 1
11: until convergence
12: θ∗ ← log(ϕt−1)
13: Λθ∗ ← (Kθ∗(X,X) +Σ)−1

14: T̂ (x)← (KT
θ∗(x)Λθ∗ Y)T e

15: V(x)← Kθ∗(x, x)−Kθ∗(x)Λθ∗ K
T
θ∗(x)

16: Î(x) ← erf−1(γ) (2eTV(x)e)
1
2

17: Cγ(x)← [T̂ (x)− Î(x), T̂ (x) + Î(x)]

5 Experiments

Since the ground truth counterfactual outcomes are never available in real-world observational
datasets, evaluating causal inference algorithms is not straightforward. We follow the semi-synthetic
experimental setup in [5, 6, 8], where covariates and treatment assignments are real but outcomes
are simulated. Experiments are conducted using the IHDP dataset introduced in [5]. We also
introduce a new experimental setup using the UNOS dataset: an observational dataset involving
end-stage cardiovascular patients wait-listed for heart transplantation. Finally, we illustrate the clin-
ical utility and significance of our algorithm by applying it to the real outcomes in the UNOS dataset.

The IHDP dataset The Infant Health and Development Program (IHDP) is intended to enhance
the cognitive and health status of low birth weight, premature infants through pediatric follow-ups
and parent support groups [5]. The semi-simulated dataset in [5, 6, 8] is based on covariates from
a real randomized experiment that evaluated the impact of the IHDP on the subjects’ IQ scores at
the age of three: selection bias is introduced by removing a subset of the treated population. All
outcomes (response surfaces) are simulated. The response surface data generation process was not
designed to favor our method: we used the standard non-linear "Response Surface B" setting in [5]
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(also used in [6] and [8]). The dataset comprises 747 subjects (608 control and 139 treated), and
there are 25 covariates associated with each subject.

The UNOS dataset3 The United Network for Organ Sharing (UNOS) dataset contains information
on every heart transplantation event in the U.S. since 1987. The dataset also contains information on
patients registered in the heart transplantation wait-list over the years, including those who died be-
fore undergoing a transplant. Left Ventricular Assistance Devices (LVADs) were introduced in 2001
as a life-saving therapy for patients awaiting a heart donor [26]; the survival benefits of LVADs are
very heterogeneous across the patients’ population, and it is unclear to practitioners how outcomes
vary across patient subgroups. It is important to learn the heterogeneous survival benefits of LVADs
in order to appropriately re-design the current transplant priority allocation scheme [26].

We extracted a cohort of patients enrolled in the wait-list in 2010; we chose this year since by that
time the current continuous-flow LVAD technology became dominant in practice, and patients have
been followed up sufficiently long to assess their survival. (Details of data processing is provided in
Appendix C.) After excluding pediatric patients, the cohort comprised 1,006 patients (774 control
and 232 treated), and there were 14 covariates associated with each patient. The outcomes (survival
times) generation model is described as follows: σ0 = σ1 = 1, f0(x) = exp((x + 1

2 )Ω), and
f1(x) = Ωx − ω, where Ω is a random vector of regression coefficients sampled uniformly from
[0, 0.1, 0.2, 0.3, 0.4], and ω is selected for a given Ω so as to adjust the average survival benefit to 5
years. In order to increase the selection bias, we estimate the propensity score P(Wi = 1|Xi = x)
using logistic-regression, and then, sequentially, with probability 0.5 we remove the control patient
whose propensity score is closest to 1, and with probability 0.5 we remove a random control patient.
A total of 200 patients are removed, leading to a cohort with 806 patients. The resulting dataset is
more biased than IHDP, and hence poses a greater inferential challenge.

Table 1: Results on the IHDP and UNOS datasets (lower
√

PEHE is better).

IHDP UNOS
In-sample Out-of-sample In-sample Out-of-sample√

PEHE
√

PEHE
√

PEHE
√

PEHE

♡ CMGP 0.59 ± 0.01 0.76 ± 0.01 1.7 ± 0.10 1.8 ± 0.13
GP 2.1 ± 0.11 2.3 ± 0.14 4.1 ± 0.15 4.5 ± 0.20

♣ BART 2.0 ± 0.13 2.2 ± 0.17 3.5 ± 0.17 3.9 ± 0.23
CF 2.4 ± 0.21 2.8 ± 0.23 3.8 ± 0.25 4.3 ± 0.31

VTRF 1.4 ± 0.07 2.2 ± 0.16 4.5 ± 0.35 4.9 ± 0.41
CFRF 2.7 ± 0.24 2.9 ± 0.25 4.7 ± 0.21 5.2 ± 0.32

♠ BLR 5.9 ± 0.31 6.1 ± 0.41 5.7 ± 0.21 6.2 ± 0.30
BNN 2.1 ± 0.11 2.2 ± 0.13 3.2 ± 0.10 3.3 ± 0.12

CFRW 1.0 ± 0.07 1.2 ± 0.08 2.7 ± 0.07 2.9 ± 0.11

⋆ kNN 3.2 ± 0.12 4.2 ± 0.22 5.2 ± 0.11 5.4 ± 0.12
PSM 4.9 ± 0.31 4.9 ± 0.31 4.6 ± 0.12 4.8 ± 0.16

♢ TML 5.2 ± 0.35 5.2 ± 0.35 6.2 ± 0.31 6.2 ± 0.31

Benchmarks We compare our algorithm with: ♣ Tree-based methods (BART [5], causal forests
(CF) [4, 9], virtual-twin random forests (VTRF) [7], and counterfactual random forests (CFRF) [7]),
♠ Balancing counterfactual regression (Balancing linear regression (BLR) [6], balancing neural
networks (BNN) [6], and counterfactual regression with Wasserstein distance metric (CFRW) [8]),
⋆ Propensity-based and matching methods (k nearest-neighbor (kNN), propensity score matching
(PSM)), ♢ Doubly-robust methods (Targeted maximum likelihood (TML) [22]), and ♡ Gaussian
process-based methods (separate GP regression for treated and control with marginal likelihood
maximization (GP)). Details of all these benchmarks are provided in Appendix D.

Following [4-9], we evaluate the performance of all algorithms by reporting the square-root of
PEHE = 1

n

∑n
i=1((f1(Xi) − f0(Xi)) − E[Y (1)

i − Y
(0)
i |Xi = x])2, where f1(Xi) − f0(Xi) is

3https://www.unos.org/data/
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the estimated treatment effect. We evaluate the PEHE via a Monte Carlo simulation with 1000
realizations of both the IHDP and UNOS datasets, where in each experiment we run all the
benchmarks with 60/20/20 train-validation-test splits. Counterfactuals are never made available to
any of the benchmarks. We run Algorithm 1 with the a learning rate of 0.01 and with the standard
setting prescribed in [21] (i.e. β1 = 0.9, β2 = 0.999, ϵ = 10−8). We report both the in-sample and
out-of-sample PEHE estimates: the former corresponds to the accuracy of the estimated ITE in a
retrospective cohort study, whereas the latter corresponds to the performance of a clinical decision
support system that provides out-of-sample patients with ITE estimates [8]. The in-sample PEHE
metrics is non-trivial since we never observe counterfactuals even in the training phase.

Results As can be seen in Table 1, CMGPs outperform all other benchmarks in terms of the PEHE
in both the IHDP and UNOS datasets. The benefit of the risk-based empirical Bayes method man-
ifest in the comparison with ordinary GP regression that fits the treated and control populations by
evidence maximization. The performance gain of CMGPs with respect to GPs increase in the UNOS
dataset as it exhibits a larger selection bias, hence naïve GP regression tends to fit a function to the
factual outcomes that does not generalize well to counterfactuals. Our algorithm is also performing
better than all other nonparametric tree-based algorithms. In comparison to BART, our algorithm
places an adaptive prior on a smooth function space, and hence it is capable of achieving faster
posterior contraction rates than BART, which places a prior on a space of discontinuous functions
[16]. Similar insights apply to the frequentist random forest algorithms. CMGPs also outperform
the different variants of counterfactual regression in both datasets, though CFRW is competitive in
the IHDP experiment. BLR performs badly in both datasets as it balances the distributions of the
treated and control populations by variable selection, and hence it throws away informative features
for the sake of balancing the selection bias. The performance gain of CMGPs with respect to BNN
and CFRW shows that the multi-task learning framework is advantageous: through the linear core-
gionalization kernel, CMGPs preserves the interactions between Wi and Xi, and hence is capable
of capturing highly non-linear (heterogeneous) response surfaces.

Figure 2: Pathway for a representative patient in the UNOS dataset.

6 Discussion: Towards Precision Medicine

To provide insights into the clinical utility of CMGPs, we ran our algorithm on all patients in the
UNOS dataset who were wait-listed in the period 2005-2010, and used the real patient survival times
as outcomes. The current transplant priority allocation scheme relies on a coarse categorization of
patients that does not take into account their individual risks; for instance, all patients who have
an LVAD are thought of as benefiting from it equally. We found a substantial evidence in the data
that this leads to wrong clinical decision. In particular, we found that 10.3% of wait-list patients
for whom an LVAD was implanted exhibit a delayed assignment to a high priority allocation in the
wait-list. One of such patients has her pathway depicted in Fig. 2: she was assigned a high priority
(status 1A) in June 2013, but died shortly after, before her turn to get a heart transplant. Her late
assignment to the high priority status was caused by an overestimated benefit of the LVAD she got
implanted in 2010; that is, the wait-list allocation scheme assumed she will attain the "populational
average" survival benefit from the LVAD. Our algorithm had a much more conservative estimate
of her survival; since she was diabetic, her individual benefit from the LVAD was less than the
populational average. We envision a new priority allocation scheme in which our algorithm is used
to allocate priorities based on the individual risks in a personalized manner.
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