
A Different Indecomposable Distributions Can Coincide in Phase

Let X and Y be (univariate) random variables with densities

fX(x) =
1√
2π
x2 exp(−x2/2), fY (x) =

1

2
|x| exp(−|x|).

Then it can be directly checked that their characteristic functions are given by

ϕX(ω) = (1− ω2) exp(−ω2/2), ϕY (ω) =
1− ω2

(1 + ω2)2
.

Thus, the phase functions coincide and are equal to

ρX(ω) = ρY (ω) =


+1, |ω| < 1,

−1, |ω| > 1,

undefined, ω ∈ {−1, 1}.

However, it is can also checked that even though they are symmetric, X and Y are indecomposable,
cf. e.g. [12], which use a related but distinct notion of indecomposability of random variables. The
plots of the densities and characteristic functions of X and Y are given in Fig. A.1.

Figure A.1: Example of two indecomposable distributions which have the same phase function. Left:
densities. Right: charactersitic functions.

B Phase Discrepancy and Asymmetry in Paired Differences Proofs

In this section, we will provide further details of the definitions, calculations and proofs in section 3
and 4. Phase discrepancy is defined as the weighted L2-distances between the phase functions, i.e.

PhD(X,Y ) =

∫
|ρX (ω)− ρY (ω)|2 dΛ (ω) ,

for some positive measure Λ (w.l.o.g. a probability measure). Phase discrepancy measures how much
X and Y differ up to an independent SPD noise component. We note that while the form of the PhD
is motivated by that of MMD (weighted L2-distances between the characteristic functions), relating
it to the properties of the corresponding kernel and its RKHS is not straightforward. For example,
constructing a PhD interpretation as a supremum over the RKHS unit ball (which is often how MMD
is introduced) is immediate only for the case where indecomposable parts are point masses. Namely,
if X = x0 + U and Y = y0 + V , i.e. indecomposable parts are almost surely constant vectors x0
and y0, then

PhD(X,Y ) = ‖k(·, x0)− k(·, y0)‖2Hk
= sup
‖f‖Hk

≤1
|f(x0)− f(y0)|2 ,

by virtue of ρX(ω) = eiω
>x0 = ϕx0

(ω). In other cases, while it is clear that the spectral properties
of the kernel still regulate the amount of frequency content that is used, one obtains the RKHS
distance between the kernel convolutions of the inverse Fourier transforms of the phase functions so
the interpretation is less clear.

Below, we provide the proofs of the propositions from the main text.
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Proposition 4.

PhD(X,Y ) = 2− 2

∫ E cos
(
ω> (X − Y )

)√
E cos (ω> (X −X ′))E cos (ω> (Y − Y ′))

dΛ(ω).

Proof.

PhD(X,Y ) =

∫
|ρX (ω)− ρY (ω)|2 dΛ (ω)

=

∫
|ρX (ω)|2 dΛ (ω) +

∫
|ρY (ω)|2 dΛ (ω)−

∫
(ρXρY + ρXρY ) dΛ

= 2−
∫
ϕXϕY + ϕXϕY
|ϕX | |ϕY |

dΛ

= 2− 2

∫
ϕZ√

ϕX−X′ϕY−Y ′
dΛ,

where X and X ′ are iid, Y and Y ′ are iid and Z is an equal mixture of X − Y and Y −X . Indeed,

ϕXϕY + ϕXϕY = ϕX−Y + ϕY−X = 2ϕZ ,

and
ϕX−X′ = ϕXϕX = |ϕX |2 .

Note that X −X ′,Y − Y ′ and Z are all symmetric. Thus,

ϕZ(ω) = E
[
cos
(
ω>Z

)]
=

1

2
E
[
cos
(
ω> (X − Y )

)]
+

1

2
E
[
cos
(
ω> (Y −X)

)]
= E

[
cos
(
ω> (X − Y )

)]
.

Substituting provides us the result.

Proposition 5. Kω (PX ,PY ) =
(

Eξω(X)
‖Eξω(X)‖

)> ( Eξω(Y )
‖Eξω(Y )‖

)
is a positive definite kernel on prob-

ability measures ∀ω, where here ξω (x) =
[
cos
(
ω>x

)
, sin

(
ω>x

)]
, and so is K (PX ,PY ) =∫

Kω (PX ,PY ) dΛ(ω) for any positive measure Λ.

Proof. Define a feature map ξω : X → R2 with ξω (x) =
[
cos
(
ω>x

)
, sin

(
ω>x

)]
, which induces a

kernel on X given by kω(x, y) = cos
(
ω> (x− y)

)
. Then κω (PX ,PY ) = E cos

(
ω> (X − Y )

)
=

Ekω(X,Y ) = (Eξω(X))
> Eξω(Y ) is a valid kernel on probability measures and so is the normalised

kernel

Kω (PX ,PY ) =
κω (PX ,PY )√

κω (PX ,PX)κω (PY ,PY )
=

(
Eξω(X)

‖Eξω(X)‖

)>( Eξω(Y )

‖Eξω(Y )‖

)
,

where we used that E cos
(
ω> (X −X ′)

)
= (Eξω(X))

> Eξω(X ′) = ‖Eξω(X)‖2. For the last
claim, simply note that integrating through the positive measure preserves positive semidefinitess, i.e.∑
αiαjK(Pi,Pj) =

∫
(
∑
αiαjKω(Pi,Pj)) dΛ (ω) ≥ 0.

As a direct corollary,

Proposition 6. PhD(X,Y ) = 2− 2K (PX ,PY ) = 2
∫ (

1−
(

Eξω(X)
‖Eξω(X)‖

)> ( Eξω(Y )
‖Eξω(Y )‖

))
dΛ(ω).

Proposition 7. Under the null hypothesis, X − Y is SPD ⇐⇒ X0
d
=Y0.

Proof. Under H0, since X0 has the same distribution as Y0, then so do X − Y = X0 − Y0 +U − V
and Y −X = Y0 −X0 + V − U as U − V is symmetric. Moreover, ϕX−Y = |ϕX0 |2ϕUϕV > 0,
so X − Y is SPD. Conversely, if we assume that X − Y is SPD, i.e. ϕXϕY > 0, then ρX0ρY0 > 0.
Since |ρX0

| = |ρY0
| = 1, this implies that ρX0

= ρY0
, and hence X0

d
=Y0, since we assumed that X0

and Y0 belong to P(Rd). Hence, we have that X − Y is SPD ⇐⇒ X0
d
=Y0.
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C Paired Differences

Another way to measure asymmetry of the difference between random vectors X and Y is to
use MMD(X − Y, Y − X) instead of PhD(X,Y ). However, this quantity is not invariant, i.e.,
MMD(X − Y, Y −X) 6= MMD(X0 − Y0, Y0 −X0), and in fact the values will heavily depend on
the distributions of U and V . We note that

ϕX−Y (ω)− ϕY−X(ω) = 2iE sin
(
ω> (X − Y )

)
,

so that we are effectively measuring the size of the imaginary part of the characteristic function of
X − Y (which should not be there if it is symmetric). There are several different ways in which we
can write this quantity:

MMD(X − Y, Y −X) = ‖Ek(·, X − Y )− Ek(·, Y −X)‖2Hk

=

∫
|ϕXϕY − ϕXϕY |2 dΛ

= 4

∫ [
E sin

(
ω> (X − Y )

)]2
dΛ(ω)

=

∫
|ϕX |2 |ϕY |2

(
2− ϕXϕY

ϕXϕY
− ϕXϕY
ϕXϕY

)
dΛ.

The last expression indicates that this quantity is affected by the amplitude of the individual characteris-
tic functions, experimental details to show this empirically can be found in F.1. Moreover, the quantity
does not appear to lend itself to the feature on distributions formalism, i.e. we were unable to derive
some Hilbert space features Υ(P) ∈ H such that MMD(X − Y, Y −X) = ‖Υ(PX)−Υ(PY )‖2H,
and it is thus unclear whether this approach can be used to define a valid kernel on distributions.

D Learning Discriminative Features

Algorithm D.1 Phase/Fourier Neural Network

Input: Batch of bag of samples X ∈ Rb×N×p, where
b is the batch size, N is the bag size and p is the dimen-
sion
Output: Classification or Regression Output
1. Compute f(X) = XW where W ∈ Rp×m
2. Apply a sin and cos activation function

l1(X) = [sin(f(X)) cos(f(X))]

3. Apply mean pooling operation over N , effectively
computing Êξωi

(X) for each ωi ∈ Rp

l2(X) =
[
Êξω1

(X), . . . , Êξωm
(X)

]
∈ R2m

4. For Phase Neural Network, compute
∥∥∥Êξω1

(X)
∥∥∥

for each frequency and normalise to obtain:

l3(X) =

[
Êξω1 (X)

‖Êξω1
(X)‖ , . . . ,

Êξωm (X)

‖Êξωm (X)‖

]
5. Batch Normalisation Layer
6. Output layer

Figure D.1: Main structure of the phase
neural network
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Algorithm D.1 shows the phase Neural Network (phase NN) and the Fourier Neural Network (Fourier
NN), where the latter can be obtained by simply removing step 4 in the algorithm. Although the
batch normalisation is not required, it is highly recommended for faster training of the network [6],
due to the normalisation for the phase neural network in step 5 of the algorithm. Because of the
neural network structure, we can take advantage of the rich literature, as well as alter the network
in order to target a variety of different problems. For example, setting now the loss function as the
squared loss, cross entropy or pinball loss, we can solve tasks in regression, classification or quantile
regression on distributional inputs with discriminative frequencies. The Fourier neural network can
also be extended to inputs in Rp for normal regression and classification problems by removing the
mean pooling operation in step 3 of the algorithm.

E Distribution Regression with Invariance for ABC

Algorithm E.1 Phase Regression, Fourier Regression

Input: prior π for θ, data-generating process P , phase or Fourier features
Output: Phase or Fourier Regression Neural Network
for i = 1, . . . , n do

Sample θi ∼ π
Sample dataset Bi = {xij}Nj=1 from P (·|θi)

end for
Train Phase or Fourier neural network with {Bi, yi}ni=1

Algorithm E.2 Phase-ABC or Fourier-ABC

Input: prior π for θ, data-generating process P , observed data B∗ = {x∗j}N
∗

j=1, ε, number of
particles K
Output: Weighted Posterior sample

∑
k wkδθk

1. Perform Phase or Fourier Regression, obtain m(·)
2. ABC
for k = 1, . . . ,K do

Sample θk ∼ π
Sample dataset Bk = {xkj}j from P (·|θk)

Compute w̃k = exp

(
−||m(Bk)−m(B∗)||22

ε

)
end for
wk = w̃k/

∑
k w̃k

We have designed an explicit feature map for a bag of samples that can be used for any distribution
regression problem. We now present its potential application to Approximate Bayesian Computation
(ABC). Motivated by the approach of [4] and [13], we propose to use the phase features to construct
an optimal summary statistic (under some loss function) for ABC. ABC is a Bayesian framework
that allows us to approximate the posterior distribution of some parameter θ by approximating
the likelihood function through simulations. To capture this approximation of the likelihood
function, simulated datasets from the model are compared with the observed data using some
lower dimensional summary statistics. If the summary statistic is sufficient, then there is no loss of
information when projecting the data onto lower dimensional space. In practice however, sufficient
statistics are not available for complex models of interest and instead using the strategy of [4], one
can construct summary statistics that provide inference of θ which is optimal with respect to a given
loss function.

In particular, we will focus on the squared loss function as given by L(θ, θ′) = (θ − θ′)2.
[4] showed that under this loss, the posterior mean of the θ given observations X is in fact the
optimal summary statistic of X for the ABC procedure. However, since this quantity can not be
analytically computed, one approach is to estimate it by fitting a regression model from simulated
data, some examples of this include the semi-automatic ABC [4] and DR-ABC [13]. Here we focus
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on ideas from DR-ABC, which uses a kernel distribution regression approach, treating each simulated
dataset (given θ simulated from the prior) as a bag of samples and taking its label to be θ. After
training the regression model, it proceeds to using it as a summary statistic as given in algorithm
E.2. The DR-ABC paper further proposed the conditional DR-ABC (CDR-ABC), which makes the
assumption that only certain aspects of the data have an influence on θ. By conditioning on such
nuisance variables and then using conditional distribution regression (by embedding conditional
distributions [21]), it can better account for the functional relationship inside the model. However,
one problem with this approach is that the nuisance variables have to be observed directly, even for
the true dataset, which may often not be the case. For example, consider the hierarchical model we
used to illustrate the utility of phase features for regression below.

θ ∼ Γ(α, β), Z ∼ U [0, σ], ε ∼ N (0, Z),

X ∼
Γ
(
θ/2, 1/2

)
2θ

+ ε, (5)

for some fixed values of α, β and σ. Here θ is the parameter we are interested in, ε is a latent noise
variable (unobserved) and X is the observation. Since neither ε nor Z are observed on the true dataset,
we can only use DR-ABC, not CDR-ABC. But DR-ABC then does not take into account the model
structure which tells us that ε is irrelevant for inferring θ, and it is thus likely to give poor performance
for large values of σ. Hence, we propose to use phase features inside such regression model, which
will be invariant to the noise variable ε which is an SPD component in observations. By using phase
features for distribution regression, we should be able to better capture the functional relationship
between θ and its corresponding dataset, a bag from X|θ and hence build better summary statistics
for ABC. In some sense, this approach can be thought of as implicitly conditioning out the latent
nuisance variable ε, similarly as CDR-ABC does when it is observed. Furthermore, although we
have chosen this example as an illustration, the phase features could be applied to many complex
models with nuisance latent variables, even when we cannot write their contribution explicitly as
here. The algorithms E.1 and E.2 shows the approach as in DR-ABC, but now replaced by our phase
or Fourier regression approaches to compute summary statistics, and we denote these as Phase-ABC
and Fourier-ABC.

F Additional Results

F.1 Asymmetry in Paired Differences Experiment

Figure F.1: Histograms on various estimates for all pairs of bags with varying additive noise, red line
denotes the noiseless case. Top: Estimated MMD on paired differences for all pair of bags, the red
line given by the mean of the estimated MMD on paired differences for bags without noise. Middle:
the squared distance between Fourier features (an estimate of MMD). Bottom: the squared distance
between phase features (an estimate of PhD).
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While it performed well when testing the null hypothesis, the MMD on paired differences is not
invariant to the additive SPD noise components under the alternative hypothesis. Using the synthetic
experimental setup as before, we simulate 100 noiseless bags from the two scaled χ2-distributions
X0 ∼ χ2(4)/4 and Y0 ∼ χ2(8)/8, where each bag contains 1000 samples. We add varying
levels of Gaussian noise to each bag, i.e. the bags are of the form Xi = X0 + N (0, Zi) and
Yi = Y0 +N (0,Wi), where Zi,Wi ∼ U [0, 0.1]. We compute the estimate of the MMD on paired
differences, the squared distance between Fourier features (an estimate of MMD) and the squared
distance between phase features (an estimate of PhD) for all pairs of bags. In all computations, we
used the same set of frequencies {wi}100i=1 (sampled from a Gaussian distribution). We do the same for
the noiseless samples (or use analytic expressions where available). The results are shown in figure
F.1. We see that the MMD on paired differences is not invariant to SPD noise components (clearly,
the noiseless case indicated by the red line has a much higher level of asymmetry than the noisy case
where due to the presence of high levels of symmetric noise, differences often do appear symmetric).
This is unlike the phase features, which maintain some level of invariance, the estimates stay away
from 0 – preserving the signal about the difference of indecomposable χ2 components – and the
mode is nearer the true value, even though there is clearly some variance, however this is expected
as its PhD population expression is invariant, but not its estimator, furthermore the frequencies are
sampled (with the median heuristic bandwidth) and not learnt. This suggests that phase features are
more suitable for invariant learning on distributions than MMD on paired differences. The Fourier
features are also given for comparison, but these are not expected to be invariant, as shown.

F.2 Characteristic and Phase Function Plots

Figure F.2: The black line here correspond to the real and imaginary part of the true characteristic
function of the χ2(4)/4 and χ2(8)/8 distribution, denoted X,Y on the top and bottom graphs
respectively. The red points denote the empirical characteristic function constructed with 750
frequencies sampled from a Gaussian kernel with σ = 2 using a bag size of 1000 observations, with
some additional Gaussian noise.
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Figure F.3: The black line here correspond to the real and imaginary part of the true phase function
of the χ2(4)/4 and χ2(8)/8 distribution, denoted X,Y on the top and bottom graphs respectively.
The red points denote the empirical phase function constructed with 750 frequencies from a Gaussian
kernel with σ = 2 using a bag size of 1000 observations, with some additional Gaussian noise.

Figure F.4: The top and bottom graph denotes the difference in the real and imaginary part of the
characteristic function for the χ2(4)/4 and χ2(8)/8 as in figure F.2.

18



Figure F.5: The top and bottom graph denotes the difference in the real and imaginary part of the
phase function for the χ2(4)/4 and χ2(8)/8 as in figure F.3.

F.3 Two-Sample Tests with Invariances

F.3.1 Synthetic χ2 Dataset
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Figure F.6: Extra Type I error results for the synthetic example with χ2 Left: With no noise added
for the ME, PhD and SME test. Right: Various additive Gaussian components, our base distribution
without addition of noise is χ2(4)/4. Here n11 refers to the noise to signal ratio for the first set of
samples and n12 refers to the second set of samples.

In figure above, the black dashed line is the 99% Wald interval α± 2.57
√
α(1− α)/1000, where

here α = 0.05 is the significance level and 1000 is the number of repetitions.

On the left figure, we see that indeed all three test considered in this paper indeed controls the Type
I error, when the underlying distribution between the two sets of sample is the same, note here no
additional noise is added.

On the right figure, we see that the PhD statistic controls Type I error for no added Gaussian noise,
and also control Type I error for small differences in additive Gaussian components, unlike the ME
test. However, we see that the type I error for a larger noise to signal ratio on the two set of samples
indeed does alleviate the Type I error. This is not surprising, as the null distribution was constructed
by using a permutation test, using:

ϕnull =
1

2
ϕX0

ϕU +
1

2
ϕX0

ϕV = ϕX0
(
1

2
ϕU +

1

2
ϕV ),
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and if the estimated phase features are biased, in the regime with large additive Gaussian noise,
then the following may not be true approximately: ρ̂null = ρ̂X0 = ρ̂Y0 , leading a to a biased null
distribution.

In practice, if it is subtle effects we are looking for, with larger samples, we recommend the use of
the SME test, however if this is not the case, then the PhD test is more appropriate, as it has good
power for low sample size. In fact, the PhD test has power comparable with that of the ME test,
however users should use it with caution, as it does not control the Type I error for larger additional
SPD differences and requires more computational power.

F.3.2 Higgs Dataset

Table F.1: Power for various sample size for high level features of the Higgs dataset

SAMPLE SIZE N SME POWER ME POWER
500 0.94 1.0
600 0.969 0.999
700 0.987 1.0
800 0.989 1.0
900 0.994 1.0
1000 0.995 1.0

The table here refers to the high level features of the Higgs dataset, which have been shown to be
discriminative in [1]. In this case, clearly both the ME and SME achieve good power, note here the
SME has slightly less power, due to using only half of the samples to keep independence.

Figure F.7: Type I error for the Higgs Dataset. Left: Extremely low level features Right: High level
features. The black dashed line is the 99% Wald interval α ± 2.57

√
α(1− α)/1000, where here

α = 0.05 is the significance level and 1000 is the number of repetitions.

The two figures here show that the Type I error is controlled for the ME and SME test, when we have
X0

d
=Y0, where we only consider samples drawn from Y , corresponding to the distribution of the

processes where the Higgs Boson are produced. Note that on the right graph, the Type I error at first
may be slightly alleviated due to small set of samples.

F.3.3 Aerosol Dataset

We here provide some additional results for the Aerosol Dataset. First, we provide the average RMSE
on the aerosol dataset (without noise on test set), based on 10 runs, for different train and test splits in
Table F.2.
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Figure F.8: Histograms for the distribution of the L2 norm of the averages of Fourier features over
each frequency w for the original aerosol test set and the aerosol test set with added noise (σ = 3),
here red line denotes the unit norm representing the phase features Top Green: Random Fourier
Features w (with the optimised kernel bandwidth) Bottom Blue: Learnt Fourier features w from the
Fourier Neural Network.

Table F.2: Average RMSE for the Aerosol Dataset across 10 runs, for different train and test splits,
with standard deviation in brackets

FOURIER NN PHASE NN GLRR PLRR
NO NOISE 0.101 (0.011) 0.101 (0.008) 0.079 (0.010) 0.085 (0.009)

In the experiments for the Aerosol covariate shift and above, we have seen that the Fourier NN
performs similarly to the Phase NN, even under the addition of Gaussian noise, here we provide some
possible insights. From the trained Fourier NN on the original dataset, we extract the frequencies
w learnt and compute

∥∥∥Êξω(X)
∥∥∥ for each frequency over the original and noisy test set, similarly

we do this for the frequencies generated from the Gaussian kernel (with the optimised bandwidth
on the original aerosol dataset). We show the empirical distribution of both of these in the figure
above, we see that the discriminative frequencies learnt on the training data correspond to the Fourier
features which are nearly normalised (i.e. they are close to unit norm like phase features, shown by
the red line), this may suggest that the learnt frequencies have captured a notion of invariance to
additive SPD components on just the training data. This provides insight into good performance of
Fourier NN even under the covariate shift. It also indicates that the original Aerosol data potentially
has irrelevant SPD noise components that the Fourier NN has learnt to ignore.

G Implementation Details

G.1 PhD two sample test

For the PhD two sample test for the toy dataset, for each of the 1000 runs, we use a permutation size
of 400, with the number of frequencies sampled set at 50. Here the frequencies are sampled using the
radial frequency distribution, where Σ is chosen to be σ2I, with σ2 being the empirical variance of
the two set of samples. The Radial Frequency Distribution is defined as follows:

w = RΣ−
1
2ψ

where ψ ∈ Rn is uniformly distributed on the L2 unit sphere Sn−1, and R ∈ R+ is a radius drawn
independently from a folded Gaussian N+(0, 1). The radial frequency distribution is useful in high
dimensions, as unlike the normal distributions, which ‘under samples’ the low or middle frequencies,
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it is able to sample a broader range of frequencies due to its form. By covering a broader range of
frequencies, we may be able to ‘better encode’ information of the distribution represented by the
bags, leading to a feature map that is more informative.

G.2 Aerosol Dataset

For the network, we use a squared loss function with an additional L2 weight decay for regularisation,
with a separate regularisation parameter for the two individual layers. For optimisation, we again
use ADAM [8] with fixed learning rate decay and 120 epochs, with a batch size of 10. We perform a
3-fold cross validation, and compute the MSE. We tune the learning rate, regularisation parameters
and also number of frequencies for the neural network, here we initialise the first layer with Gaussian
distribution with standard deviation = 1/γ0, where γ0 denote the median heuristic.

G.3 Dark Matter Dataset

For all methods we sample frequencies from the normal distribution (with standard deviation = 1/γ0,
where γ0 denote the median heuristic.). After sampling a set of frequencies, we tune the scale of the
set of frequencies and also the ridge regularisation parameter using the validation set. In particular
we use 75 frequencies on the first and second level of the kernel whenever they are used. Note we use
the same set of frequencies (at each individual kernel level) across all the methods in a single run to
allow for easier comparison, with potentially different scale tuned on the validation set.
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