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1 Illustration of Stochastic Accelerated Mirror De-
scent

1.1 Construction of smooth mirror maps

The mirror map is central in defining mirror descent dynamics. We first give a generic
method for constructing mirror maps, adapted to the feasible set X ⊂ E. We fix a
pair of dual reference norms, ‖ · ‖, ‖ · ‖∗, defined, respectively, on E and its dual space
E∗. We say that a map F : E → E∗ is Lipschitz continuous on X with constant L if
for all x, x′ ∈ X , ‖F (x) − F (x′)‖∗ ≤ L‖x − x′‖. We recall that the effective domain
of a convex function ψ is the set {x ∈ E : ψ(x) < ∞}, and its convex conjugate
ψ∗ : E∗ → R is defined on E∗ by ψ∗(z) = supx∈X 〈z, x〉 − ψ(x). We recall that the sub-
differential of ψ at x is the set ∂ψ(x) = {g ∈ E∗ : ψ(x′) ≥ ψ(x) + 〈g, x′ − x〉 ∀x′ ∈ X},
and that ψ is said to be µ-strongly convex (w.r.t. ‖ · ‖) if ∀x, x′ ∈ X , ∀g ∈ ∂ψ(x),
ψ(x) ≥ ψ(x′) + 〈g, x′ − x〉+ µ

2 ‖x′ − x‖2.

Proposition 1. Let ψ be a µ-strongly convex function (w.r.t. ‖·‖) with effective domain
X , and let ψ∗ be its convex conjugate. Then ψ∗ is finite and differentiable on all of E∗,
∇ψ∗ is 1

µ -Lipschitz, and has values in X : specifically, for all z ∈ E∗,

∇ψ∗(z) = arg max
x∈X

〈z, x〉 − ψ(x). (1)

This follows from standard results from convex analysis, e.g. Theorems 13.3 and 25.3
in [Rockafellar, 1970]. To give an example of a Lipschitz mirror map, take ψ to be the
squared Euclidean norm, ψ(x) = 1

2‖x‖22. Then ψ∗(z) = arg maxx∈X 〈z, x〉 − 1
2‖x‖22 =

arg minx∈X ‖z−x‖22, and the mirror map reduces to the Euclidean projection on X . It is
worth noting that although one can theoretically construct a smooth mirror map given
any convex feasible set X , using Proposition 1, this does not necessarily mean that the
mirror map can be implemented efficiently, since in its general form, it is given by the
solution to the problem (1). However, many convex sets have known mirror maps that
are efficient to compute. For a concrete example, when X is the probability simplex ∆ =
{x ∈ Rn+ :

∑n
i=1 xi = 1}, choosing ψ to be the negative entropy ψ(x) =

∑n
i=1 xi log xi

yields a closed-form mirror map given by (∇ψ∗(z))i = ezi/
∑n
j=1 e

zj , see e.g. Banerjee
et al. [2005] for additional examples.

1.2 Stochastic Accelerated Mirror Descent

SAMDη,a,s

{
dZ(t) = −η(t)[∇f(X(t))dt+ σ(X(t), t)dB(t)]

dX(t) = a(t)[∇ψ∗(Z(t)/s(t))−X(t)]dt,
(2)

We give an illustration of SAMD dynamics in Figure 1, on a simplex-constrained
problem in R3. The feasible set is given by X = {x ∈ Rn+ :

∑n
i=1 xi = 1}, and the mirror

map is generated by the negative entropy restricted to the simplex, given by:

ψ(x) =

{
−∑n

i=1 xi lnxi if x ∈ X ,

+∞ otherwise,
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which is strongly convex w.r.t. the norm ‖ · ‖1 by Pinsker’s inequality. Its convex
conjugate is given by

ψ∗(z) = max
x∈X
〈x, z〉 −

n∑
i=1

xi lnxi = ln

n∑
i=1

ezi

which is differentiable for all z ∈ E∗. The mirror map satisfies

∇ψ∗(z)i =
ezi∑n
j=1 e

zj

and so is Lipschitz w.r.t. the dual norms ‖ · ‖1, ‖ · ‖∞.
Note that for all z ∈ E∗ and all α ∈ R,

∇ψ∗(z) = ∇ψ∗(z + α1),

where 1 is the vector of all ones. This can also be seen as a consequence of the duality
of sub-differentials (e.g. Theorem 23.5 in Rockafellar [1970]), which states that x =
∇ψ∗(z) if and only if z ∈ ∂ψ(x), and since ψ is the restriction of the negative entropy
−H(x) = −∑n

i=1 xi lnxi to the simplex, its sub-differential at x is

∂ψ(x) = −∇H(x) + nX (x)

where nX (x) is the normal cone to X at x, which is simply the line R1 (when x is in
the relative interior of the simplex).

Since the mirror map is constant along the normal to the simplex, we choose to
project the dual variable Z on the hyperplane parallel to the simplex, for visualization
purposes. This allows us to visualize the relevant component of the dual dynamics, and
ignore a component which does not matter for convergence (but which could have high
magnitudes if ∇f has a large component along the normal). Note that even numerically,
projecting Z after each iteration helps improve numerical stability (without affecting the
primal trajectory).

Finally in order to visualize the function values, we generate a triangular mesh of the
simplex, then map it to the dual space. In other words, the colors in the primal space
represent f(x), and in the dual space represent f(∇ψ∗(z)). It is interesting to observe
how the mirror map ∇ψ∗ distorts the space between primal and dual spaces.

X E∗

∇ψ∗

Z(t)
s(t)

X(t)

∇ψ∗
(
Z(t)
s(t)

)

Figure 1: Illustration of SAMD dynamics. The dual trajectory Z(t) cumulates negative
gradients, Ż(t) = −η(t)∇f(X(t)). We visualize the scaled dual trajectory Z(t)/s(t)

in the dual space (red), and the corresponding mirror ∇ψ∗(Z(t)
s(t) ) in the primal space

(dotted red). The primal trajectory X(t) is obtained by averaging the mirror.
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2 Proof of Theorem 1

The proof of Theorem 1 follows a similar outline to that of Theorem 4.1 in [Mertikopoulos
and Staudigl, 2016], with some significant changes: first, we do not make the assumption
that the minimizer is unique. Second, and most importantly, the dynamics and the
energy function are different; the dual learning rate η(t) and the primal averaging a(t)
are essential in our case to handle the noise, since we do not assume that the volatility
bound σ∗(t) is vanishing (i.e. we do not operate under a small noise limit assumption).
This introduces important changes to the argument.

First, we recall the definition of an asymptotic pseudo trajectory (APT), due to
Benäım [1999], and adapt it to our setting.

Definition (Asymptotic Pseudo Trajectory). Let Φt : X×E∗ → X×E∗ be the semi-flow
associated with the deterministic dynamics AMDη,η,1, that is, (x(t), z(t)) = Φt(x0, z0)
is the solution of the deterministic dynamics AMDη,η,1 with initial condition (x0, z0).
A continuous function t 7→ (X(t), Z(t)) ∈ X × E∗ is an asymptotic pseudo trajectory
(APT) for Φt if for all T > 0,

lim
t→∞

sup
0≤h≤T

d((X(t+ h), Z(t+ h)),Φh(X(t), Z(t))) = 0,

where d is a distance on X × E∗, e.g. d((x, z), (x′, z′)) = ‖x− x′‖+ ‖z − z′‖∗.
Next, we specialize the energy function, and the bounds on its time derivative, both

for the deterministic and stochastic dynamics. Under the assumptions of the theorem
(r(t) = s(t) = 1), L(x, z, t) simplifies to

Lz?(x, z) = f(x)− f(x?) +Dψ∗(z, z?),

where we added the subscript z? to insist on the fact that the energy function is “an-
chored” at z?. Note that since the minimizer is not necessarily unique, Lz?(x(t), z(t))
does not necessarily converge to 0 for arbitrary z?. Thus, we define and use

L̄(x, z) = inf
z?∈Z?

Lz?(x, z),

where Z? = {z? ∈ E∗ : ∇ψ∗(z?) ∈ X ?} = ∪x?∈X?∂ψ(x?) (by the fact that x? ∈ ∂ψ∗(z?)
if and only if z? ∈ ∂ψ(x?)).

Next, we observe that since ∇f is Lf -Lipschitz and ∇ψ∗ is Lψ∗ -Lipschitz, we can
bound the change of the energy due to small displacements in (x, z): we will use the
fact that for any convex function f with L-Lipschitz gradient, f(x + δx) ≤ f(x) +
〈∇f(x), δx〉+ L

2 ‖δx‖2. We have

Lz?(x+ δx, z + δz) = f(x+ δx)− f(x?) + ψ∗(z + δz)− ψ∗(z?)− 〈∇ψ∗(z?), z + δz − z?〉

≤ f(x) + 〈∇f(x), δx〉+
Lf
2
‖δx‖2 − f(x?)

+ ψ∗(z) + 〈∇ψ∗(z), δz〉+
Lψ∗

2
‖δz‖2∗ − ψ∗(z?)− 〈∇ψ∗(z?), z + δz − z?〉

= Lz?(x, z) + 〈∇f(x), δx〉

+
Lf
2
‖δx‖2 + 〈∇ψ∗(z)−∇ψ∗(z?), δz〉+

Lψ∗

2
‖δz‖2∗

≤ Lz?(x, z) +G‖δx‖+
Lf
2
‖δx‖2 +D‖δz‖∗ +

Lψ∗

2
‖δz‖2∗ (3)

where in the last inequality, G = supx∈X ‖∇f(x)‖∗ (which is bounded since ∇f is
continuous and X is compact), and D is the diameter of X .

For the deterministic dynamics, the bound of Lemma 1 becomes

d

dt
Lz?(x(t), z(t)) ≤ −η(t)(f(x(t))− f(x?)), (4)

and for the stochastic dynamics, the bound of Lemma 2 becomes

dLz?(X(t), Z(t)) ≤
[
−η(t)(f(X(t))− f(x?)) +

Lψ∗

2
η2(t)σ2

∗(t)

]
dt+ 〈V (t), dB(t)〉 . (5)

We now proceed according to the steps outlined in the proof sketch. We give an
illustration of the argument in Figure 2.
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(i) We start by proving that under the conditions of Theorem 1, the stochastic process
(X(t), Z(t)) (that is, the unique continuous solution of the stochastic dynamics
SAMDη,η,1) is an APT for the deterministic semi-flow of AMDη,η,1. Since the
volatility term is −η(t)σ(X(t), t)dB(t), it suffices, by Proposition 4.61 in [Benäım,

1999], to show that
∫∞
t0
e
− c
η2(t)σ2∗(t) is finite for all c > 0. But we have, by assump-

tion, η(t)σ∗(t) = o(1/
√

log t), thus η2(t)σ2
∗(t) = ε(t)/ log t with limt→∞ ε(t) = 0,

and
∫∞
t0
e
− c
η2(t)σ2∗(t) dt =

∫∞
t0
e−

c log t
ε(t) dt =

∫∞
t0
t−

c
ε(t) dt, which is finite.

We also show that by virtue of the APT property (and the fact that the energy
function is Lipschitz), we can bound the difference between the energy L̄ along
deterministic and stochastic solutions starting at the same point. Indeed, Inequal-
ity (3) shows that Lz?(x+ δx, z+ δz)−Lz?(x, z) ≤ ε whenever max(‖δx‖, ‖δz‖∗) is
small enough. Therefore, by the APT property, for all ε > 0 and all T > 0, there
exists tT such that for all t ≥ tT and all h ∈ [0, T ],

Lz?(X(t+ h), Z(t+ h))− Lz?(Φh(X(t), Z(t))) ≤ ε/2,

and this holds uniformly over z?. In particular, since L̄ is defined to be the infimum
over all z?, we can find some z?0 such that

Lz?0 (Φh(X(t), Z(t))) ≤ L̄(Φh(X(t), Z(t))) + ε/2.

Then

L̄(X(t+ h), Z(t+ h)) ≤ Lz?0 (X(t+ h), Z(t+ h))

≤ Lz?0 (Φh(X(t), Z(t))) + ε/2

≤ L̄(Φh(X(t), Z(t))) + ε.

(ii) Next, we prove a stability property of the energy for the deterministic dynamics.
Fix ε > 0 and let Vε = {(x, z) : L̄(x, z) ≤ ε}. Then Φt(x, z) ∈ Vε if (x, z) ∈ Vε
(since L̄ is non-increasing, as the infimum of non-increasing functions). Besides,
we claim that there exists T > 0 such that for all t ≥ T ,

L̄(Φt(x, z)) ≤ min(ε, L̄(x, z)− ε).

Indeed, by continuity of f , there exists c > 0 such that f(x) − f(x?) > c for all
(x, z) /∈ Vε, and integrating the bound (4), we have, for all z?,

Lz?(Φt(x, z)) ≤ Lz?(x, z)− c
∫ t

T

η(τ)dτ,

therefore, setting T = 2ε/c, we know that either Φt(x, z) ∈ Vε for some t1 ≤ T , in
which case the trajectory remains in Vε after t1, or Φt(x, z) remains outside of Vε,
in which case Lz?(ΦT (x, z)) ≤ Lz?(x, z)−2ε for all z?. Since L̄ is defined to be the
infimum over all z?, we can find some z?0 such that Lz?0 (x, z) ≤ L̄(x, z) + ε. Then

L̄(ΦT (x, z)) ≤ Lz?0 (ΦT (x, z)) ≤ Lz?0 (x, z)− 2ε ≤ L̄(x, z)− ε.

(iii) Next, we prove that the stochastic process cannot stay outside of Vε for unbounded
intervals of time. Indeed, fix ε > 0, and T > 0, and suppose that with positive
probability, (X(t), Z(t)) remains outside Vε for all t ≥ T . Then by continuity of f ,
there exists c > 0 such that f(X(t))− f(x?) ≥ c for all t ≥ T , and integrating the
bound (5) gives

Lz?(X(t), Z(t))− Lz?(X(T ), Z(T ))

≤ −c
∫ t

T

η(τ)dτ +O(b(t)) +O(
√
b(t) log log b(t)),

1Proposition 4.6 in [Benäım, 1999] is stated in terms of solutions to a martingale problem, which is
equivalent to solutions to the SDE; see, for example, [Stroock and Varadhan, 1972].
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where the right-hand side converges to −∞ since, by assumption,
∫ t
t0
η(τ)dτ dom-

inates b(t) and
√
b(t) log log b(t). This would imply that, with positive probability,

L(X(t), Z(t), t) → −∞, a contradiction. Therefore, for all ε > 0 and for all T ,
there exists t ≥ T such that (X(T ), Z(T )) ∈ Vε a.s.

We are now ready to put together the different parts of the argument. Fix ε > 0.
By (ii), there exists T0 such that

L̄(ΦT0(x, z)) ≤ min(ε/3, L̄(x, z)− ε/3). (6)

By (i) there exists T1 such that for t ≥ T1 and for all h ∈ [0, T0],

L̄(X(t+ h), Z(t+ h)) ≤ L̄(Φh(X(t), Z(t))) + ε/3, (7)

By (iii), there exists T2 ≥ max(T0, T1) such that (X(T2), Z(T2)) ∈ Vε/3.
Now we show that the trajectory remains in Vε for all t ≥ T2. Indeed, by induction

on k, we have L̄(X(T2 + kT0), Z(T2 + kT0)) ≤ 2ε/3 for all k ∈ N (by (6) and (7)). Then
for all h ∈ [0, T0],

L̄(X(T2 + kT0 + h), Z(T2 + kT0 + h)) ≤ L̄(Φh(X(T2 + kT0), Z(T2 + kT0))) + ε/3

≤ 2ε/3 + ε/3.

Since ε is arbitrary, this proves that for all ε (X(t), Z(t)) remains in Vε for t large
enough, a.s. But by definition of L̄, (x, z) ∈ Vε implies that f(x) − f(x?) ≤ ε, which
proves that f(X(t))− f(x?) converges to 0 a.s.

ε
2ε
3
ε
3

Figure 2: Illustration of the proof of Theorem 1, with ε = 2.4 × 10−3, and T0 = 20.
The right plot shows in blue the value of the energy function L̄(X(t), Z(t)) along one
sample trajectory (X(t), Z(t)) of the SAMD dynamics; and in green the energy function
along solutions of the deterministic ODE {(xk(t), zk(t)), t ∈ [T2 + kT0, T2 + (k + 1)T0]},
initialized at (X(T2 + kT0), Z(T2 + kT0)). We also highlight a cylinder of radius ε

3
centered at the deterministic energy. Note that for large enough times, the sample
path of the stochastic dynamics remains within the cylinder. The dashed lines show the
energy levels ε

3 , 2ε
3 , and ε. Finally, the left plot visualizes these trajectories in the primal

space (where we used a different color for each interval [T2 + kT0, T2 + (k + 1)T0]).

3 Dynamics of Nesterov’s accelerated method

Nesterov’s accelerated method [Nesterov, 1983] has been shown by Su et al. [2014] to be
the discretization of the ODE:

ẍ(t) = −∇f(x(t))− α

t
ẋ(t), (8)

with α ≥ 3, which describes the motion of a damped non-linear oscillator, driven by
the potential f , and subject to a viscous friction term α

t Ẋ. Cabot et al. [2009] had
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previously studied a general family of such damped oscillators with vanishing friction,
but the connection with Nesterov’s method was not made until [Su et al., 2014]. Note
that the dynamics are unconstrained in this case. This ODE can be recovered as a
special case of AMD, for which we restate the general form below (and assume s ≡ 1
for simplicity):

AMD

{
ż(t) = −η(t)∇f(x(t))

ẋ(t) = a(t)(∇ψ∗(z(t))− x(t)).
(9)

First, we take the mirror map to be the identity, which corresponds to taking ψ(x) =
1
2‖x‖22. Then, writing the second equation of AMD as ẋ(t)

a(t) = z(t) − x(t) and taking

derivatives, we have

1

a(t)
ẍ(t)− ȧ(t)

a2(t)
ẋ(t) = ż(t)− ẋ(t) = −η(t)∇f(x(t))− ẋ(t),

i.e.

ẍ(t) = −η(t)a(t)∇f(x(t))− ẋ(t)
a2(t)− ȧ(t)

a(t)
,

and by taking r(t) = t2

β2 , η(t) = t
β , a(t) = β

t , with β ≥ 2, the ODE becomes

ẍ(t) = −∇f(x(t))− ẋ(t)
β + 1

t
,

which is equivalent to Nesterov’s ODE (8) up to the reparameterization α = β + 1. It
is easy to verify the conditions η ≥ ṙ and a = η/r when β ≥ 2, thus as a consequence of
Corollary 1, f(x(t))−f(x?) = O(1/r(t)) = O(1/t2), which is analogous to the quadratic
rate of Nesterov’s accelerated method in discrete time.

4 Effects of time-change

In the deterministic case, one can obtain arbitrarily fast convergence through a time
change, as observed by Wibisono et al. [2016] – a time-change would simply result in
using different weights η(t) and a(t). In the stochastic dynamics, such a time-change
would also lead to re-scaling the noise co-variation, and does not lead to a faster rate. To
some extent, adding the noise prevents us from “artificially” accelerating convergence
using a simple time-change. To illustrate this difference, first consider a time-change in
the deterministic case. Let (x(t), z(t)) be the unique solution to AMDη,a,1, which we
rewrite below (where we took s(t) ≡ 1 to simplify),{

ż(t) = −η(t)∇f(x(t))

ẋ(t) = a(t)(∇ψ∗(z(t))− x(t)),

and consider a differentiable increasing function of time, γ(t). Let (x′, z′) be defined by
x′(t) = x(γ(t)) and z′(t) = z(γ(t)). Then (x′, z′) satisfy the following dynamics:{

ż′(t) = −γ̇(t)η(γ(t))∇f(x′(t))

ẋ′(t) = γ̇(t)a(γ(t))[∇ψ∗(z′(t))− x′(t)],

thus (x′, z′) is the unique solution to AMDη̃,ã,1 where η̃(t) = γ̇(t)η(γ(t)) and ã(t) =
γ̇(t)a(γ(t)), and if γ is super linear, f(x′(t)) will have a faster convergence rate than
f(x(t)). Indeed, if η, a, r satisfy the conditions of Corollary 1 (i.e. a = η/r and η ≥ ṙ),

then f(x(t)) − f(x?) ≤ L(x0,z0,t0)
r(t) ; but η̃ = γ̇η ◦ γ, ã = γ̇a ◦ γ, r̃ = r ◦ γ also satisfy the

conditions of the corollary, thus

f(x′(t))− f(x?) ≤ L(x0, z0, t0)

r(γ(t))
.
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Let us now consider a similar time-change in the stochastic case. Let (X,Z) be the
unique (a.s.) continuous solution of SAMDη,η/r,s, which we rewrite below.

SAMDη,a,1

{
dZ(t) = −η(t)dG(t)

dX(t) = a(t)[∇ψ∗(Z(t))−X(t)]dt,
(10)

where G(t) is the noisy gradient process, defined by

dG(t) = ∇f(X(t))dt+ σ(X(t), t)dB(t),

and has covariation

d[Gi(t), Gj(t)] = (σ(X(t), t)σ(X(t), t)T )i,jdt = Σij(X(t), t)dt. (11)

Define (X ′, Z ′) by the (differentiable, increasing) time-change X ′(t) = X(γ(t)) and
Z ′(t) = Z(γ(t)). Then, using the following time-change identity for Itô martingales (see,
e.g. Lemma 2.3 in [Kobayashi, 2011]):∫ γ(t)

γ(t0)

σ(X(τ), τ)dB(τ) =

∫ t

t0

σ(X(γ(τ)), γ(τ))dB(γ(τ)),

we have {
dZ ′(t) = −η(γ(t))[∇f(X ′(t))γ̇(t)dt+ σ(X ′(t), γ(t))dB(γ(t))]

dX ′(t) = a(γ(t))[∇ψ∗(Z ′(t))−X ′(t)]γ̇(t)dt,

which we can rewrite as{
dZ ′(t) = −η̃(t)dG̃(t)

dX ′(t) = ã(t)[∇ψ∗(Z ′(t))−X ′(t)]dt.

where η̃, ã are as defined in the deterministic case, and G̃ is defined by

dG̃(t) = ∇f(X ′(t)) +
σ(X ′(t), γ(t))

γ̇(t)
dB(γ(t)).

In particular, we observe that the noise covariation of G̃ is

d[G̃i(t), G̃j(t)] =
1

γ̇(t)2
Σij(X

′(t), γ(t))γ̇(t)dt (12)

where we used the fact that the time-changed Brownian motion B(γ(t)) has quadratic
covariation d[Bi(γ(t)), Bi(γ(t))] = γ̇(t)dt.

Comparing the quadratic covariation of G and G̃ (equations (11) and (12) respec-
tively), it becomes apparent that, unless γ is the identity, rescaling time also rescales
the covariation of the noise (even in the case where Σ(x, t) does not depend on t, due to
the γ̇(t) term). In other words, accelerating time by γ(t) would scale down the variance
of the gradient by γ̇(t), and (X ′, Z ′) would not be a solution to the original problem
anymore, unlike in the deterministic case.
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