
Supplement to: “Dykstra’s Algorithm, ADMM, and
Coordinate Descent: Connections, Insights, and

Extensions”

Ryan J. Tibshirani
Department of Statistics and Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

ryantibs@stat.cmu.edu

We give additional details and proofs for the results in “Dykstra’s Algorithm, ADMM, and Coordinate
Descent: Connections, Insights, and Extensions”.

A.1 Proofs of Lemma 1 and Theorem 1

These results are direct consequences of the more general Lemma A.2 and Theorem 6, respectively,
when f(v) = 1

2‖y − v‖
2
2 (and so f∗(v) = − 1

2‖y‖
2
2 + 1

2‖y + v‖22); see Section A.9 below for their
proofs.

A.2 Dykstra’s algorithm and ADMM for the d-set best approximation and
set intersection problems

Here we show that, under an inertial-type modification, the ADMM iterations for (6) are in a certain
limiting sense equivalent to Dykstra’s iterations for (1). We introduce auxiliary variables to transform
problem (6) into

min
u0,...,ud∈Rn

d∑
i=1

ICi(u) subject to ud = u0, u0 = u1, . . . , ud−1 = ud,

and the corresponding augmented Lagrangian is L(u0, . . . , ud, z0, . . . , zd) = ρ0‖ud − u0 + z0‖22 +∑d
i=1(ICi

(u) + ρi‖ui−1 − ui + zi‖22)−
∑d
i=0 ρi‖zi‖22, with ρ0, . . . , ρd > 0 being augmented La-

grangian parameters. ADMM is defined by repeating the updates:

u
(k)
i = argmin

ui∈Rn

L(u
(k)
0 , . . . , u

(k)
i−1, ui, u

(k−1)
i+1 , . . . , u

(k−1)
d), i = 0, . . . , d,

z
(k)
i = z

(k−1)
i + u

(k)
i−1 − u

(k)
i , i = 0, . . . , d,

for k = 1, 2, 3, . . ., where we use u(k)
−1 = u

(k)
d for convenience. Now consider an inertial modification

in which, for the u0 update above, we add the term ‖u0 − u(k−1)
d ‖22 to the augmented Lagrangian in

the minimization. A straightforward derivation then leads to the ADMM updates:

u
(k)
0 =

u
(k−1)
d + ρ0(u

(k−1)
d + z

(k−1)
0) + ρ1(u

(k−1)
1 − z(k−1)

1)

1 + ρ0 + ρ1
,

u
(k)
i = PCi

(
(u

(k)
i−1 + z

(k−1)
i)

1 + ρi+1/ρi
+

(ρi+1/ρi)(u
(k−1)
i+1 − z(k−1)

i+1)

1 + ρi+1/ρi

)
, i = 1, . . . , d− 1,

u
(k)
d = PCd

(
(u

(k)
d−1 + z

(k−1)
d)

1 + ρ0/ρd
+

(ρ0/ρd)(u
(k)
0 − z(k−1)

0)

1 + ρ0/ρd

)
,

z
(k)
i = z

(k−1)
i + u

(k)
i−1 − u

(k)
i , i = 0, . . . , d,

(A.1)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

for k = 1, 2, 3, Under the choices ρ0 = αd+1 and ρi = αi, i = 1, . . . , d, we see that as α→ 0
the ADMM iterations (A.1) exactly coincide with the Dykstra iterations (4). Thus, under the proper
initializations, u(0)

d = y and z(0)
0 = · · · = z

(0)
d = 0, the limiting ADMM algorithm for (6) matches

Dykstra’s algorithm for (1).

Similar arguments can be used equate ADMM for (1) to Dykstra’s algorithm, again in limiting sense.
We rewrite (1) as

min
u0,...,ud∈Rn

‖y − u0‖22 +

d∑
i=1

ICi
(u) subject to ud = u0, u0 = u1, . . . , ud−1 = ud.

Using an inertial modification for the u0 update, where we now add the term ρ−1‖u0 − u(k−1)
d ‖22 to

the augmented Lagrangian in the minimization, the ADMM updates become:

u
(k)
0 =

y + ρ−1u
(k−1)
d + ρ0(u

(k−1)
d + z

(k−1)
0) + ρ1(u

(k−1)
1 − z(k−1)

1)

1 + ρ−1 + ρ0 + ρ1
,

u
(k)
i = PCi

(
(u

(k)
i−1 + z

(k−1)
i)

1 + ρi+1/ρi
+

(ρi+1/ρi)(u
(k−1)
i+1 − z(k−1)

i+1)

1 + ρi+1/ρi

)
, i = 1, . . . , d− 1,

u
(k)
d = PCd

(
(u

(k)
d−1 + z

(k−1)
d)

1 + ρ0/ρd
+

(ρ0/ρd)(u
(k)
0 − z(k−1)

0)

1 + ρ0/ρd

)
,

z
(k)
i = z

(k−1)
i + u

(k)
i−1 − u

(k)
i , i = 0, . . . , d,

(A.2)

for k = 1, 2, 3, Setting ρ−1 = αd+1, ρ0 = 1, and ρi = αd+1−i, i = 1, . . . , d, we can see that
as α → ∞, the ADMM iterations (A.2) converge to the Dykstra iterations (4), and therefore with
initializations u(0)

d = y and z(0)
0 = · · · = z

(0)
d = 0, the limiting ADMM algorithm for (1) coincides

with Dykstra’s algorithm for the same problem.

The links above between ADMM and Dykstra’s algorithm are intended to be of conceptual interest,
and the ADMM algorithms (A.1), (A.2) may not be practically useful for arbitrary configurations of
the augmented Lagrangian parameters. After all, both of these are multi-block ADMM approaches,
and multi-block ADMM has subtle convergence behavior as studied, e.g., in Lin et al. (2015); Chen
et al. (2016).

A.3 Proof of Theorem 2

By Theorem 1, we know that coordinate descent applied to the lasso problem (9) is equivalent to
Dykstra’s algorithm on the best approximation problem (1), with Ci = {v ∈ Rn : |XT

i v| ≤ λ}, for
i = 1, . . . , p. In particular, at the end of the kth iteration, it holds that

u(k)
p = y −Xw(k), for k = 1, 2, 3,

By duality, we also have û = y −Xŵ at the solutions û, ŵ in (1), (9), respectively. Therefore any
statement about the convergence of Dykstra’s iterates may be translated into a statement about the
convergence of the coordinate descent iterates, via the relationship

‖u(k) − û‖2 = ‖Xw(k) −Xŵ‖2 = ‖w(k) − ŵ‖Σ, for k = 1, 2, 3, (A.3)

We seek to apply the main result from Iusem and De Pierro (1990), on the asymptotic convergence
rate of Dykstra’s (Hildreth’s) algorithm for projecting onto a polyhedron. One slight complication is
that, in the current paramterization, coordinate descent is equivalent to Dykstra’s algorithm on

C1 ∩ . . . ∩ Cp =

p⋂
i=1

{v ∈ Rn : |XT
i v| ≤ λ},

While polyhedral, the above is not explicitly an intersection of halfspaces (it is an intersection of
slabs), which is the setup required by the analysis of Iusem and De Pierro (1990). Of course, we can
simply define C+

i = {v ∈ Rn : XT
i v ≤ λ} and C−i = {v ∈ Rn : XT

i v ≥ −λ}, i = 1, . . . , p, and
then the above intersection is equivalent to

C+
1 ∩ C

−
1 ∩ . . . ∩ C+

p ∩ C−p =

p⋂
i=1

(
{v ∈ Rn : XT

i v ≤ λ} ∩ {v ∈ Rn : XT
i v ≥ −λ}

)
.

2

Moreover, one can check that the iterates from Dykstra’s algorithm on C+
1 ∩ C

−
1 ∩ . . . ∩ C+

p ∩ C−p
match1 those from Dykstra’s algorithm on C1 ∩ . . . ∩ Cp, provided that the algorithms cycle over the
sets in the order they are written in these intersections. This means that the analysis of Iusem and
De Pierro (1990) can be applied to coordinate descent for the lasso.

The error constant from Theorem 1 in Iusem and De Pierro (1990) is based on a geometric quantity
that we explicitly lower bound below. It is not clear to us whether our lower bound is the best possible,
and a better lower bound would improve the error constant presented in Theorem 2.

Lemma A.1. Let Hi = {x ∈ Rn : hTi x = bi}, i = 1, . . . , s be hyperplanes, and S = H1∩ . . .∩Hs

the s-dimensional affine subspace formed by their intersection. For each x ∈ Rn, denote by Hx the
hyperplane among H1, . . . ,Hs farthest from x. Define

µ = inf
x∈Rn

d(x,Hx)

d(x, S)
,

where d(x, S) = infy∈S ‖x− y‖2 is the distance between x and S, and similarly for d(x,Hx). Then

µ ≥ σmin(M)√
smaxi=1,...,s ‖hi‖2

> 0,

where M ∈ Rn×s has columns h1, . . . , hs, and σmin(M) is its smallest nonzero singular value.

Proof. For any x ∈ Rn, note that d(x, S) = ‖M+(b−MTx)‖2, where M+ is the Moore-Penrose
pseudoinverse of M . Also, d(x,Hx) = maxi=1,...,s |bi − hTi x|/‖hi‖2. Hence, writing σmax(M+)
for the maximum singular value of M+,

d(x,Hx)

d(x, S)
≥ maxi=1,...,s |bi − hTi x|/‖hi‖2

σmax(M+)‖b−MTx‖2

≥ σmin(M)

maxi=1,...,s ‖hi‖2
maxi=1,...,s |bi − hTi x|
‖b−MTx‖2

≥ σmin(M)√
smaxi=1,...,s ‖hi‖2

,

where we have used the fact that σmax(M+) = 1/σmin(M), as well as ‖v‖∞/‖v‖2 ≥ 1/
√
s for all

vectors v ∈ Rs. Taking an infimum over x ∈ Rn establishes the result.

Now we adapt and refine the result in Theorem 1 from Iusem and De Pierro (1990). These authors
show that for large enough k,

‖u(k+1)
p − û‖2
‖u(k)

p − û‖2
≤
(

1

1 + σ

)1/2

,

where σ = µ2/p, and µ > 0 is defined as follows. Let A = {i ∈ {1, . . . , p} : |XT
i û| = λ}, and let

ρ = sign(XT
A û). Also let

Hi = {v ∈ Rn : XT
i v = ρiλ}, i ∈ A,

as well as S = ∩i∈AHi. Then

µ = inf
x∈Rn

d(x,Hx)

d(x, S)
,

where for each x ∈ Rn, we denote by Hx the hyperplane among Hi, i ∈ A farthest from x.

In the nomenclature of the lasso problem, the set A here is known as the equicorrelation set. The
general position assumption on X implies that the lasso ŵ solution is unique, and that (for almost
every in y ∈ Rn), the equicorrelation set and support of ŵ are equal, so we can write A = supp(ŵ).
See Tibshirani (2013).

1By this we mean that u−,(k)
i = u

(k)
i for all i = 1, . . . , p and k = 1, 2, 3, . . ., if the iterates from Dykstra’s

algorithm on C+
1 ∩ C

−
1 ∩ . . . ∩ C+

p ∩ C−
p are denoted as u+,(k)

i , u
−,(k)
i , i = 1, . . . , p.

3

From Lemma A.1, we have that µ2 ≥ λmin(XT
AXA)/(amaxi∈A ‖Xi‖22), where a = |A|, and so(

1

1 + σ

)1/2

≤
(

pa

pa+ λmin(XT
AXA)/maxi∈A ‖Xi‖22

)1/2

.

This is almost the desired result, but it is weaker, because of its dependence on pa rather than a2.
Careful inspection of the proof of Theorem 1 in Iusem and De Pierro (1990) shows that the factor
of p in the constant σ = µ2/p comes from an application of Cauchy-Schwartz, to derive an upper
bound of the form (translated to our notation):(p−1∑

i=1

‖u(k)
i+1 − u

(k)
i ‖2

)2

≤ p
p−1∑
i=1

‖u(k)
i+1 − u

(k)
i ‖

2
2.

See their equation (33) (in which, we note, there is a typo: the entire summation should be squared).
However, in the summation on the left above, at most a of the above terms are zero. This is true
as u(k)

i+1 − u
(k)
i = Xi+1w

(k)
i+1 −Xi+1w

(k−1)
i+1 , i = 1, . . . , p− 1, and for large enough values of k, as

considered by these authors, we will have w(k)
i = 0 for all i /∈ A, as shown in Lemma 1 by Iusem

and De Pierro (1990). Thus the last display can be sharpened to(p−1∑
i=1

‖u(k)
i+1 − u

(k)
i ‖2

)2

≤ a
p−1∑
i=1

‖u(k)
i+1 − u

(k)
i ‖

2
2,

which allows to define σ = µ2/a. Retracing through the steps above to upper bound (1/1 + σ)1/2,
and applying (A.3), then leads to the result as stated in the theorem.

A.4 Proof of Theorem 3

As in the proof of Theorem 2, we observe that the relationship (A.3) between the Dykstra iterates
and coordinate descent iterates allows us to turn a statement about the convergence of the latter into
one about convergence of the former. We consider Theorem 3.8 in Deutsch and Hundal (1994), on
the asymptotically linear convergence rate of Dykstra’s (Hildreth’s) algorithm for projecting onto
an intersection of halfspaces (we note here, as explained in the proof of Theorem 2, that coordinate
descent for the lasso can be equated to Dykstra’s algorithm on halfspaces, even though in the original
dual formulation, Dykstra’s algorithm operates on slabs).

Though the error constant is not explicitly written in the statement of Theorem 3.8 in Deutsch and
Hundal (1994)2, the proofs of Lemma 3.7 and Theorem 3.8 from these authors reveals the following.
Define A = {i ∈ {1, . . . , p} : |XT

i û| = λ}, and enumerate A = {i1, . . . , ia} with i1 < . . . < ia.
As in the proof of Theorem 2, we note that the general position assumption on X allows us to write
(almost everywhere in y ∈ Rn) A = supp(ŵ), for the unique lasso solution ŵ. Also define

Hij = {v ∈ Rn : XT
ijv = 0}, for j = 1, . . . , a.

Deutsch and Hundal (1994) show that, for large enough k,

‖u(k+1)
p − û‖2
‖u(k)

p − û‖2
≤ max

B⊆A,
B={`1,...,`b},
`1<...<`b

(
1−

b−1∏
j=1

(
1− c2

(
H`j , H`j+1 ∩ · · · ∩H`b

)))
, (A.4)

where c(L,M) denotes the cosine of the angle between linear subspaces L,M . Now, to simplify the
bound on the right-hand side above, we make two observations. First, we observe that in general

2The result in Theorem 3.8 of Deutsch and Hundal (1994) is actually written in nonasymptotic form, i.e.,
it is stated (translated to our notation) that ‖u(k)

d − û‖2 ≤ ρck, for some constants ρ > 0 and 0 < c < 1, and
all iterations k = 1, 2, 3, The error constant c can be explicitly characterized, as we show in the proof of
Theorem 3. But the constant ρ cannot be, and in fact, the nonasymptotic error bound in Deutsch and Hundal
(1994) is really nothing more than a restatement of the more precise asymptotic error bound developed in the
proofs of their Lemma 3.7 and Theorem 3.8. Loosely put, any asymptotic error bound can be transformed into a
nonasymptotic one by simply defining a problem-specific constant ρ to be large enough that it makes the bound
valid until the asymptotics kick in. This describes the strategy taken in Deutsch and Hundal (1994).

4

c(L,M) = c(L⊥,M⊥) (as in, e.g., Theorem 3.5 of Deutsch and Hundal 1994), so we have

c
(
H`j , H`j+1

∩ · · · ∩H`b

)
= c
(
H⊥`j , (H`j+1

∩ · · · ∩H`b)⊥
)

= c
(

col(X`j), col(X{`j+1,...,`b})
)

=
‖P{`j+1,...,`b}X`j‖2

‖X`j‖2
,

where in the last line we used that the cosine of the angle between subspaces has an explicit form,
when one of these subspaces is 1-dimensional. Second, we observe that the maximum in (A.4) is
actually achieved at B = A, since the cosine of the angle between a 1-dimensional subspace and a
second subspace can only increase when the second subspace is made larger. Putting these two facts
together, and using (A.3), establishes the result in the theorem.

A.5 Derivation details for (13), (14) and proof of Theorem 4

By rescaling, problem (12) can be written as

min
ũ∈Rnd

‖ỹ − ũ‖22 subject to ũ ∈ C̃0 ∩ (C̃1 × · · · × C̃d), (A.5)

where ỹ = (
√
γ

1
y, . . . ,

√
γ
d
y) ∈ Rnd, and

C̃0 = {(v1, . . . , vd) ∈ Rnd : v1/
√
γ1 = · · · = vd/

√
γd} and C̃i =

√
γiCi, for i = 1, . . . , d.

The iterations in (13) then follow by applying Dykstra’s algorithm to (A.5), transforming the iterates
back to the original scale (so that the projections are all in terms of C0, C1, . . . , Cd), and recognizing
that the sequence say z(k)

0 , k = 1, 2, 3, . . . that would usually accompany u(k)
0 , k = 1, 2, 3, . . . is not

needed because C0 is a linear subspace.

As for the representation (14), it can be verified via a simple inductive argument that the Dykstra
iterates in (13) satisfy, for all k = 1, 2, 3, . . .,

u
(k)
0 = y −

d∑
i=1

γiz
(k−1)
i , i = 1, . . . , d.

Also, as shown in the proof of Theorem 6 in Section A.9 below, the image of the residual projection
operator Id− PCi

is contained in the column span of Xi, for each i = 1, . . . , d. This means that we
can parametrize the Dykstra iterates, for k = 1, 2, 3, . . ., as

u
(k)
0 = y −

d∑
i=1

γiXiw̃
(k−1)
i and z

(k)
i = Xiw̃

(k)
i , i = 1, . . . , d,

for some sequence w̃(k)
i , i = 1, . . . , d, and k = 1, 2, 3, The z-updates in (13) then become

Xiw̃
(k)
i = (Id− PCi

)(u
(k)
0 +Xiw̃

(k−1)
i), i = 1, . . . , d,

and by Lemma 1, this is equivalent to

w̃
(k)
i = argmin

w̃i∈Rpi

1

2
‖u(k)

0 +Xiw̃
(k−1)
i −Xiw̃i‖22 + hi(w̃i), i = 1, . . . , d.

Rescaling once more, to w(k)
i = γiw̃

(k)
i , i = 1, . . . , d and k = 1, 2, 3, . . ., gives the iterations (14).

Lastly, we give a proof of Theorem 4. We can write the second set in the 2-set best approximation
problem (A.5) as

C̃1 × · · · × C̃d = (MT)−1
(
D̃1 × · · · × D̃d

)
,

where D̃i =
√
γ
i
Di, i = 1, . . . , d, and

M =


X1 0 . . . 0
0 X2 . . . 0
...
0 0 . . . Xd

 ∈ Rnd×p.

5

The duality result established in Theorem 1 can now be applied directly to (A.5). (We note that the
conditions of the theorem are met because the matrix M , as defined above, has full column rank as
each Xi, i = 1, . . . , d does.) Writing hS(v) = maxs∈S〈s, v〉 for the support function of a set S, the
theorem tells us that the dual of (A.5) is

min
w̃∈Rp, α̃∈Rnd

1

2
‖ỹ −Mw̃ − α̃‖22 + hD̃1×···×D̃d

(w̃) + hC̃0
(α̃), (A.6)

and the solutions in (A.5) and (A.6), denoted by ũ∗ and w̃∗, α̃∗ respectively, are related by

ũ∗i =
√
γiy −Xiw̃

∗
i − α̃∗i , i = 1, . . . , d. (A.7)

Rescaling to (w̄1, . . . , w̄d) = (w̃1/
√
γ

1
, . . . , w̃d/

√
γ
d
) and (ᾱ1, . . . , ᾱd) = (α̃1/

√
γ

1
, . . . , α̃d/

√
γ
d
),

the problem (A.6) becomes

min
w̄∈Rp, ᾱ∈Rnd

1

2

d∑
i=1

γi‖y −Xiw̄i − ᾱi‖22 +

d∑
i=1

hi(γiw̄i) + hC0
(γ1ᾱ1, . . . , γdᾱd)

⇐⇒ min
w̄∈Rp, ᾱ∈Rnd

1

2

d∑
i=1

γi‖y −Xiw̄i − ᾱi‖22 +

d∑
i=1

hi(γiw̄i) subject to

d∑
i=1

γiᾱi = 0

⇐⇒ min
w̄∈Rp

1

2

∥∥∥∥y − d∑
i=1

γiXiw̄i

∥∥∥∥2

2

+

d∑
i=1

hi(γiw̄i).

In the second line we rewrote the support function of D1 × · · · ×Dd as a sum and that of C0 as a
constraint; in the third line we optimized over ᾱ and used

∑d
i=1 γi = 1. Clearly, the problem in the

last display is exactly the regularized regression problem (2) after another rescaling, (w1, . . . , wd) =
(γ1w̄1, . . . , γdw̄d). That the solutions in (A.5), (A.6) are related by (A.7) implies that the solutions
û, ŵ in (12), (2) are related by

û1 = · · · = ûd = y −Xŵ.

By Lemma 4.9 in Han (1988), we know that when (A.6) has a unique solution, the dual iterates in
Dykstra’s algorithm for (A.5) converge to the solution in (A.6). Equivalently, when (2) has a unique
solution, the iterates w(k), k = 1, 2, 3, . . . in (14) converge to the solution in (2).

Also, by Theorem 4.7 in Han (1988), if

int

d⋂
i=1

(XT
i)−1(Di) 6= ∅,

then the sequence w(k), k = 1, 2, 3, . . . produced by (14) has at least one accumulation point, and
each accumulation point solves (2). Moreover, the sequence Xw(k), k = 1, 2, 3, . . . converges to
Xŵ, the unique fitted value at optimality in (2). In fact, Theorem 4.8 in Han (1988) shows that a
weaker condition can be used when some of the sets are polyhedral. In particular, if D1, . . . , Dq are
polyhedral, then the condition in the above display can be weakened to

(XT
1)−1(D1) ∩ · · · ∩ (XT

q)−1(Dq) ∩ int(XT
q+1)−1(Dq+1) ∩ · · · ∩ int(XT

d)−1(Dd) 6= ∅,
and the same conclusion applies.

A.6 Asymptotic linear convergence of the parallel-Dykstra-CD iterations for
the lasso problem

Here we state and prove a result on the convergence rate of the parallel-Dykstra-CD iterations (14)
for the lasso problem (9).
Theorem A.1 (Adaptation of Iusem and De Pierro 1990). Assume the columns of X ∈ Rn×p are
in general position, and λ > 0. Then parallel-Dykstra-CD (14) for the lasso (9) has an asymptotically
linear convergence rate, in that for large enough k, using the notation of Theorem 2,

‖w(k+1) − ŵ‖Σ
‖w(k) − ŵ‖Σ

≤
(

2a/γmin

(2a/γmin + λmin(XT
AXA)/maxi∈A ‖Xi‖22

)1/2

, (A.8)

where γmin = mini=1,...,p γi ≤ 1/p is the minimum of the weights.

6

We note that the parallel bound (A.8) is worse than the serial bound (10), because the former relies
on a quantity 2a/γmin ≥ 2pa where the latter relies on a2. We conjecture that the bound (A.8) can
be sharpened, by modifying the parallel algorithm so that we renormalize the weights in each cycle
after excluding the weights from zero coefficients.

Proof. The proof is similar to that for Theorem 2, given in Section A.3. By Theorem 2 in Iusem and
De Pierro (1990), for large enough k, the iterates of (13) satisfy

‖u(k+1)
0 − û‖2
‖u(k)

0 − û‖2
≤
(

1

1 + σ

)1/2

,

where σ = µ2/((1/γmin − 1)(2− γmin)) ≥ µ2γmin/2, and µ > 0 is exactly as in Section A.3. The
derivation details for (13), (14) in the last section revealed that the iterates from these two algorithms
satisfy

z
(k)
i = Xiw

(k)
i /γi, i = 1, . . . , d and u

(k+1)
0 = y −Xw(k), for k = 1, 2, 3, . . .,

hence
‖u(k+1)

0 − û‖2 = ‖Xw(k) −Xŵ‖2 = ‖w(k) − ŵ‖Σ, for k = 1, 2, 3, . . .,

which gives the result.

A.7 Derivation details for (15) and proof of Theorem 5

Recall that (12) can be rewritten as in (A.5). The latter is a 2-set best approximation problem, and so
an ADMM algorithm takes the form of (7) in Section 2. Applying this to (A.5), and transforming
the iterates back to their original scale, we arrive at the following ADMM algorithm. We initialize
u

(0)
1 = · · · = u

(0)
d = 0, z(0)

1 = · · · = z
(0)
d = 0, and repeat for k = 1, 2, 3, . . .:

u
(k)
0 =

y

1 + ρ
+

ρ

1 + ρ

d∑
i=1

γi(u
(k−1)
i − z(k−1)

i),

u
(k)
i = PCi

(u
(k)
0 + z

(k−1)
i),

z
(k)
i = z

(k−1)
i + u

(k)
0 − u(k)

i ,

}
for i = 1, . . . , d.

(A.9)

Basically the same arguments as those given in Section A.5, where we argued that (13) is equivalent
to (14), now show that (A.9) is equivalent to (15). Note that in the latter algorithm, we have slightly
rewritten the algorithm parameters, by using the notation ρi = ργi, i = 1, . . . , d. That the parallel-
ADMM-CD iterations (15) are equivalent to the parallel-Dykstra-CD iterations (14) follows from
the equivalence of the 2-set Dykstra iterations (13) and ADMM iterations (A.9), which, recalling the
discussion in Section 2, follows from the fact that C̃0 is a linear subspace and ỹ ∈ C̃0 (i.e., C0 is a
linear subspace and (y, . . . , y) ∈ C0).

The proof of Theorem 5 essentially just uses the duality established in the proof of Theorem 4 in
Section A.5, and invokes standard theory for ADMM from Gabay (1983); Eckstein and Bertsekas
(1992); Boyd et al. (2011). As shown previously, the dual of (A.5) is (A.6), and by, e.g., the result in
Section 3.2 of Boyd et al. (2011), which applies because

‖ỹ − ũ‖22, IC̃0
(ũ), IC̃1×···×C̃d

(ũ)

are closed, convex functions of ũ, the scaled dual iterates in the ADMM algorithm for (A.5) converge
to a solution in (A.6), or equivalently, the iterates ρiz

(k)
i = Xiw

(k)
i , i = 1, . . . , d, k = 1, 2, 3, . . . in

(A.9) converge to the optimal fitted values Xiŵi, i = 1, . . . , d in (2), or equivalently, the sequence
w(k), k = 1, 2, 3, . . . in (15) converges to a solution in (2).

A.8 Details of the experimental setup in Figure 1

Figure 1 displays results from numerical simulations comparing serial parallel coordinate descent
(5) to parallel-Dykstra-CD (14) and parallel-ADMM-CD (15) for the lasso problem. Our simulation
setup was simple, and the goal was to investigate the basic behavior of the new parallel proposals,

7

and not to investigate performance at large-scale nor compare to state-of-the art implementations of
coordinate descent for the lasso (ours was a standard implementation with no speedup tricks—like
warm starts, screening rules, or active set optimization—employed).

We considered a regression setting with n = 200 observations and p = 500 predictors. Denoting by
xi ∈ Rp denotes the ith row of Xn×p, the data was drawn according to the Gaussian linear model

xi ∼ N(0, Ip×p) and yi ∼ N(xTi β0, 1) i.i.d., for i = 1, . . . , n,

where β0 ∈ Rp had its first 20 components equal to 1, and the rest 0. We computed solutions to the
lasso problem (9) at λ = 5, over 30 draws of data X, y from the above model. At this value of λ, the
lasso solution ŵ had an average of 151.4 nonzero components over the 30 trials. (Larger values of λ
resulted in faster convergence for all algorithms and we found the comparisons more interesting at
this smaller, more challenging value of λ.)

The figure shows the suboptimality, i.e., achieved criterion value minus optimal criterion value, as a
function of iteration number, for:

• the usual serial coordinate descent iterations (5), in black;
• the parallel-Dykstra-CD iterations (14) with γ1 = · · · = γp = 1/p, in red;
• the parallel-ADMM-CD iterations (15) with ρ1 = · · · = ρp = 1/p and 3 different settings

of ρ =
∑p
i=1 ρi, namely ρ = 10, 50, 200, in green, blue, and purple respectively.

(Recall that for ρ = 1, parallel-ADMM-CD and parallel-Dykstra-CD are equivalent.) Thin colored
lines in the figures denote the suboptimality curves for individual lasso problem instances, and thick
colored lines represent the average suboptimality curves over the 30 total instances. In all instances,
suboptimality is measured with respect to the criterion value achieved by the least angle regression
algorithm (Efron et al., 2004), which is a direct algorithm for the lasso and should return the exact
solution up to computer precision.

The left panel of the figure displays the suboptimality curves as a function of raw iteration number,
which for the parallel methods (14), (15) would correspond to running these algorithms in a naive
serial mode. In the right panel, iterations of the parallel methods are counted under a hypothetical
“10% efficient” parallel implementation, where 0.1p updates of the p total updates in (14), (15) are
able to be computed at the cost of 1 serial update in (5). (A “100% efficient” implementation would
mean that all p updates in (14), (15) could be performed at the cost of 1 serial update in (5), which,
depending on the situation, may certainly be unrealistic, due to a lack of available parallel processors,
synchronization issues, etc.) While the parallel methods display much worse convergence based on
raw iteration number, they do offer clear benefits in the 10% parallelized scenario. Also, it seems that
a larger value of ρ generally leads to faster convergence, though the benefits of taking ρ = 200 over
ρ = 50 are not quite as clear (and for values of ρ much larger than 200, performance degrades).

A.9 Proof of Theorem 6

First, we establish the following generalization of Lemma 1.
Lemma A.2. Let f be a closed, strictly convex, differentiable function. Assume that Xi ∈ Rn×pi
has full column rank, and let hi(v) = maxd∈Di

〈d, v〉 for a closed, convex set Di ⊆ Rpi . Then for
Ci = (XT

i)−1(Di) ⊆ Rn, and any a ∈ Rn,

ŵi = argmin
wi∈Rpi

f(a+Xiwi) + hi(wi) ⇐⇒ Xiŵi =
(
∇g −∇g ◦ P gCi

)(
∇g∗(−a)

)
,

where g(v) = f∗(−v).

Proof. We begin by analyzing the optimality condition that characterizes the Bregman projection
ûi = P gCi

(x) = argminc∈Ci
g(c)− g(x)− 〈∇g(x), c− x〉, namely

∇g(x)−∇g(ûi) ∈ ∂ICi(ûi).

Defining ẑi = ∇g(x)−∇g(ûi) = (∇g −∇g ◦ P gCi
)(x), this becomes

ẑi ∈ ∂ICi

(
∇g∗

(
∇g(x)− ẑi

))
,

8

where we have used the fact that ∇g∗ = (∇g)−1, allowing us to rewrite the relationship between
ûi, ẑi as ûi = ∇g∗(∇g(x)− ẑi). And lastly, substituting g(v) = f∗(−v) (and g∗(v) = f(−v)) the
optimality condition reads

ẑi ∈ ∂ICi

(
−∇f

(
∇f∗(−x) + ẑi

))
. (A.10)

Now we investigate the claim in the lemma. By subgradient optimality,

ŵi = argmin
wi∈Rpi

f(a+Xiwi) + hi(wi) ⇐⇒ −XT
i (∇f)(a+Xiŵi) ∈ ∂hi(ŵi)

⇐⇒ ŵi ∈ ∂h∗i
(
−XT

i (∇f)(a+Xiŵi)
)

⇐⇒ Xiŵi ∈ Xi∂h
∗
i

(
−XT

i (∇f)(a+Xiŵi)
)
.

The second line follows from the fact that, for a closed, convex function g, subgradients of g and of
g∗ are related via x ∈ ∂f(y)⇐⇒ y ∈ ∂g∗(x); the third line follows from the fact that Xi has full
column rank. Note that h∗i = IDi , the indicator function of Di, and denote hCi(v) = supc∈Ci

〈c, v〉.
Then following from the last display, by the chain rule,

ŵi = argmin
wi∈Rpi

f(a+Xiwi) + hi(wi) ⇐⇒ Xiŵi ∈ ∂h∗Ci

(
−∇f(a+Xiŵi)

)
,

because h∗Ci
= ICi

= IDi
◦XT

i . Applying the previous fact in (A.10) on Bregman projections gives

ŵi = argmin
wi∈Rpi

f(a+Xiwi) + hi(wi) ⇐⇒ Xiŵi =
(
∇g −∇g ◦ P gCi

)
(x)

for a = ∇f∗(−x) = −∇g(x), i.e., for x = ∇g∗(−a). This completes the proof of the lemma.

We are ready for the proof of the theorem. We start with the claim about duality between (16), (18).
Standard arguments in convex analysis show that the Lagrange dual of (16) is

max
u∈Rn

−f∗(−u)−
d∑
i=1

h∗i (X
T
i u),

where f∗ is the conjugate of f and h∗i = IDi
the conjugate of hi, i = 1, . . . , d, with the relationship

between the primal ŵ and dual û solutions being û = −∇f(Xŵ). Written in equivalent form, the
dual problem is

min
u∈Rn

f∗(−u) subject to u ∈ C1 ∩ · · · ∩ Cd.

Recalling g(v) = f∗(−v), and b = −∇f(0), we have by construction

Dg(u, b) = g(u)− g(b)− 〈∇g(b), u− b〉 = f∗(−u)− f∗(∇f(0)),

where we have used the fact that ∇g(b) = −∇f∗(∇f(0)) = 0, as ∇f∗ = (∇f)−1. Therefore the
above dual problem, in the second to last display, is equivalent to (18), establishing the claim.

Now we proceed to the claim about the equivalence between Dykstra’s algorithm (19) and coordinate
descent (17). We note that a simple inductive argument shows that the Dykstra iterates satisfy, for all
k = 1, 2, 3, . . .,

∇g(u
(k)
i) = −

∑
j≤i

z
(k)
j −

∑
j>i

z
(k−1)
j , i = 1, . . . , d.

We also note that, for i = 1, . . . , d, the image of ∇g −∇g ◦ P gCi
is contained in the column span of

Xi. To see this, write ûi = P gCi
(a), and recall the optimality condition for the Bregman projection,

〈∇g(ûi)−∇g(a), c− ûi〉 ≥ 0, c ∈ Ci.

If 〈∇g(ûi)−∇g(a), δ〉 6= 0 for some δ ∈ null(XT
i), supposing without a loss of generality that this

inner product is negative, then the above optimality condition breaks for c = ûi + δ ∈ Ci. Thus we
have shown by contradiction that ∇g(a)−∇g(ûi) ⊥ null(XT

i), i.e., ∇g(a)−∇g(ûi) ∈ col(Xi),
the desired fact.

9

Putting together the last two facts, we can write the Dykstra iterates, for k = 1, 2, 3, . . ., as

z
(k)
i = Xiw̃

(k)
i and ∇g(u

(k)
i) = −

∑
j≤i

Xjw̃
(k)
j −

∑
j>i

Xjw̃
(k−1)
j , for i = 1, . . . , d,

for some sequence w̃(k)
i , i = 1, . . . , d, and k = 1, 2, 3, In this parametrization, the z-updates in

the Dykstra iterations (19) are thus

Xiw̃
(k)
i =

(
∇g −∇g ◦ P gCi

)(
∇g∗

(
−
∑
j<i

Xjw̃
(k)
j −

∑
j>i

Xjw̃
(k−1)
j

))
, i = 1, . . . , d,

where we have used the fact that∇g∗ = (∇g)−1. Invoking Lemma A.2, we know that the above is
equivalent to

w̃
(k)
i = argmin

w̃i∈Rpi

f

(∑
j<i

Xjw̃
(k)
j +

∑
j>i

Xjw̃
(k−1)
j +Xiw̃i

)
+ hi(w̃i), i = 1, . . . , d,

which are exactly the coordinate descent iterations (5). It is easy to check that the initial conditions
for the two algorithms also match, and hence w̃(k)

i = w
(k)
i , for all i = 1, . . . , d and k = 1, 2, 3, . . .,

completing the proof.

A.10 Derivation details for (20), (21)

We first consider parallelization of projection algorithms for the best Bregman-approximation problem
(18). For simplicity and without a loss of generality we will assume an equal weighting γ1 = · · · =
γd = 1/d throughout; the arguments for arbitrary weights are similar. As in the Euclidean projection
case, to derive parallel algorithms for (18) we will turn to a product space reparametrization, namely,

min
u∈Rnd

Dg̃(u, b̃) subject to u ∈ C0 ∩ (C1 × · · · × Cd), (A.11)

where C0 = {(u1, . . . , ud) ∈ Rnd : u1 = · · · = ud}, b̃ = (b, . . . , b) ∈ Rnd, and we define the func-
tion g̃ : Rnd → R by g̃(u1, . . . , ud) =

∑d
i=1 g(ui).

Dykstra’s algorithm for the 2-set problem (A.11) sets u(0)
1 = · · · = u

(0)
d = b, r(0)

1 = · · · = r
(0)
d = 0,

and z(0)
1 = · · · = z

(0)
d = 0, then repeats for k = 1, 2, 3, . . .:

u
(k)
0 = argmin

u0∈Rn

g(u0)− 1

d

d∑
i=1

〈
∇g(u

(k−1)
i) + r

(k−1)
i , u0

〉
,

r
(k)
i = ∇g(u

(k−1)
i) + r

(k−1)
i −∇g(u

(k)
0),

u
(k)
i = (P gCi

◦ ∇g∗)
(
∇g(u

(k)
0) + z

(k−1)
i

)
,

z
(k)
i = ∇g(u

(k)
0) + z

(k−1)
i −∇g(u

(k)
i),

 for i = 1, . . . , d.

(A.12)

Now we will rewrite the above iterations, under b = −∇f(0), where g(v) = f∗(−v). The u0-update
in (A.12) is defined by the Bregman projection of(

∇g∗
(
∇g(u

(k−1)
1) + r

(k−1)
1

)
, . . . , ∇g∗

(
∇g(u

(k−1)
d) + r

(k−1)
d

))
∈ Rnd

onto the set C0, with respect to the function g̃. By first-order optimality, this update can be rewritten
as

∇g(u
(k)
0) =

1

d

d∑
i=1

(
∇g(u

(k−1)
i) + r

(k−1)
i

)
.

10

Plugging in the form of the r-updates, and using a simple induction, the above can be rewritten as

∇g(u
(k)
0) =

1

d

d∑
i=1

k−1∑
`=1

(
∇g(u

(`)
i)−∇g(u

(`)
0)
)

= ∇g(b) +
1

d

d∑
i=1

k−1∑
`=1

(z
(`−1)
i − z(`)

i)

= −1

d

d∑
i=1

z
(k)
i ,

where in the second line we used the relationship given by z-updates and recalled the initializations
u

(0)
1 = · · · = u

(0)
d = b, and in the third line we used ∇g(b) = ∇g(−∇f(0)) = ∇g(∇g∗(−0)) = 0.

Similar arguments as those given in the proof of Theorem 6 in Section A.9 show that the u-updates
and z-updates in (A.12) can be themselves condensed to

Xiw̃
(k)
i =

(
∇g −∇g ◦ P gCi

)(
∇g∗

(
∇g(u

(k)
0) +Xiw̃

(k)
i

))
, i = 1, . . . , d,

for a sequence w̃(k)
i , i = 1, . . . , d, and k = 1, 2, 3, . . ., related by z(k)

i = Xiw̃
(k)
i , i = 1, . . . , d, and

k = 1, 2, 3, By Lemma A.2, the above is equivalent to

w̃
(k)
i = argmin

w̃i∈Rpi

f
(
−∇g(u

(k)
0)−Xiw̃

(k)
i +Xiw̃i

)
+ hi(w̃i), i = 1, . . . , d,

Rescaling to w(k)
i = w̃

(k)
i /d, i = 1, . . . , d, k = 1, 2, 3, . . ., the above displays show that the Dykstra

iterations (A.12) can be rewritten quite simply as:

w
(k)
i = argmin

wi∈Rpi

f
(
Xw(k) − dXiw

(k)
i + dXiwi

)
+ hi(dwi), i = 1, . . . , d, (A.13)

for k = 1, 2, 3, . . ., with the initialization being w(0) = 0. This is precisely our parallel-Dykstra-CD
algorithm (20) for (16), under equal weights γ1 = · · · = γd = 1/d.

Meanwhile, ADMM for the 2-set problem (A.11) is defined based on the augmented Lagrangian

L(u0, . . . , ud, z1, . . . , zd) = d
(
g(u0)− 〈∇g(b), u0〉

)
+

d∑
i=1

(
ICi(ui) + ρ‖u0 − ui + zi‖22

)
− ρ

d∑
i=1

‖zi‖22.

Initializing u(0)
1 = · · · = u

(0)
d = 0, z(0)

1 = · · · = z
(0)
d = 0, we repeat for k = 1, 2, 3, . . .:

u
(k)
0 = argmin

u0∈Rn

g(u0)− 〈∇g(b), u0〉+
ρ

d

d∑
i=1

‖u0 − u(k−1)
i + z

(k−1)
i ‖22,

u
(k)
i = PCi(u

(k)
0 + z

(k−1)
i),

z
(k)
i = z

(k−1)
i + u

(k)
0 − u(k)

i ,

}
for i = 1, . . . , d.

(A.14)

Again using b = −∇f(0), with g(v) = f∗(−v), we will now rewrite the above iterations. Precisely
as in the connection between (A.9) and (15) in the quadratic case, as discussed in Section A.7, the
u-updates and z-updates here reduce to

w
(k)
i = argmin

w̃i∈Rpi

1

2

∥∥∥u(k)
0 +Xiw̃

(k−1)
i −Xiw̃i

∥∥∥2

2
+ hi(w̃i) i = 1, . . . , d,

where w̃(k)
i , i = 1, . . . , d, k = 1, 2, 3, . . . satisfies z(k)

i = Xiw̃
(k)
i , i = 1, . . . , d, k = 1, 2, 3, The

u0-update here is characterized by

∇g(u
(k)
0) =

ρ

d

d∑
i=1

(u
(k−1)
i − z(k−1)

i)− ρu(k)
0 ,

11

where we have used ∇g(b) = 0, or equivalently,

u
(k)
0 = −∇f

(
ρu

(k)
0 − ρ

d

d∑
i=1

(u
(k−1)
i − z(k−1)

i)

)
,

where we have used ∇g∗ = (∇g)−1 and g∗(v) = f(−v), and lastly

u
(k)
0 = −∇f

(
ρ(u

(k)
0 − u(k−1)

0)− ρ

d
X(w̃(k−2) − 2w̃(k−1))

)
,

by plugging in the form of the u-updates, and recalling z(k)
i = Xiw̃

(k)
i , i = 1, . . . , d, k = 1, 2, 3,

Rescaling to w(k)
i = (ρ/d)w̃

(k)
i , i = 1, . . . , d, k = 1, 2, 3, . . ., and collecting the last several displays,

we have shown that the ADMM iterations (A.14) can be written as:

Find u(k)
0 such that: u

(k)
0 = −∇f

(
ρ(u

(k)
0 − u(k−1)

0)−X(w̃(k−2) − 2w̃(k−1))
)
,

w
(k)
i = argmin

wi∈Rpi

1

2

∥∥∥u(k)
0 + (d/ρ)Xiw

(k−1)
i − (d/ρ)Xiwi

∥∥∥2

2
+ hi

(
(d/ρ)wi

)
, i = 1, . . . , d,

for k = 1, 2, 3, . . ., with initializations u(0)
0 = 0, w(−1) = w(0) = 0. This is our parallel-ADMM-CD

algorithm (21) for (16), when we choose equal augmented Lagrangian parameters ρ1 = · · · = ρd =
ρ/d.

References
Steve Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization

and statistical learning via the alternative direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1):1–122, 2011.

Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. The direct extension of ADMM
for multi-block convex minimization problems is not necessarily convergent. Mathematical
Programming, 155(1):57–79, 2016.

Frank Deutsch and Hein Hundal. The rate of convergence of Dykstra’s cyclic projections algorithm:
The polyhedral case. Numerical Functional Analysis and Optimization, 15(5–6):537–565, 1994.

Jonathan Eckstein and Dimitri P. Bertsekas. On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Programming, 55(1):
293–318, 1992.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. Annals
of Statistics, 32(2):407–499, 2004.

Daniel Gabay. Applications of the method of multipliers to variational inequalities. Studies in
Mathematics and Its Applications, 15:299–331, 1983.

Shih-Ping Han. A successive projection algorithm. Mathematical Programming, 40(1):1–14, 1988.

Alfredo N. Iusem and Alvaro R. De Pierro. On the convergence properties of Hildreth’s quadratic
programming algorithm. Mathematical Programming, 47(1):37–51, 1990.

Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. On the global linear convergence of the ADMM with
multiblock variables. SIAM Journal on Optimization, 25(3):1478–1497, 2015.

Ryan J. Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics, 7:1456–1490,
2013.

12

	Proofs of Lemma 1 and Theorem 1
	Dykstra's algorithm and ADMM for the d-set best approximation and set intersection problems
	Proof of Theorem 2
	Proof of Theorem 3
	Derivation details for (13), (14) and proof of Theorem 4
	Asymptotic linear convergence of the parallel-Dykstra-CD iterations for the lasso problem
	Derivation details for (15) and proof of Theorem 5
	Details of the experimental setup in Figure 1
	Proof of Theorem 6
	Derivation details for (20), (21)

