
Supplementary Material
Asynchronous Parallel Coordinate Minimization for MAP Inference

A Analysis for Pencil Block

In this section we provide full derivations of the results on the Pencil block in Section 4.

A.1 Proof of Proposition 1

Proof. We begin by characterizing the convexity of f(�). For all �1, �2 we have that

f(�2) = f(�1) +rf(�1)>(�2 � �1) + �D(µ(�1)||µ(�2)) ,
where D(p||q) is the KL divergence. Proof:
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where s is a randomly chosen block, n is the total number of blocks, and

¯

�

t+1

is obtained by applying the

optimal update to all blocks simultaneously.

For the Pencil update we have:
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The second equality assumes that that all blocks are equally likely to be picked. This may not be true, for

example if some blocks take much longer to process than others (since those will be updated less frequently).

However, it is a standard assumption in the existing literature.



where k(t) is the iteration used to compute the t’th update.

As for the KL term,
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Similarly,
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Combining Eq. (9), Eq. (10), and Eq. (11), we obtain:
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A.2 Proof of Proposition 2

Proof. We first isolate the delay term from the improvement term.
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We use the monotonic increase of logarithm to get max log = logmax.

Plugging this back into the decrease Eq. (12):
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Next, notice that:
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Plugging this in the delay:
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Now notice that if we update the pr block, then the only beliefs that change are µ
r

and µ
p

. Therefore,

whenever r /2 pr(d) (so r is neither the child nor parent in the update) then the beliefs are the same

and the log terms equal 0. So we can get rid of the sums:
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Finally, we obtain:
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A.3 Limitation of the bound in Proposition 2

In this section we show the hardness of translating the bound in Proposition 2 to an overall rate. Let

us focus on a single belief µ
r

(x
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Focusing on the binary case, let µ
k(d)
r

(0) = p, µ
k(d)
p

(0) = q, and µd
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Obviously, when p ! 0 and q 6= 0 this expression can grow unbounded.

A.4 Proof of Theorem 1
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(this is a known inequality from information theory – see Proposition 1.4 in Meshi et al. [2014]).
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Which gives the desired expected decrease.

Following the derivation in Theorem 1 of Nesterov [2012], the expected decrease can be translated

into convergence rate:
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where B is a scalar such that k�t � �⇤k2  B.

Setting ⇢ = 1/2 completes the proof.

B Analysis for Star Block

In this section we present analysis for the Star block, analogous to the results on Pencil block in

Section 4. Detailed proofs are given below.
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where n = |R| is the number of Star blocks (slightly overloading notation).

Proposition 4. The APCM-Star algorithm satisfies:
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As in the case of the Pencil block, whenever there is no delay (⌧ = 0), we recover the sequential

expected decrease in objective. Here this corresponds to the (negative) Matusita divergence measure,

which generalizes the Bhattacharyya divergence to multiple distributions [Meshi et al., 2014].
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As in Theorem 1, this rate is 2 times slower than the sequential rate in terms of the number of

iterations, but we can execute on the order of ⌧ times more iterations at the same time, obtaining a

linear speedup. Also notice that the assumption on the delay has inverse dependence on the number

of parents in the region graph (

¯P ). If the graph is densely connected, our theory suggests we cannot

afford a very large delay.

B.1 Proof of Proposition 3
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B.2 Proof of Proposition 4

Proof. As in the Pencil block, we begin with separating the delay and improvement terms:
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B.3 Proof of Theorem 2
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Now, using krfk2 � c and Proposition 1.5 in Meshi et al. [2014], we obtain:
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Finally, following the sequential analysis [Nesterov, 2012, Meshi et al., 2014] yields the rate,

E
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.

Setting ⇢ = 1/2 completes the proof.

C Additional Results

In Fig. 4 and Fig. 5 we illustrate the convergence behavior of our approach for � = 0 and a state

space size of 8, as well as for � = 1 and state space size of 16, respectively. As before, we observe

fast convergence of the parallelized approach. For both settings we illustrate in Fig. 6 the speedup

w.r.t. a single thread obtained for a specific number of threads of our approach (see Fig. 6 (a)) and

for HOGWILD! (see Fig. 6 (b)). The results follow the observation reported in the main paper. As

observed in Fig. 6 (c), the speedups of our approach compared to HOGWILD! tend to be slightly

bigger than the ones reported in the paper when considering � = 0 or larger MRFs.
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Figure 4: For � = 0 and an 8 state model, we illustrate the convergence behavior of our approach

compared to HOGWILD!, for a variety of MRF configurations (2, 4, 8), and different number of

iterations (200, 400). Different number of threads are used for each configuration.
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Figure 5: For � = 1 and a 16 state model, we illustrate the convergence behavior of our approach

compared to HOGWILD!, for a variety of MRF configurations (2, 4, 8), and different number of

iterations (200, 400). Different number of threads are used for each configuration.
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Ours HOGWILD! Comparison
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Figure 6: Speedup w.r.t. single thread obtained for a specific number of threads for our approach

(a) and HOGWILD! (b), using a variety of MRF neighborhoods (2, 4, 8), and different number of

iterations (200, 400). Speedups are shown for: (top) � = 1 and 8 states, (bottom) � = 1 and 16 states.

(c) shows the speedup of our method compared to HOGWILD!.
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