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Abstract

We consider the problem of estimating a random vector x from noisy linear mea-
surements y = Ax + w in the setting where parameters θ on the distribution of
x and w must be learned in addition to the vector x. This problem arises in a
wide range of statistical learning and linear inverse problems. Our main contribu-
tion shows that a computationally simple iterative message passing algorithm can
provably obtain asymptotically consistent estimates in a certain high-dimensional
large system limit (LSL) under very general parametrizations. Importantly, this
LSL applies to all right-rotationally random A – a much larger class of matrices
than i.i.d. sub-Gaussian matrices to which many past message passing approaches
are restricted. In addition, a simple testable condition is provided in which the
mean square error (MSE) on the vector x matches the Bayes optimal MSE pre-
dicted by the replica method. The proposed algorithm uses a combination of
Expectation-Maximization (EM) with a recently-developed Vector Approximate
Message Passing (VAMP) technique. We develop an analysis framework that
shows that the parameter estimates in each iteration of the algorithm converge to
deterministic limits that can be precisely predicted by a simple set of state evolution
(SE) equations. The SE equations, which extends those of VAMP without param-
eter adaptation, depend only on the initial parameter estimates and the statistical
properties of the problem and can be used to predict consistency and precisely
characterize other performance measures of the method.

1 Introduction

Consider the problem of estimating a random vector x0 from linear measurements y of the form

y = Ax0 + w, w ∼ N (0, θ−12 I), x0 ∼ p(x|θ1), (1)

where A ∈ RM×N is a known matrix, p(x|θ1) is a density on x0 with parameters θ1, w is additive
white Gaussian noise (AWGN) independent of x0, and θ2 > 0 is the noise precision (inverse variance).
The goal is to estimate x0 along with simultaneously learning the unknown parameters θ := (θ1, θ2)
from the data y and A. This problem arises in Bayesian forms of linear inverse problems in signal
processing, as well as in linear regression in statistics.

Exact estimation of the parameters θ via maximum likelihood or other methods is generally intractable.
One promising class of approximate methods combines approximate message passing (AMP) [1]
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with expectation-maximization (EM). AMP and its generalizations [2] are a powerful, relatively
recent, class of algorithms based on expectation propagation-type techniques. The AMP methodology
has the benefit of being computationally fast and has been successfully applied to a wide range of
problems. Most importantly, for large, i.i.d., sub-Gaussian random matrices A, the performance of
AMP methods can be exactly predicted by a scalar state evolution (SE) [3, 4] that provides testable
conditions for optimality, even for non-convex priors. When the parameters θ are unknown, AMP
can be easily combined with EM for joint learning of the parameters θ and vector x [5–7].

A recent work [8] has combined EM with the so-called Vector AMP (VAMP) method of [9]. Similar to
AMP, VAMP is based on expectation propagation (EP) approximations of belief propagation [10, 11]
and can also be considered as a special case of expectation consistent (EC) approximate inference
[12–14]. VAMP’s key attraction is that it applies to a larger class of matrices A than standard AMP
methods. Aside from Gaussian i.i.d. A, standard AMP techniques often diverge and require a variety
of modifications for stability [15–18]. In contrast, VAMP has provable SE analyses and convergence
guarantees that apply to all right-rotationally invariant matrices A [9, 19] – a significantly larger class
of matrices than i.i.d. Gaussians. Under further conditions, the mean-squared error (MSE) of VAMP
matches the replica predictions for optimality [20–23]. For the case when the distribution on x and
w are unknown, the work [8] proposed to combine EM and VAMP using the approximate inference
framework of [24]. The combination of AMP with EM methods have been particularly successful
in neural modeling problems [25, 26]. While [8] provides numerical simulations demonstrating
excellent performance of this EM-VAMP method on a range of synthetic data, there were no provable
convergence guarantees.

Contributions of this work The SE analysis thus provides a rigorous and exact characterization of
the dynamics of EM-VAMP. In particular, the analysis can determine under which initial conditions
and problem statistics EM-VAMP will yield asymptotically consistent parameter estimates.

• Rigorous state evolution analysis: We provide a rigorous analysis of a generalization of
EM-VAMP that we call Adaptive VAMP. Similar to the analysis of VAMP, we consider
a certain large system limit (LSL) where the matrix A is random and right-rotationally
invariant. Importantly, this class of matrices is much more general than i.i.d. Gaussians used
in the original LSL analysis of Bayati and Montanari [3]. It is shown (Theorem 1) that in
the LSL, the parameter estimates at each iteration converge to deterministic limits θk that
can be computed from a set of SE equations that extend those of VAMP. The analysis also
exactly characterizes the asymptotic joint distribution of the estimates x̂ and the true vector
x0. The SE equations depend only on the initial parameter estimate, the adaptation function,
and statistics on the matrix A, the vector x0 and noise w.

• Asymptotic consistency: It is also shown (Theorem 2) that under an additional identifiability
condition and a simple auto-tuning procedure, Adaptive VAMP can yield provably consistent
parameter estimates in the LSL. The technique uses an ML estimation approach from [7].
Remarkably, the result is true under very general problem formulations.

• Bayes optimality: In the case when the parameter estimates converge to the true value, the
behavior of adaptive VAMP matches that of VAMP. In this case, it is shown in [9] that, when
the SE equations have a unique fixed point, the MSE of VAMP matches the MSE of the
Bayes optimal estimator predicted by the replica method [21–23].

In this way, we have developed a computationally efficient method for a large class of linear inverse
problems with the properties that, in a certain high-dimensional limit: (1) the performance of the
algorithm can be exactly characterized, (2) the parameter estimates θ̂ are asymptotically consistent;
and (3) the algorithm has testable conditions for which the signal estimates x̂ match replica predictions
for Bayes optimality.

2 VAMP with Adaptation

Assume the prior on x can be written as

p(x|θ1) =
1

Z1(θ1)
exp [−f1(x|θ1)] , f1(x|θ1) =

N∑
n=1

f1(xn|θ1), (2)
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Algorithm 1 Adaptive VAMP
Require: Matrix A ∈ RM×N , measurement vector y, denoiser function g1(·), statistic function

φ1(·), adaptation function T1(·) and number of iterations Nit.
1: Select initial r10, γ10 ≥ 0, θ̂10, θ̂20.
2: for k = 0, 1, . . . , Nit − 1 do
3: // Input denoising
4: x̂1k = g1(r1k, γ1k, θ̂1k)), η−11k = γ1k/〈g′1(r1k, γ1k, θ̂1k)〉
5: γ2k = η1k − γ1k
6: r2k = (η1kx̂1k − γ1kr1k)/γ2k
7:
8: // Input parameter update
9: θ̂1,k+1 = T1(µ1k), µ1k = 〈φ1(r1k, γ1k, θ̂1k)〉

10:
11: // Output estimation
12: x̂2k = Q−1k (θ̂2kA

Ty + γ2kr2k), Qk = θ̂2kA
TA + γ2kI

13: η−12k = (1/N) tr(Q−1k )
14: γ1,k+1 = η2k − γ2k
15: r1,k+1 = (η2kx̂2k − γ2kr2k)/γ1,k+1
16:
17: // Output parameter update
18: θ̂−12,k+1 = (1/N){‖y −Ax̂2k‖2 + tr(AQ−1k AT)}
19: end for

where f1(·) is a separable penalty function, θ1 is a parameter vector and Z1(θ1) is a normalization
constant. With some abuse of notation, we have used f1(·) for the function on the vector x and
its components xn. Since f1(x|θ1) is separable, x has i.i.d. components conditioned on θ1. The
likelihood function under the Gaussian model (1) can be written as

p(y|x, θ2) :=
1

Z2(θ2)
exp [−f2(x,y|θ2)] , f2(x,y|θ2) :=

θ2
2
‖y −Ax‖2, (3)

where Z2(θ2) = (2π/θ2)N/2. The joint density of x,y given parameters θ = (θ1, θ2) is then

p(x,y|θ) = p(x|θ1)p(y|x, θ2). (4)

The problem is to estimate the parameters θ = (θ1, θ2) along with the vector x0.

The steps of the proposed adaptive VAMP algorithm to perform this estimation are shown in Al-
gorithm 1, which is a generalization of the the EM-VAMP method in [8]. In each iteration, the
algorithm produces, for i = 1, 2, estimates θ̂i of the parameter θi, along with estimates x̂ik of the
vector x0. The algorithm is tuned by selecting three key functions: (i) a denoiser function g1(·); (ii)
an adaptation statistic φ1(·); and (iii) a parameter selection function T1(·). The denoiser is used to
produce the estimates x̂1k, while the adaptation statistic and parameter estimation functions produce
the estimates θ̂1k.

Denoiser function The denoiser function g1(·) is discussed in detail in [9] and is generally based
on the prior p(x|θ1). In the original EM-VAMP algorithm [8], g1(·) is selected as the so-called
minimum mean-squared error (MMSE) denoiser. Specifically, in each iteration, the variables ri, γi
and θ̂i were used to construct belief estimates,

bi(x|ri, γi, θ̂i) ∝ exp
[
−fi(x,y|θ̂i)−

γi
2
‖x− ri‖2

]
, (5)

which represent estimates of the posterior density p(x|y,θ). To keep the notation symmetric, we
have written f1(x,y|θ̂1) for f1(x|θ̂1) even though the first penalty function does not depend on y.
The EM-VAMP method then selects g1(·) to be the mean of the belief estimate,

g1(r1, γ1,θ1) := E [x|r1, γ1,θ1] . (6)

For line 4 of Algorithm 1, we define [g′1(r1k, γ1k,θ1)]n := ∂[g1(r1k, γ1k,θ1)]n/∂r1n and we use
〈·〉 for the empirical mean of a vector, i.e., 〈u〉 = (1/N)

∑N
n=1 un. Hence, η1k in line 4 is a scaled
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inverse divergence. It is shown in [9] that, for the MMSE denoiser (6), η1k is the inverse average
posterior variance.

Estimation for θ1 with finite statistics For the EM-VAMP algorithm [8], the parameter update
for θ̂1,k+1 is performed via a maximization

θ̂1,k+1 = arg max
θ1

E
[
ln p(x|θ1)

∣∣∣r1k, γ1k, θ̂1k ] , (7)

where the expectation is with respect to the belief estimate bi(·) in (5). It is shown in [8] that using (7)
is equivalent to an approximation of the M-step in the standard EM method. In the adaptive VAMP
method in Algorithm 1, the M-step maximization (7) is replaced by line 9. Note that line 9 again uses
〈·〉 to denote empirical average,

µ1k = 〈φ1(r1k, γ1k, θ̂1k)〉 :=
1

N

N∑
n=1

φ1(r1k,n, γ1k, θ̂1k) ∈ Rd, (8)

so µ1k is the empirical average of some d-dimensional statistic φ1(·) over the components of r1k.
The parameter estimate update θ̂1,k+1 is then computed from some function of this statistic, T1(µ1k).

We show in the full paper [27] that there are two important cases where the EM update (7) can
be computed from a finite-dimensional statistic as in line 9: (i) The prior p(x|θ1) is given by an
exponential family, f1(x|θ1) = θT

1ϕ(x) for some sufficient statistic ϕ(x); and (ii) There are a
finite number of values for the parameter θ1. For other cases, we can approximate more general
parametrizations via discretization of the parameter values ~θ1. The updates in line 9 can also
incorporate other types of updates as we will see below. But, we stress that it is preferable to compute
the estimate for θ1 directly from the maximization (7) – the use of a finite-dimensional statistic is for
the sake of analysis.

Estimation for θ2 with finite statistics It will be useful to also write the adaptation of θ2 in line 18
of Algorithm 1 in a similar form as line 9. First, take a singular value decomposition (SVD) of A of
the form

A = USVT, S = Diag(s), (9)

and define the transformed error and transformed noise,

qk := VT(r2k − x0), ξ := UTw. (10)

Then, it is shown in the full paper [27] that θ̂2,k+1 in line 18 can be written as

θ̂2,k+1 = T2(µ2k) :=
1

µ2k
, µ2k = 〈φ2(q2, ξ, s, γ2k, θ̂2k)〉 (11)

where

φ2(q, ξ, s, γ2, θ̂2) :=
γ22

(s2θ̂2 + γ2)2
(sq + ξ)2 +

s2

s2θ̂2 + γ2
. (12)

Of course, we cannot directly compute qk in (10) since we do not know the true x0. Nevertheless,
this form will be useful for analysis.

3 State Evolution in the Large System Limit

3.1 Large System Limit

Similar to the analysis of VAMP in [9], we analyze Algorithm 1 in a certain large system limit (LSL).
The LSL framework was developed by Bayati and Montanari in [3] and we review some of the key
definitions in full paper [27]. As in the analysis of VAMP, the LSL considers a sequence of problems
indexed by the vector dimension N . For each N , we assume that there is a “true” vector x0 ∈ RN

that is observed through measurements of the form

y = Ax0 + w ∈ RN , w ∼ N (0, θ−12 IN ), (13)
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where A ∈ RN×N is a known transform, w is Gaussian noise and θ2 represents a “true” noise
precision. The noise precision θ2 does not change with N .

Identical to [9], the transform A is modeled as a large, right-orthogonally invariant random matrix.
Specifically, we assume that it has an SVD of the form (9) where U and V are N ×N orthogonal
matrices such that U is deterministic and V is Haar distributed (i.e. uniformly distributed on the set
of orthogonal matrices). As described in [9], although we have assumed a square matrix A, we can
consider general rectangular A by adding zero singular values.

Using the definitions in full paper [27], we assume that the components of the singular-value vector
s ∈ RN in (9) converge empirically with second-order moments as

lim
N→∞

{sn}
PL(2)

= S, (14)

for some non-negative random variable S with E[S] > 0 and S ∈ [0, Smax] for some finite maximum
value Smax. Additionally, we assume that the components of the true vector, x0, and the initial input
to the denoiser, r10, converge empirically as

lim
N→∞

{(r10,n, x0n)} PL(2)
= (R10, X

0), R10 = X0 + P0, P0 ∼ N (0, τ10), (15)

where X0 is a random variable representing the true distribution of the components x0; P0 is an
initial error and τ10 is an initial error variance. The variable X0 may be distributed as X0 ∼ p(·|θ1)
for some true parameter θ1. However, in order to incorporate under-modeling, the existence of such
a true parameter is not required. We also assume that the initial second-order term and parameter
estimate converge almost surely as

lim
N→∞

(γ10, θ̂10, θ̂20) = (γ10, θ10, θ20) (16)

for some γ10 > 0 and (θ10, θ20).

3.2 Error and Sensitivity Functions

We next need to introduce parametric forms of two key terms from [9]: error functions and sensitivity
functions. The error functions describe MSE of the denoiser and output estimators under AWGN
measurements. Specifically, for the denoiser g1(·, γ1, θ̂1), we define the error function as

E1(γ1, τ1, θ̂1) := E
[
(g1(R1, γ1, θ̂1)−X0)2

]
, R1 = X0 + P, P ∼ N (0, τ1), (17)

where X0 is distributed according to the true distribution of the components x0 (see above). The
function E1(γ1, τ1, θ̂1) thus represents the MSE of the estimate X̂ = g1(R1, γ1, θ̂1) from a measure-
ment R1 corrupted by Gaussian noise of variance τ1 under the parameter estimate θ̂1. For the output
estimator, we define the error function as

E2(γ2, τ2, θ̂2) := lim
N→∞

1

N
E‖g2(r2, γ2, θ̂2)− x0‖2,

x0 = r2 + q, q ∼ N (0, τ2I), y = Ax0 + w, w ∼ N (0, θ−12 I), (18)

which is the average per component error of the vector estimate under Gaussian noise. The dependence
on the true noise precision, θ2, is suppressed.

The sensitivity functions describe the expected divergence of the estimator. For the denoiser, the
sensitivity function is defined as

A1(γ1, τ1, θ̂1) := E
[
g′1(R1, γ1, θ̂1)

]
, R1 = X0 + P, P ∼ N (0, τ1), (19)

which is the average derivative under a Gaussian noise input. For the output estimator, the sensitivity
is defined as

A2(γ2, τ2, θ̂2) := lim
N→∞

1

N
tr

[
∂g2(r2, γ2, θ̂2)

∂r2

]
, (20)

where r2 is distributed as in (18). The paper [9] discusses the error and sensitivity functions in detail
and shows how these functions can be easily evaluated.
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3.3 State Evolution Equations

We can now describe our main result, which are the SE equations for Adaptive VAMP. The equations
are an extension of those in the VAMP paper [9], with modifications for the parameter estimation.
For a given iteration k ≥ 1, consider the set of components,

{(x̂1k,n, r1k,n, x0n), n = 1, . . . , N}.

This set represents the components of the true vector x0, its corresponding estimate x̂1k and the
denoiser input r1k. We will show that, under certain assumptions, these components converge
empirically as

lim
N→∞

{(x̂1k,n, r1k,n, x0n)} PL(2)
= (X̂1k, R1k, X

0), (21)

where the random variables (X̂1k, R1k, X
0) are given by

R1k = X0 + Pk, Pk ∼ N (0, τ1k), X̂1k = g1(R1k, γ1k, θ1k), (22)

for constants γ1k, θ1k and τ1k that will be defined below. We will also see that θ̂1k → θ1k, so θ1k
represents the asymptotic parameter estimate. The model (22) shows that each component r1k,n
appears as the true component x0n plus Gaussian noise. The corresponding estimate x̂1k,n then
appears as the denoiser output with r1k,n as the input and θ1k as the parameter estimate. Hence, the
asymptotic behavior of any component x0n and its corresponding x̂1k,n is identical to a simple scalar
system. We will refer to (21)-(22) as the denoiser’s scalar equivalent model.

We will also show that these transformed errors qk and noise ξ in (10) and singular values s converge
empirically to a set of independent random variables (Qk,Ξ, S) given by

lim
N→∞

{(qk,n, ξn, sn)} PL(2)
= (Qk,Ξ, S), Qk ∼ N (0, τ2k), Ξ ∼ N (0, θ−12 ), (23)

where S has the distribution of the singular values of A, τ2k is a variance that will be defined below
and θ2 is the true noise precision in the measurement model (13). All the variables in (23) are
independent. Thus (23) is a scalar equivalent model for the output estimator.

The variance terms are defined recursively through the state evolution equations,

α1k = A1(γ1k, τ1k, θ1k), η1k =
γ1k
α1k

, γ2k = η1k − γ1k (24a)

θ1,k+1 = T1(µ1k), µ1k = E
[
φ1(R1k, γ1k, θ1k)

]
(24b)

τ2k =
1

(1− α1k)2
[
E1(γ1k, τ1k, θ1k)− α2

1kτ1k
]
, (24c)

α2k = A2(γ2k, τ2k, θ2k), η2k =
γ2k
α2k

, γ1,k+1 = η2k − γ2k (24d)

θ2,k+1 = T2(µ2k), µ2k = E
[
φ2(Qk,Ξ, S, γ2k, θ2k)

]
(24e)

τ1,k+1 =
1

(1− α2k)2
[
E2(γ2k, τ2k)− α2

2kτ2k
]
, (24f)

which are initialized with τ10 = E[(R10 −X0)2] and the (γ10, θ10, θ20) defined from the limit (16).
The expectation in (24b) is with respect to the random variables (21) and the expectation in (24e) is
with respect to the random variables (23).
Theorem 1. Consider the outputs of Algorithm 1. Under the above assumptions and definitions,
assume additionally that for all iterations k:

(i) The solution α1k from the SE equations (24) satisfies α1k ∈ (0, 1).

(ii) The functions Ai(·), Ei(·) and Ti(·) are continuous at (γi, τi, θ̂i, µi) = (γik, τik, θik, µik).

(iii) The denoiser function g1(r1, γ1, θ̂1) and its derivative g′1(r1, γ1, θ̂1) are uniformly Lipschitz
in r1 at (γ1, θ̂1) = (γ1k, θ1k). (See the full paper [27]. for a precise definition of uniform
Lipschitz continuity.)
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(iv) The adaptation statistic φ1(r1, γ1, θ̂1) is uniformly pseudo-Lipschitz of order 2 in r1 at
(γ1, θ̂1) = (γ1k, θ1k).

Then, for any fixed iteration k ≥ 0,

lim
N→∞

(αik, ηik, γik, µik, θ̂ik) = (αik, ηik, γik, µik, θik) (25)

almost surely. In addition, the empirical limit (21) holds almost surely for all k > 0, and (23) holds
almost surely for all k ≥ 0.

Theorem 1 shows that, in the LSL, the parameter estimates θ̂ik converge to deterministic limits θik
that can be precisely predicted by the state-evolution equations. The SE equations incorporate the true
distribution of the components on the prior x0, the true noise precision θ2, and the specific parameter
estimation and denoiser functions used by the Adaptive VAMP method. In addition, similar to the SE
analysis of VAMP in [9], the SE equations also predict the asymptotic joint distribution of x0 and
their estimates x̂ik. This joint distribution can be used to measure various performance metrics such
as MSE – see [9]. In this way, we have provided a rigorous and precise characterization of a class of
adaptive VAMP algorithms that includes EM-VAMP.

4 Consistent Parameter Estimation with Variance Auto-Tuning

By comparing the deterministic limits θik with the true parameters θi, one can determine under which
problem conditions the parameter estimates of adaptive VAMP are asymptotically consistent. In this
section, we show with a particular choice of parameter estimation functions, one can obtain provably
asymptotically consistent parameter estimates under suitable identifiability conditions. We call the
method variance auto-tuning, which generalizes the approach in [7].
Definition 1. Let p(x|θ1) be a parametrized set of densities. Given a finite-dimensional statistic
φ1(r), consider the mapping

(τ1,θ1) 7→ E [φ1(R)|τ1,θ1] , R = X +N (0, τ1), X ∼ p(x|θ1). (26)

We say the p(x|θ1) is identifiable in Gaussian noise if there exists a finite-dimensional statistic
φ1(r) ∈ Rd such that (i) φ1(r) is pseudo-Lipschitz continuous of order 2; and (ii) the mapping (26)
has a continuous inverse.
Theorem 2. Under the assumptions of Theorem 1, suppose that X0 follows X0 ∼ p(x|θ0

1) for some
true parameter θ0

1 . If p(x|θ1) is identifiable in Gaussian noise, there exists an adaptation rule such
that, for any iteration k, the estimate θ̂1k and noise estimate τ̂1k are asymptotically consistent in that
limN→∞ θ̂1k = θ0

1 and limN→∞ τ̂1k = τ1k almost surely.

The theorem is proved in full paper [27]. which also provides details on how to perform the
adaptation. A similar result for consistent estimation of the noise precision θ2 is also given. The
result is remarkable as it shows that a simple variant of EM-VAMP can provide provably consistent
parameter estimates under extremely general distributions.

5 Numerical Simulations

Sparse signal recovery: The paper [8] presented several numerical experiments to assess the
performance of EM-VAMP relative to other methods. Here, our goal is to confirm that EM-VAMP’s
performance matches the SE predictions. As in [8], we consider a sparse linear regression problem of
estimating a vector x from measurements y from (1) without knowing the signal parameters θ1 or
the noise precision θ2 > 0. Details are given in the full paper [27]. Briefly, to model the sparsity, x is
drawn as an i.i.d. Bernoulli-Gaussian (i.e., spike and slab) prior with unknown sparsity level, mean
and variance. The true sparsity is βx = 0.1. Following [15, 16], we take A ∈ RM×N to be a random
right-orthogonally invariant matrix with dimensions under M = 512, N = 1024 with the condition
number set to κ = 100 (high condition number matrices are known to be problem for conventional
AMP methods). The left panel of Fig. 1 shows the normalized mean square error (NMSE) for various
algorithms. The full paper [27] describes the algorithms in details and also shows similar results for
κ = 10.
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Figure 1: Numerical simulations. Left panel: Sparse signal recovery: NMSE versus iteration for
condition number for a random matrix with a condition number κ = 100. Right panel: NMSE for
sparse image recovery as a function of the measurement ratio M/N .

We see several important features. First, for all variants of VAMP and EM-VAMP, the SE equations
provide an excellent prediction of the per iteration performance of the algorithm. Second, consistent
with the simulations in [9], the oracle VAMP converges remarkably fast (∼ 10 iterations). Third,
the performance of EM-VAMP with auto-tuning is virtually indistinguishable from oracle VAMP,
suggesting that the parameter estimates are near perfect from the very first iteration. Fourth, the EM-
VAMP method performs initially worse than the oracle-VAMP, but these errors are exactly predicted
by the SE. Finally, all the VAMP and EM-VAMP algorithm exhibit much faster convergence than the
EM-BG-AMP. In fact, consistent with observations in [8], EM-BG-AMP begins to diverge at higher
condition numbers. In contrast, the VAMP algorithms are stable.

Compressed sensing image recovery While the theory is developed on theoretical signal priors,
we demonstrate that the proposed EM-VAMP algorithm can be effective on natural images. Specif-
ically, we repeat the experiments in [28] for recovery of a sparse image. Again, see the full paper
[27] for details including a picture of the image and the various reconstructions. An N = 256× 256
image of a satellite with K = 6678 pixels is transformed through an undersampled random transform
A = diag(s)PH, where H is fast Hadamard transform, P is a random subselection to M measure-
ments and s is a scaling to adjust the condition number. As in the previous example, the image vector
x is modeled as a sparse Bernoulli-Gaussian and the EM-VAMP algorithm is used to estimate the
sparsity ratio, signal variance and noise variance. The transform is set to have a condition number
of κ = 100. We see from the right panel of Fig. 1 we see that the that the EM-VAMP algorithm is
able to reconstruct the images with improved performance over the standard basis pursuit denoising
method spgl1 [29] and the EM-BG-GAMP method from [16].

6 Conclusions

Due to its analytic tractability, computational simplicity, and potential for Bayes optimal inference,
VAMP is a promising technique for statistical linear inverse problems. However, a key challenge in
using VAMP and related methods is the need to precisely specify the distribution on the problem
parameters. This work provides a rigorous foundation for analyzing VAMP in combination with
various parameter adaptation techniques including EM. The analysis reveals that VAMP with
appropriate tuning, can also provide consistent parameter estimates under very general settings, thus
yielding a powerful approach for statistical linear inverse problems.
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