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Abstract

We consider estimating the parametric components of semiparametric multi-index
models in high dimensions. To bypass the requirements of Gaussianity or elliptical
symmetry of covariates in existing methods, we propose to leverage a second-order
Stein’s method with score function-based corrections. We prove that our estimator
achieves a near-optimal statistical rate of convergence even when the score function
or the response variable is heavy-tailed. To establish the key concentration results,
we develop a data-driven truncation argument that may be of independent interest.
We supplement our theoretical findings with simulations.

1 Introduction

We consider the semiparametric index model that relates the response Y ∈ R and the covariate
X ∈ Rd as Y = f (〈β∗1 , X〉, . . . , 〈β∗k , X〉) + ε, where each coefficient β∗` ∈ Rd (` ∈ [k]) is s∗-
sparse and the noise term ε is zero-mean. Such a model is known as sparse multiple index model
(MIM). Given n i.i.d. observations {Xi, Yi}ni=1 of the above model with possibly d � n, we aim
to estimate the parametric component {β∗` }`∈[k] when the nonparametric component f is unknown.
More importantly, we do not impose the assumption that X is Gaussian, which is commonly made in
the literature. Special cases of our model include phase retrieval, for which k = 1, and dimensionality
reduction, for which k ≥ 1. Motivated by these applications, we make a distinction between the cases
of k = 1, which is also known as single index model (SIM), and k > 1 in the rest of the paper.

Estimating the parametric component {β∗` }`∈[k] without knowing the exact form of the link function
f naturally arises in various applications. For example, in one-bit compressed sensing [3, 39] and
sparse generalized linear models [36], we are interested in recovering the underlying signal vector
based on nonlinear measurements. In sufficient dimensionality reduction, where k is typically a fixed
number greater than one but much less than d, we aim to estimate the projection onto the subspace
spanned by {β∗` }`∈[k] without knowing f . Furthermore, in deep neural networks, which are cascades
of MIMs, the nonparametric component corresponds to the activation function, which is prespecified,
and the goal is to estimate the linear parametric component, which is used for prediction at the test
stage. Hence, it is crucial to develop estimators for the parametric component with both statistical
accuracy and computational efficiency for a broad class of possibly unknown link functions.

Challenging aspects of index models: Several subtle issues arise from the optimal estimation of
SIM and MIM. In specific, most existing results depend crucially on restrictive assumptions on X and
f , and fail to hold when those assumptions are relaxed. Such issues arise even in the low-dimensional
setting with n � d. Let us consider, for example, the case of k = 1 with a known link function
f(z) = z2. This corresponds to phase retrieval, which is a challenging inverse problem that has
regained interest in the last few years along with the success of compressed sensing. A straightforward
way to estimate β∗ is via nonlinear least squares regression [17], which is a nonconvex optimization
problem. [6] propose an estimator based on convex relaxation. Although their estimator is optimal
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Figure 1: Histogram of the score function based
on 10000 independent realizations of the Gamma
distribution with shape parameter 5 and scale pa-
rameter 0.2. The dark solid histogram concentrated
around zero corresponds to the Gamma distribu-
tion, and the transparent histogram corresponds to
the distribution of the score function of the same
Gamma distribution.
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when X is sub-Gaussian, it is not agnostic to the link function, i.e., the same result does not hold
if the link function is not quadratic. Direct optimization of the nonconvex phase retrieval problem
is considered by [5] and [30], which propose statistically optimal estimators based on iterative
algorithms. However, they rely on the assumption that X is Gaussian. A careful look at their proofs
shows that extending them to a broader class of distributions is significantly more challenging — for
example, they require sharp concentration inequalities for polynomials of degree four of X , which
leads to a suboptimal statistical rate when X is sub-Gaussian. Furthermore, their results are also not
agnostic to the link function. Similar observations could be made for both convex [21] and nonconvex
estimators [4] for sparse phase retrieval in high dimensions.

In addition, a surprising result for SIM is established in [28]. They show that when X is Gaussian,
even when the link function is unknown, one could estimate β∗ at the optimal statistical rate with
Lasso. Unfortunately, their assumptions on the link function are rather restrictive, which rule out
several interesting models including phase retrieval. Furthermore, none of the above approaches are
applicable to MIM. A line of work pioneered by Ker-Chau Li [18–20] focuses on the estimation of
MIM in low dimensions. We will provide a discussion about this line of work in the related work
section, but it again requires restrictive assumptions on either the link function or the distribution ofX .
For example, in most cases X is assumed to be elliptically symmetric, which limits the applicability.

To summarize, there are several subtleties that arise from the interplay between the assumptions on X
and f in SIM and MIM. An interesting question is whether it is possible to estimate the parametric
component in SIM and MIM with milder assumptions on both X and f in the high-dimensional
setting. In this work, we provide a partial answer to this question. We construct estimators that work
for a broad class of link functions, including the quadratic link function in phase retrieval, and for a
large family of distributions of X , which are assumed to be known a priori. We particularly focus on
the case where X follows a non-Gaussian distribution, which is not necessarily elliptically symmetric
or sub-Gaussian, therefore making our method applicable to various situations that are not feasible
previously. Our estimators are based on a second-order variant of Stein’s identity for non-Gaussian
random variables, which utilizes the score function of the distribution of X . As we show in Figure 1,
even when the distribution of X is light-tailed, the distribution of the score function of X could be
arbitrarily heavy-tailed. In order to develop consistent estimators within this context, we threshold
the score function in a data-driven fashion. This enables us to obtain tight concentration bounds
that lead to near-optimal statistical rates of convergence. Moreover, our results also shed light on
two related problems. First, we provide an alternative interpretation of the initialization in [5] for
phase retrieval. Second, our estimators are constructed based on a sparsity constrained semidefinite
programming (SDP) formulation, which is related to a similar formulation of the sparse principal
component analysis (PCA) problem (see Section 4 for a detailed discussion). A consequence of
our results for SIM and MIM is a near-optimal statistical rate of convergence for sparse PCA with
heavy-tailed data in the moderate sample size regime. In summary, our contributions are as follows:

• We construct estimators for the parametric component of high-dimensional SIM and MIM
for a class of unknown link function under the assumption that the covariate distribution is
non-Gaussian but known a priori.

• We establish near-optimal statistical rates for our estimators. Our results complement existing
ones in the literature and hold in several cases that are previously not feasible.

• We provide numerical simulations that confirm our theoretical results.
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Related work: There is a significant body of work on SIMs in the low-dimensional setting. We do not
attempt to cover all of them as we concentrate on the high dimensional setting. The success of Lasso
and related regression estimators in high-dimensions enables the exploration of high-dimensional
SIMs, although this is still very much work in progress. As mentioned previously, [25, 26, 28] show
that Lasso and phase retrieval estimators could also work for SIM in high dimensions assuming the
covariate is Gaussian and the link function satisfies certain properties. Very recently, [10] relax the
Gaussian assumption and show that a modified Lasso-type estimator works for elliptically symmetric
distributions. For the case of monotone link function, [38] analyze a nonconvex least squares estimator
under the assumption that the covariate is sub-Gaussian. However, the success of their estimator hinges
on the knowledge of the link function. Furthermore, [15, 23, 31, 32, 40] analyze the sliced inverse
regression estimator in the high-dimensional setting, focusing primarily on support recovery and
consistency properties. The Gaussian assumption on the covariate restricts them from being applicable
to various real-world applications involving heavy-tailed or non-symmetric covariate, for example,
problems in economics [9, 12]. Furthermore, several results are established on a case-by-case basis
for specific link functions. In specific, [1, 3, 8, 39] consider one-bit compressed sensing and matrix
completion respectively, where the link function is assumed to be the sign function. Also, [4] propose
nonconvex estimators for phase retrieval in high dimensions, where the link function is quadratic. This
line of work, except [1], makes Gaussian assumptions on the covariate and is specialized for particular
link functions. The non-asymptotic result obtained in [1] is under sub-Gaussian assumptions, but the
estimator therein lacks asymptotic consistency.

For MIMs, relatively less work studies the high-dimensional setting. In the low-dimensional setting, a
line of work on the estimation of MIM is proposed by Ker-Chau Li, including inverse regression [18],
principal Hessian directions [19], and regression under link violation [20]. The proposed estimators
are applicable for a class of unknown link functions under the assumption that the covariate follows
Gaussian or symmetric elliptical distributions. Such an assumption is restrictive as often times the
covariate is heavy-tailed or skewed [9, 12]. Furthermore, they concentrate only on the low-dimensional
setting and establish asymptotic results. The estimation of high-dimensional MIM under the subspace
sparsity assumption is previously considered in [7, 32] but also under rather restrictive distribution
assumptions on the covariate.

Notation: We employ [n] to denote the set {1, . . . , n}. For a vector v ∈ Rd, we denote by ‖v‖p the `p-
norm of v for any p ≥ 1. In addition, we define the support of v ∈ Rd as supp(v) = {j ∈ [d], vj 6= 0}.
We denote by λmin(A), the minimum eigenvalue of matrix A. Moreover, we denote the elementwise
`1-norm, elementwise `∞-norm, operator norm, and Frobenius norm of a matrix A ∈ Rd1×d2 to be
‖ · ‖1, ‖ · ‖∞, ‖ · ‖op, and ‖ · ‖F, correspondingly. We denote by vec(A) the vectorization of matrix
A, which is a vector in Rd1d2 . For two matrices A,B ∈ Rd1×d2 , we denote the trace inner product
to be 〈A,B〉 = Trace(A>B). Also note that it could be viewed as the vector inner product between
vec(A) and vec(B). For a univariate function g : R→ R, we denote by g ◦ (v) and g ◦ (A) the output
of applying g to each element of vector v and matrix A, respectively. Finally, for a random variable
X ∈ R with density p, we use p⊗d : Rd → R to denote the joint density of X1, · · · , Xd, which are d
identical copies of X .

2 Models and Assumptions

As mentioned previously, we consider the cases of k = 1 (SIM) and k > 1 (MIM) separately. We
first discuss the motivation for our estimators, which highlights the assumptions on the link function
as well. Recall that our estimators are based on the second-order Stein’s identity. To begin with, we
present the first-order Stein’s identity, which motivates Lasso-type estimators for SIMs [25, 28].
Proposition 2.1 (First-Order Stein’s Identity [29]). Let X ∈ Rd be a real-valued random vector with
density p. We assume that p : Rd → R is differentiable. In addition, let g : Rd → R be a continous
function such that E[∇g(X)] exists. Then it holds that

E
[
g(X) · S(X)

]
= E

[
∇g(X)

]
,

where S(x) = −∇p(x)/p(x) is the score function of p.

One could apply the above Stein’s identity to SIMs to obtain an estimator of β∗. To see this, note that
when X ∼ N(0, Id) we have S(x) = x for x ∈ Rd. In this case, since E(ε ·X) = 0, we have

E(Y ·X) = E
[
f(〈X,β∗〉) ·X

]
= E

[
f ′(〈X,β∗〉)

]
· β∗.
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Thus, one could estimate β∗ by estimating E(Y ·X). This observation leads to the estimator proposed
in [25, 28]. However, in order for the estimator to work, it is necessary to assume E[f ′(〈X,β∗〉)] 6= 0.
Such a restriction prevents it from being applicable to some widely used cases of SIM, for example,
phase retrieval in which f is the quadratic function. Such a limitation of the first-order Stein’s identity
motivates us to examine the second-order Stein’s identity, which is summarized as follows.

Proposition 2.2 (Second-Order Stein’s Identity [13]). We assume the density of X is twice differen-
tiable. We define the second-order score function T : Rd → Rd×d as T (x) = ∇2p(x)/p(x). For any
twice differentiable function g : Rd → R such that E[∇2g(X)] exists, we have

E
[
g(X) · T (X)

]
= E

[
∇2g(X)

]
. (2.1)

Back to the phase retrieval example, when X ∼ N(0, Id), the second-order score function is T (x) =
xx> − Id, for x ∈ Rd. Setting g(x) = 〈x, β∗〉2 in (2.1), we have

E
[
g(X) · T (X)

]
= E

[
g(X) · (XX> − Id)

]
= E

[
〈X,β∗〉2 · (XX> − Id)

]
= 2β∗β∗>. (2.2)

Hence for phase retrieval, one could extract ±β∗ based on the second-order Stein’s identity even in
the situation where the first-order Stein’s identity fails. In fact, (2.2) is implicitly used in [5] to provide
a spectral initialization for the Wirtinger flow algorithm in the case of Gaussian phase retrieval. Here,
we establish an alternative justification based on Stein’s identity for why such an initialization works.
Motivated by this key observation, we propose to employ the second-order Stein’s identity to estimate
the parametric component of SIM and MIM with a broad class of unknown link functions as well as
non-Gaussian covariates. The precise statistical models we consider are defined as follows.

Definition 2.3 (SIM with Second-Order Link). The response Y ∈ R and the covariate X ∈ Rd are
linked via

Y = f(〈X,β∗〉) + ε, (2.3)

where f : R → R is an unknown function, β∗ ∈ Rd is the parameter of interest, and ε ∈ R is the
exogenous noise with E(ε) = 0. We assume the entries of X are i.i.d. random variables with density
p0 and that β∗ is s∗-sparse, i.e., β∗ contains only s∗ nonzero entries. Moreover, since the norm of β∗
could be absorbed into f , we assume that ‖β∗‖2 = 1 for identifiability. Finally, we assume that f
and X satisfy E[f ′′(〈X,β∗〉)] > 0.

Note that in Definition 2.3, we assume without any loss of generality that E[f ′′(〈X,β∗〉)] is positive.
If E[f ′′(〈X,β∗〉)] is negative, one could replace f by −f by flipping the sign of Y . In another word,
we essentially only require that E[f ′′(〈X,β∗〉)] is nonzero. Intuitively, such a restriction on f implies
that the second-order cross-moments contains the information of β∗. Thus, we name this type of link
functions as the second-order link. Similarly, we define MIM with second-order link.

Definition 2.4 (MIM with Second-Order Link). The response Y ∈ R and the covariate X ∈ Rd are
linked via

Y = f (〈X,β∗1〉, . . . , 〈X,β∗k〉) + ε, (2.4)

where f : Rk → R is an unknown link function, {β∗` }`∈[k] ⊆ Rd are the parameters of interest, and
ε ∈ R is the exogenous random noise that satisfies E(ε) = 0. In addition, we assume that the entries
of X are i.i.d. random variables with density p0 and that {β∗` }`∈[k] span a k-dimensional subspace of
Rd. Let B∗ = (β∗1 . . . β

∗
k) ∈ Rd×k. The model in (2.4) could be reformulated as Y = f(XB∗) + ε.

By QR-factorization, we could write B∗ as Q∗R∗, where Q∗ ∈ Rd×k is an orthonormal matrix and
R∗ ∈ Rk×k is invertible. Since f is unknown, R∗ could be absorbed into the link function. Thus, we
assume that B∗ is orthonormal for identifiability. We further assume that B∗ is s∗-row sparse, that is,
B∗ contains only s∗ nonzero rows. Note that this definition of row sparsity does not depends on the
choice of coordinate system. Finally, we assume that f and X satisfy λmin(E[∇2f(XB∗)]) > 0.

In Definition 2.4, the assumption that E[∇2f(XB∗)] is positive definite is a multivariate generaliza-
tion of the condition that E[f ′′(〈X,β∗〉)] > 0 for SIM in Definition 2.3. It essentially guarantees that
estimating the projector of the subspace spanned by {β∗` }`∈[k] is information-theoretically feasible.
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3 Estimation Method and Main Results

We now introduce our estimators and establish their statistical rates of convergence. Discussion on
the optimality of the established rates and connection to sparse PCA are deferred to §4. Recall that
we focus on the case in which X has i.i.d. entries with density p0 : R→ R. Hence, the joint density
of X is p(x) = p⊗d0 (x) =

∏d
j=1 p0(xj). For notational simplicity, let s0(u) = p′0(u)/p0(u). Then

the first-order score function associated with p is S(x) = s0 ◦ (x). Equivalently, the j-th entry of the
first-order score function associated with p is given by [S(x)]j = s0(xj). Moreover, the second-order
score function is

T (x) = S(x)S(x)> −∇S(x) = S(x)S(x)> − diag
[
s′0 ◦ (x)

]
. (3.1)

Before we present our estimator, we introduce the assumption on Y and s0(·).
Assumption 3.1 (Bounded Moment). We assume there exists a constantM such that Ep0

[s0(U)6] ≤
M and E(Y 6) ≤M . We denote σ2

0 = Ep0
[s0(U)2] = Varp0

[s0(U)].

The assumption that Ep0 [s0(U)6] ≤M allows for a broad family of distributions including Gaussian
and more heavy-tailed random variables. Furthermore, we do not require the covariate to be elliptically
symmetric as is commonly required in existing methods, which enables our estimator to be applicable
for skewed covariates. As for the assumption that E(Y 6) ≤M , note that in the case of SIM we have

E(Y 6) ≤ C
(
E(ε6) + E

[
f6(〈X,β∗〉)

])
.

Thus this assumption is satisfied as long as both ε and f(〈X,β∗〉) have bounded sixth moments. This
is a mild assumption that allows for heavy-tailed response. Now we are ready to present our estimator
for the sparse SIM in Definition 2.3. Recall that by Proposition 2.2 we have

E
[
Y · T (X)

]
= C0 · β∗β∗>, (3.2)

where C0 = 2E[f ′′(〈X,β∗〉)] > 0 as in Definition 2.3. Hence, one way to estimator β∗ is to obtain
the leading eigenvector of the sample version of E[Y ·T (X)]. Moreover, as β∗ is sparse, we formulate
our estimator as a semidefinite program

maximize
〈
W, Σ̃

〉
− λ‖W‖1

subject to 0 �W � Id, Trace(W ) = 1. (3.3)

Here Σ̃ is an estimator of Σ∗ = E[Y · T (X)], which is defined as follows. Note that both the score
T (X) and the response variable Y could be heavy-tailed. In order to obtain near-optimal estimates in
the finite-sample setting, we apply the truncation technique to handle the heavy-tails. In specific, for
a positive threshold parameter τ ∈ R, we define the truncated random variables by

Ỹi = sign(Yi) ·min{|Yi|, τ} and
[
T̃ (Xi)

]
jk

= sign
{
Tjk(Xi)

}
·min

{
|Tjk(Xi)|, τ2

}
. (3.4)

Then we define the robust estimator of Σ∗ as

Σ̃ =
1

n

n∑
i=1

Ỹi · T̃ (Xi). (3.5)

We denote by Ŵ the solution of the convex optimization problem in (3.3), where λ is a regularization
parameter to be specified later. The final estimator β̂ is defined as the leading eigenvector of Ŵ . The
following theorem quantifies the statistical rates of convergence of the proposed estimator.

Theorem 3.2. Let λ = 10
√
M log d/n in (3.3) and τ = (1.5Mn/ log d)1/6 in (3.4). Then under

Assumption 3.1, we have ‖β̂ − β∗‖2 ≤ 4
√

2/C0 · s∗λ with probability at least 1− d−2.

Now we introduce the estimator of B∗ for the sparse MIM in Definition 2.4. Proposition 2.2 implies
that E[Y · T (X)] = B∗D0B

∗, where D0 = E[∇2f(XB∗)] is positive definite. Similar to (3.3), we
recover the column space of B∗ by solving

maximize
〈
W, Σ̃

〉
− λ‖W‖1,

subject to 0 �W � Id, Trace(W ) = k, (3.6)
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where Σ̃ is defined in (3.5), λ > 0 is a regularization parameter, and k is the number of indices, which
is assumed to be known. Let Ŵ be the solution of (3.6), and let the final estimator B̂ contain the
top k leading eigenvectors of Ŵ as columns. For such an estimator, we have the following theorem
quantifying its statistical rate of convergence. Let ρ0 = λmin(E[∇2f(XB∗)]).

Theorem 3.3. Let λ = 10
√
M log d/n in (3.6) and τ = (1.5Mn/ log d)1/6 in (3.4). Then under

Assumption 3.1, with probability at least 1− d−2, we have

inf
O∈Ok

∥∥B̂ −B∗O∥∥F ≤ 4
√

2/ρ0 · s∗λ,

where Ok ∈ Rk×k is the set of all possible rotation matrices.

Minimax lower bounds for subspace estimation for MIM are established in [22]. For k being fixed,
Theorem 3.3 is near-optimal from a minimax point of view. The difference between the optimal rate
and the above theorem is roughly a factor of

√
s∗. We will discuss more about this gap in Section 4.

The proofs of Theorem 3.2 and Theorem 3.3 are provided in the supplementary material.
Remark 3.4. Recall that our discussion above is under the assumption that the entries of X are i.i.d.,
which could be relaxed to the case of weak dependence between the covariates without any significant
loss in the statistical rates presented above. We do not focus on this extension in this paper as we aim
to clearly convey the main message of the paper in a simpler setting.

4 Optimality and Connection to Sparse PCA

Now we discuss the optimality of the results presented in §3. Throughout the discussion we assume
that k is fixed and does not increase with d and n. The estimators for SIM in (3.3) and MIM in (3.6)
are closely related to the semidefinite program-based estimator for sparse PCA [33]. In specific, let
X ∈ Rd be a random vector with E(X) = 0 and covariance Σ = E(XX>), which is symmetric and
positive definite. The goal of sparse PCA is to estimate the projector onto the subspace spanned by
the top k eigenvectors, namely {v∗` }`∈[k], of Σ, under the subspace sparsity assumption as specified
in Definition 2.4. An estimator based on semidefinite programing is introduced in [33, 34], which is
based on solving

maximize
〈
W, Σ̂

〉
− λ‖W‖1

subject to 0 �W � Id, Trace(W ) = k. (4.1)

Here Σ̂ = n−1
∑n

i=1XiX
>
i is the sample covariance matrix given n i.i.d. observations {Xi}ni=1 of

X . Note that the main difference between the SIM estimator and the sparse PCA estimator is the use of
Σ̃ in place of Σ̂. It is known that sparse PCA problem exhibits an interesting statistical-computational
tradeoff [16, 34, 35], which naturally appears in the context of SIM as well. In particular, while the
optimal statistical rate for sparse PCA is O(

√
s∗ log d/n), the SDP-based estimator could only attain

O(s∗
√

log d/n) under the assumption that X is light-tailed. It is known that when n = Ω(s∗2 log d),
one could obtain the optimal statistical rate ofO(

√
s∗ log d/n) by nonconvex method [37]. However,

their results rely on the sharp concentration of Σ̂ to Σ in the restricted operator norm:∥∥Σ̂− Σ∗
∥∥

op,s = sup
{
w>(Σ̂− Σ)w : ‖w‖2 = 1, ‖w‖0 ≤ s

}
= O(

√
s log d/n). (4.2)

When X has heavy-tailed entries, for example, with bounded fourth moment, its highly unlikely that
(4.2) holds.

Heavy-tailed sparse PCA: Recall that our estimators leverage a data-driven truncation argument to
handle heavy-tailed distributions. Owing to the close relationship between our SIM/MIM estimators
and the sparse PCA estimator, it is natural to ask whether such a truncation argument could lead to a
sparse PCA estimator for heavy tailedX . Below we show it is indeed possible to obtain a near-optimal
estimator for heavy-tailed sparse PCA based on the truncation technique. For vector v ∈ Rd, let ϑ(v)
be a truncation operator that works entrywise as [ϑ(v)]j = sign[vj ] ·min{|vj |, τ} for j ∈ [d]. Then,
our estimator is defined as follows,

maximize 〈W,Σ〉 − λ‖W‖1
subject to 0 �W � Id, Trace(W ) = k, (4.3)
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where Σ = n−1
∑n

i=1XiX
>
i andXi = ϑ(Xi), for i = 1, . . . n. For the above estimator, we have the

following theorem under the assumption that X has heavy-tailed marginals. Let V ∗ = (v∗1 . . . v
∗
k) ∈

Rd×k and we assume that ρ0 = λk(Σ)− λk+1(Σ) > 0.

Theorem 4.1. Let Ŵ be the solution of the optimization in (4.3) and let V̂ ∈ Rd×k contain the
top k leading eigenvectors of Ŵ . Also, we set the regularization parameter in (4.3) to be λ =

C1

√
M log d/n and the truncation parameter to be τ = (C2Mn/ log d)1/4, where C1 and C2 are

some positive constants. Moreover, we assume that V ∗ contains only s∗ nonzero rows and that X
satisfies E|Xj |4 ≤M and E|Xi ·Xj |2 ≤M . Then, with probability at least 1− d−2, we have

inf
O∈Ok

∥∥V̂ − V ∗O∥∥F ≤ 4
√

2/ρ0 · s∗λ,

where Ok ∈ Rk×k is the set of all possible rotation matrices.

The proof of the above theorem is identical to that of Theorem 3.3 and thus we omit it. The above
theorem shows that with elementwise truncation, as long as X satisfies a bounded fourth moment con-
dition, the SDP estimator for sparse PCA achieves the near-optimal statistical rate ofO(s∗

√
log d/n).

We end this section with the following questions based on the above discussions:

1. Could we obtain the minimax optimal statistical rate O(
√
s log d/n) for sparse PCA in the

high sample size regime with n = Ω(s∗2 log d) if X has only bounded fourth moment?

2. Could we obtain the minimax optimal statistical rateO(
√
s log d/n) given n = Ω(s∗2 log d)

when f,X , and Y satisfy the bounded moment condition in Assumption 3.1 for MIM?

The answers to both questions lie in constructing truncation-based estimators that concentrate sharply
in restricted operator norm defined in (4.2) or more realistically exhibit one-sided concentration
bounds (see, e.g., [24] and [27] for related results and discussion). Obtaining such an estimator seems
to be challenging for heavy-tailed sparse PCA and it is not immediately clear if this is even possible.
We plan to report our findings for the above problem in the near future.

5 Experimental Results

In this section, we evaluate the finite-sample error of the proposed estimators on simulated data. We
concentrate on the case of sparse phase retrieval. Recall that in this case, the link function is known
and existing convex and non-convex estimators are applicable predominantly for the case of Gaussian
or light-tailed data. The question of what are the necessary assumptions on the measurement vectors
for (sparse) phase retrieval to work is an intriguing one [11]. In the sequel, we demonstrate that using
the proposed score-based estimators, one could use heavy-tailed and skewed measurements as well,
which significantly extend the class of measurement vectors applicable for sparse phase retrieval.

Recall that the covariate X has i.i.d. entries with distribution p0. Throughout this section, we set p0
to be Gamma distribution with shape parameter 5 and scale parameter 1 or Rayleigh distribution
with scale parameter 2. The random noise ε is set to be standard Gaussian. Moreover, we solve the
optimization problems in (3.3) and (3.6) via the alternating direction method of multipliers (ADMM)
algorithm, which introduces a dual variable to handle the constraints and updates the primal and dual
variables iteratively.

For SIM, let the link functions be f1(u) = u2, f2 = |u|, and f3(u) = 4u2+3 cos(u), correspondingly.
Here f1 corresponds to the phase retrieval model and f2 and f3 could be viewed as its robust extension.
Throughout the experiment we vary n and fix d = 500 and s∗ = 5. Also, the support of β∗ is chosen
uniformly at random from all the possible subsets of [d] with cardinality s∗. For each j ∈ supp(β∗),
we set β∗j = 1/

√
s∗ · γj , where γj’s are i.i.d. Rademacher random variables. Furthermore, we fix the

regularization parameter λ = 4
√

log d/n and threshold parameter τ = 20. In addition, we adopt the
cosine distance cos ∠(β̂, β∗) = 1 − |〈β̂, β∗〉|, to measure the estimation error. We plot the cosine
distance against the theoretical statistical rate of convergence s∗

√
log d/n in Figure 2-(a)-(c) for each

link function, respectively. The plot is based on 100 independent trials for each n. It shows that the
estimation error is bounded by a linear function of s∗

√
log d/n, which corroborates the theory.
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Figure 2: Cosine distances between the true parameter β∗ and the estimated parameter β̂ in the sparse
SIM with the link function in one of f1, f2, and f3. Here we set d = 500. s∗ = 5 and vary n.

6 Discussion

In this work, we study estimating the parametric component of SIM and MIM in the high dimensions,
under fairly general assumptions on the link function f and response Y . Furthermore, our estimators
are applicable in the non-Gaussian setting in which X is not required to satisfy restrictive Gaussian
or elliptical symmetry assumptions. Our estimators are based on a data-driven truncation technique in
combination with a second-order Stein’s identity.

In the low-dimensional setting, for two-layer neural network [14] propose a tensor-based method for
estimating the parametric component. Their estimators are sub-optimal even assuming X is Gaussian.
An immediate application of our truncation-based estimators enables us to obtain optimal results for
a fairly general class of covariate distributions in the low-dimensional setting. Obtaining optimal or
near-optimal results in the high-dimensional setting is of great interest for two-layer neural network,
albeit challenging. We plan to extend the results of the current paper to two-layer neural networks in
high dimensions and report our findings in the near future.
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A Proof of the Main Results

In this section we prove the main results. We first prove that the proposed estimators achieve near-
optimal statistical rates of convergence. Then we prove the supporting lemma on our data-driven
approach of truncation.

A.1 Proof of Theorem 3.2

Proof. We denote by Ŵ the solution of the convex program in (3.3). Also, let W ∗ = β∗β∗>. In the
following, we establish an upper bound for ‖Ŵ −W ∗‖2.

Since W ∗ is feasible for the optimization problem in (3.3), we have

〈Ŵ , Σ̃〉 − λ‖Ŵ‖1 ≥ 〈W ∗, Σ̃〉 − λ‖W ∗‖1. (A.1)

We denote Σ∗ = E[Y ·T (X)]. Note that β∗ is the leading eigenvector of Σ∗. Then (A.1) is equivalent
to

〈Ŵ −W ∗, Σ̃− Σ∗〉 − λ‖Ŵ‖1 + λ‖W ∗‖1 ≥ 〈Σ∗,W ∗ − Ŵ 〉. (A.2)

The following Lemma in [33] establishes an upper bound for the first term on the left-hand side of
(A.2).
Lemma A.1. Let Ω ∈ Rd×d be a symmetric matrix and let λ1 ≥ λ2 ≥ . . . λd the eigenvalues of Ω
in descending order. For any ` ∈ [d− 1] such that λ` − λ`+1 > 0, let Π` ∈ Rd×d be the projection
matrix for the subspace spanned by the eigenvectors of Ω corresponding to λ1, . . . , λ`. Then for any
Λ ∈ Rd×d satisfying 0 � λ � Id and Trace(Λ) = k, we have

(λ` − λ`+1) · ‖Πk − Λ‖2F ≤ 2〈Ω,Πk − Λ〉.

Note that W ∗ is the projection matrix for the subspace spanned by β∗. Applying Lemma A.1 to Σ∗

with ` = 1, we have

〈Σ∗,W ∗ − Ŵ 〉 ≥ C0/2 · ‖Ŵ −W ∗‖2F, (A.3)

where C0 > 0 is defined in (3.2). In addition, by Hölder’s inequality, we have

〈Ŵ −W ∗, Σ̃− Σ∗〉 ≤ ‖Σ̃− Σ∗‖∞ · ‖Ŵ −W ∗‖1. (A.4)

In what follows, we bound ‖Σ̃− Σ∗‖∞.

Lemma A.2. Let Σ̃ be defined in (3.5) and we define Σ∗ = E[Y · T (X)]. Under Assumption 3.1,
for any truncation level τ > 0 in (3.4), with probablity at least 1− d−2, we have

‖Σ̃− Σ∗‖∞ ≤ 9M · τ−3 + 2τ3 · log d/n+ 2
√

5M · log d/n. (A.5)

Proof. See §A.3 for a detailed proof.

By this lemma, if we set τ = (1.5Mn/ log d)1/6, then with probability at least 1− d−1,

‖Σ̃− Σ∗‖∞ ≤ (2
√

5 + 2
√

6) ·
√
M log d/n ≤ 10

√
M log d/n. (A.6)

Thus by setting λ = 10
√
M log d/n we have ‖Σ̃− Σ∗‖∞ ≤ λ with probability at least 1− d−2.

Then combining (A.2), (A.3), and (A.4) we have

λ
(
‖Ŵ −W ∗‖1 − ‖Ŵ‖1 + ‖W ∗‖1

)
≥ C0/2 · ‖Ŵ −W ∗‖2F. (A.7)

Note that W ∗ = β∗β∗> and that β∗ is s∗-sparse. We denote the support of W ∗ by J , which is given
by

J =
{

(j, k) ∈ [d]× [d] : β∗j · β∗k 6= 0
}
.

Then by seperation of the `1-norm, we have

‖Ŵ‖1 = ‖ŴJ ‖1 + ‖ŴJ c‖1 and ‖Ŵ −W ∗‖1 = ‖ŴJ −W ∗J ‖1 + ‖ŴJ c‖1,
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which implies that

‖Ŵ −W ∗‖1 − ‖Ŵ‖1 + ‖W ∗‖1 = ‖ŴJ −W ∗J ‖1 + ‖ŴJ ‖1 − ‖W ∗J ‖1
≤ 2‖ŴJ −W ∗J ‖1 ≤ 2s∗‖Ŵ −W ∗‖F. (A.8)

Here the last inequality in (A.8) follows from the fact that |J | = s∗2. Combining (A.7) and (A.8),
we obtain

‖Ŵ −W ∗‖F ≤ 4/C0 · s∗λ. (A.9)

Since β̂ is the leading eigenvector of Ŵ , we have ‖β̂ − β∗‖2 ≤
√

2‖Ŵ −W ∗‖F ≤ 4
√

2/C0 · s∗λ,
which concludes the proof.

A.2 Proof of Theorem 3.3

Proof. The proof is similar to that of Theorem 3.2. In the case of sparse MIM, we denote W ∗ =

B∗B∗>. Note that Ŵ is the solution to the optimization problem in (3.6) and that B̂ consists of the
top k leading eigenvectors of Ŵ . Then by Corollary 3.2 in [33], we have

inf
O∈Ok

‖B̂ −B∗O‖F ≤
√

2‖Ŵ −W ∗‖F. (A.10)

In what follows, we derive an upper bound for Ŵ −W ∗. Since B∗ is orthonormal, Trace(W ∗) = k.
Thus W ∗ is feasible for (3.6), which implies

〈Ŵ −W ∗, Σ̃− Σ∗〉 − λ‖Ŵ‖1 + λ‖W ∗‖1 ≥ 〈Σ∗,W ∗ − Ŵ 〉. (A.11)

Here we define Σ∗ = E[Y · T (X)]. Note that W ∗ is the projection matrix for the subspace spanned
by the top-k leading eigenvectors of Σ∗. By Lemma A.1 with ` = k, we have

〈Σ∗,W ∗ − Ŵ 〉 ≥ ρ0/2 · ‖Ŵ −W ∗‖2F,

where ρ0 is the smallest eigenvalue of E[∇2f(XB∗)]. Similar to the proof of Theorem 3.2, by using
Hölder’s inequality and (A.11), we have

‖Σ̃− Σ∗‖∞ · ‖Ŵ −W ∗‖1 − λ‖Ŵ‖1 + λ‖W ∗‖1 ≥ ρ0/2 · ‖Ŵ −W ∗‖2F. (A.12)

By Lemma A.2, if we set λ = 10
√
M log d/n, with probability at least 1− d−2, we have

‖Σ̂− Σ∗‖∞ ≤ λ. (A.13)

Note that the support of W ∗ is

J ⊆
{

(j, k) ∈ [d]× [d] : ‖B∗j·‖2 · ‖B∗k·‖2 6= 0
}
.

Since B∗ is s∗-row sparse, |J | ≤ s∗2. Thus (A.8) also hold for the MIM. Combining (A.12), (A.13),
and (A.8), we obtain

‖Ŵ −W ∗‖F ≤ 4/ρ0 · s∗λ. (A.14)

Finally, combining (A.10) and (A.14), we conclude the proof.

A.3 Proof of Lemma A.2

Proof. By triangle inequailty, we have

‖Σ̃− Σ∗‖∞ ≤ ‖Σ̃− EΣ̃‖∞ + ‖EΣ̃− Σ∗‖∞. (A.15)

In the sequel, we bound the second term on the right-hand side of (A.15), which controls the bias of
truncation. For each j, k ∈ [d], we have∣∣∣EΣ̃jk − Σ∗jk

∣∣∣ ≤ ∣∣∣E[Ỹ · T̃jk(X)
]
− E

[
Y · Tjk(X)

]∣∣∣
≤
∣∣∣E{Ỹ · [T̃jk(X)− Tjk(X)

]}∣∣∣+
∣∣∣E[(Ỹ − Y ) · Tjk(X)

]∣∣∣ . (A.16)
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For the first term in (A.16), note that T̃jk(X) − Tjk(X) = Tjk(X) · 1{|Tjk(X)| ≥ τ2}. Then by
Cauchy-Schwarz inequality we have∣∣∣E{Ỹ · [T̃jk(X)− Tjk(X)

]}∣∣∣2 =
∣∣∣E [Ỹ · Tjk(X) · 1

{
|Tjk(X)| ≥ τ2

}]∣∣∣2
≤ E

[
Ỹ 2 · T 2

jk(X)
]
· P
[
|Tjk(X)| ≥ τ2

]
. (A.17)

Furthermore, by Hölder’s inequality, we have

E
[
Ỹ 2 · T 2

jk(X)
]
≤
[
E(Ỹ 6)

]1/3 · {E [|Tjk(X)|3
]}2/3 ≤ [E(Y 6)

]1/3 {E [|T 3
jk(X)|

]}2/3
.

(A.18)

If j 6= k, by the definition of T (x) in (3.1), we have Tjk(x) = Sj(x) · Sk(x), ∀x ∈ Rd. Then by
Cauchy-Schwarz inequality, we have

E
[
|T 3

jk(X)|
]

= E
[
|Sj(X)|3 · |Sk(X)|3

]
≤
√
E[S6

j (X)] · E[S6
k(X)] = E[S6

j (X)]. (A.19)

In addition, if j = k, by (3.1), Tjj(x) = S2
j (x) − s1(xj). Since (a + b)3 ≤ 4(a3 + b3) for any

a, b > 0, we have

E
[
|T 3

jj(X)|
]
≤ 4E[S6

j (X)] + 4E
[
|s31(Xj)|

]
. (A.20)

Moreover, by (A.17), (A.18), and the Markov’s inequality

P
[
|Tjk(X)| ≥ τ2

]
≤ E

[
|T 3

jk(X)|
]
· τ−6,

we further have∣∣∣E{Ỹ · [T̃jk(X)− Tjk(X)
]}∣∣∣2 ≤ [E(Y 6)

]1/3 · {E [|T 3
jk(X)|

]}5/3 · τ−6 ≤ 32M2 · τ−6.
(A.21)

Here the last inequality follows from combining Assumption 3.1, (A.19), and (A.20).

Similarly, for the second term in (A.16), by the Hölder’s inequality and the Markov’s inequality we
obtain ∣∣∣E[(Ỹ − Y ) · Tjk(X)

]∣∣∣2 ≤ [E(Y 6)
]1/3 · {E [|T 3

jk(X)|
]}2/3 · P(|Y | ≥ τ)

≤
[
E(Y 6)

]4/3 · {E [|T 3
jk(X)|

]}2/3 · τ−6 ≤ 4M2 · τ−6. (A.22)

Therefore, combining (A.16), (A.21), and (A.22) , we obtain

‖EΣ̃− Σ∗‖∞ ≤ 9M · τ−3. (A.23)

In what follows, we give a high-probability bound on ‖Σ̃− EΣ̃‖∞ using concentration inequalities,
which combined with A.23, concludes the proof.

For any j, k ∈ [d], note that |Ỹ · T̃jk(X)| ≤ τ3. In addition, by assumption 3.1, its variance is
bounded by

Var
[
Ỹ · T̃jk(X)

]
≤ E

[
Y 2 · T 2

jk(X)
]
≤
[
E(Y 6)

]1/3 · {E [|T 3
jk(X)|

]}2/3 ≤ 2M.

Now we apply the Bernstein’s inequality [2] (Theorem 2.10) to {Ỹi · T̃jk(Xi)}i∈[n] and obtain that

P

{∣∣∣∣ 1n
n∑

i=1

Ỹi · T̃jk(Xi)− E
[
Ỹ · T̃jk(X)

]∣∣∣∣ ≥
√

4M · t
n

+
τ3 · t
3n

}
≤ 2 exp(−t). (A.24)

Taking a union bound over j, k ∈ [d] in (A.24), we obtain that

P
[
‖Σ̃− EΣ̃‖∞ ≥

√
4M · t/n+ τ3 · t/(3n)

]
≤ 2 exp(−t+ 2 log d). (A.25)

Choosing t = 5 log d in (A.25), we have

‖Σ̃− EΣ̃‖∞ ≤ 2
√

5M log d/n+ 2τ3 · log d/n (A.26)

with probablity at least 1 − d−2. Finally, combining (A.23) and (A.26), we conclude the proof of
Lemma A.2.

13


	Introduction
	Models and Assumptions
	Estimation Method and Main Results
	Optimality and Connection to Sparse PCA
	Experimental Results
	Discussion
	Proof of the Main Results
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Lemma A.2


