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Supplementary Material

1 VW transition operators and their convergence

Proposition 1. [fp has enough capacity, training data and training time, with slow enough annealing
and a small departure from reversibility so p can match q, then at convergence of VW training, the
transition operator pr atT' = 1 has the data generating distribution as its stationary distribution.

Proof. With these conditions p(si ™) match ¢(sf ™), where q(so) is the data distribution. Tt
means that p(so) (the marginal at the last step of sampling) is the data distribution when running the
annealed (cooling) trajectory for K + n steps, for n any integer between 0 and /Ny, where the last
n + 1 steps are at temperature 1. Since the last n steps are at temperature 1, they apply the same
transition operator. Consider any 2 consecutive sampling steps among these last n steps. Both of these
samples are coming from the same distribution (the data distribution). It means that the temperature 1
transition operator leaves the data distribution unchanged. This implies that the data distribution is an
eigenvector of the linear operator associated with the temperature 1 transition operator, or that the
data generating distribution is a stationary distribution of the temperature 1 transition operator. [

2 Additional Results

Image inpainting samples from CelebA dataset are shown in Fig[I] where each top sub-figure shows
the masked image of a face (starting point of the chain), and the bottom sub-figure shows the inpainted
image. The images are drawn from the test set.

The VW samples for CelebA, CIFAR10 and SVHN are shown in Fig 3| @ 5}
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Figure 1: VW inpainting in CelebA images. Images on the left are the ground truth images corrupted
for their bottom half (which is the starting point of the chain). The goal is to fill in the bottom half of
each face image given an observed top half of an image (drawn from test set). Images on the right
show the inpainted lower halves for all these images.

3 VW on Toy Datasets

Fig. [ and [7] shows the application of a transition operator applied on 2D datasets.
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Figure 2: VW samples on MNIST using Gaussian noise in the transition operator. The model is
trained with 30 steps of walking away, and samples are generated using 30 annealing steps.

4 VW chains

Fig. Bl 9} shows the model chains on repeated application of transition operator at
temperature = 1. This is to empirically prove the conjecture mentioned in the paper (Preposition 1)

that is, if the finite time generative process converges to the data distribution at multiple different VW
walkback time-steps, then it remains on the data distribution for all future time at T= 1

5 Architecture Details

In this section, we provide more details on the architecture that was used for each of the dataset. The
details of the hyper parameter and architecture used for each dataset can also be found in Tables
Bland[d] Complete specifications are available as experiment scripts athttp://github.com/
anirudh9119/walkback_nipsl7.

5.1 MNIST

For lower bound(and IS estimates) comparisons, the network trained on MNIST is a MLP composed
of two fully connected layers with 1200 units using batch-normalization (Ioffe Szegedy, 2015) This
network has two different final layers with a number of units corresponding to the image size (i.e


http://github.com/anirudh9119/walkback_nips17
http://github.com/anirudh9119/walkback_nips17
http://github.com/anirudh9119/walkback_nips17
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Figure 3: VW samples on CelebA dataset using Gaussian noise in the transition operator. Model is
trained using 30 steps to walk away and samples are generated using 30 annealing steps.

number of pixels) each corresponding to mean and variance for each pixel. We use softplus output
for the variance. We don’t share the batch-normalization parameters across different time steps.

For the real-values MNIST dataset samples, we used an encoder-decoder architecture with convolu-
tional layers. The encoder consists of 2 convolutional layers with kernel length of 5 and stride of 2
followed by a decoder with strided convolutions. In addition, we used 5 fully connected feedforward
layers to connect the encoder and decoder. We applied batch normalization (Ioffe and Szegedy},2015))
to the convolutional Layers, and we applied layer normalization (Ba et al.,2016)) to the feedforward
layers. The network has 2 separate output layers, one corresponding the mean of the Gaussian sample,
and one corresponding to the variance of the added Gaussian noise. We use Adam
with a learning rate of 0.0001 to optimize the network. Details of the hyper parameter and
architecture is also available in Table[Tl

5.2 CIFARI10, CelebA and SVNH

We use a similar encoder-decoder architecture as we have stated above. We use 3 convolutional layers
for the encoder as well as for the decoder. We also apply batch normalization (Ioffe and Szegedy
[2015)to the convolutional layers, as well as layer normalization 2016) to the feedforward
layers. Details of the hyper parameter and architecture is also available in Table [3] ] and 2}




Operation
Convolution
Convolution

Fully Connected
Fully Connected
Fully Connected
Fully Connected
Fully Connected
Strided Convolution
Strided Convolution

Table 1: Hyperparameters for MNIST experiments, for each layer of the encoder-decoder (each
row of the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and
variance of each pixel. We use reconstruction error as per-step loss function. We see improvements
using layernorm in the bottleneck, as compared to batchnorm. Using Dropout also helps, but all the

Kernel
5x5
5x5

5x5
5x5

Strides

Feature Maps
16
32

results reported in the paper are without dropout.

Operation
Convolution
Convolution
Convolution

Fully Connected
Fully Connected
Fully Connected
Fully Connected
Fully Connected
Strided Convolution
Strided Convolution
Strided Convolution

Table 2: Hyperparameters for CelebA experiments, for each layer of the encoder-decoder (each
row of the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and

Kernel
5x5
5x5
5x5

5x5
5x5
5x5

Strides

[N NS S R

Feature Maps
64
128
256

Normalization
Batchnorm
Batchnorm
LayerNorm
LayerNorm
LayerNorm
LayerNorm
LayerNorm
Batchnorm

No

Normalization
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm

No

variance of each pixel. We use reconstruction error as per-step loss function.

Operation
Convolution
Convolution
Convolution

Fully Connected
Fully Connected
Fully Connected
Fully Connected
Fully Connected
Strided Convolution
Strided Convolution
Strided Convolution

Table 3: Hyperparameters for Cifar experiments, for each layer of the encoder-decoder (each row of
the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and variance

Kernel
5x5
5x5
5x5

5x5
5x5
5x5

Strides

NS NS S R

Feature Maps
64
128
256

Normalization
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm
Batchnorm

No

of each pixel. We use reconstruction error as per-step loss function.

Non Linearity
Relu
Relu

Leaky Relu
Leaky Relu
Leaky Relu
Leaky Relu
Leaky Relu
Relu
None

Non Linearity
Relu
Relu
Relu
Relu
Relu
Relu
Relu
Relu
Relu
Relu
None

Non Linearity
Relu
Relu
Relu
Relu
Relu
Relu
Relu
Relu
Relu
Relu
None

Hidden Units

1568 * 1024
1024 * 1024
1024 * 1024
1024 * 1024
1024 * 1568

Hidden Units

16384 * 1024
1024 * 1024
1024 * 1024
1024 * 1024
1024 * 16384

Hidden Units

4096 * 2048
2048 * 2048
2048 * 2048
2048 * 2048
2048 * 4096
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Figure 4: VW samples on Cifar10 using Gaussian noise in the transition operator. Model is trained
using 30 steps to walk away and samples are generated using 30 annealing steps.

6 Walkback Procedure Details

The variational walkback algorithm has three unique hyperparameters. We specify the number of
Walkback steps used during training, the number of extra Walkback steps used during sampling and
also the temperature increase per step.

The most conservative setting would be to allow the model to slowly increase the temperature during
training. However, this would require a large number of steps for the model to walk to the noise, and
this would not only significantly slow down the training process, but this also means that we would
require a large number of steps used for sampling.

There may exist a dynamic approach for setting the number of Walkback steps and the temperature
schedule. In our work, we set this hyperparameters heuristically. We found that a heating temperature
schedule of T} = TyV/2¢ at step ¢ produced good results, where Tjy = 1.0 is the initial temperature.

During sampling, we found good results using the exactly reversed schedule: T; = V2N \where ¢ is

Vvt
the step index and NV is the total number of cooling steps.

For MNIST, CIFAR, SVHN and CelelbA, we use K = 30 training steps and N = 30 sampling steps.
We also found that we could achieve better quality results if allow the model to run for a few extra
steps with a temperature of 1 during sampling. Finally, our model is able to achieve similar results
compared to the NET model(Sohl-Dickstein et al., 2015). Considering our model uses only 30 steps
for MNIST and NET (Sohl-Dickstein et al.l [2015) uses 1000 steps for MNIST.
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Figure 5: VW samples on SVHN dataset using Gaussian noise in the transition operator. Model is
trained using 30 steps to walk away and samples are generated using 30 annealing steps.

7 Higher Lower Bound: not always better samples

We have observed empirically that the variational lower bound does not necessarily correspond to
sample quality. Among trained models, higher value of the lower bound is not a clear indication
of visually better looking samples. Our MNIST samples shown in Fig[T3]is an example of this
phenomenon. A model with better lower bound could give better reconstructions while not producing

better generated samples. This resonates with the finding of 2016)

8 Reversibility of transition operator

We measured the degree of reversibility of pp by estimating the KL divergence
Dk (pr(s'|s)mr(s) || pr(s|s’)mr(s")), which is 0 if and only if pr obeys detailed balance and

. . . . . . 1 K pr (St+1 ‘St)
is theref;)(re time-reversal invariant by computing the Monte-Carlo estimator 3= >, ; In prlsilsi)’

where si* is a long sequence sampled by repeatedly applying transition operator py from a draw
s1 ~ 7, i.e., taking samples after a burn-in period (50 samples).

To get a sense of the magnitude of this reversibility measure, and because it corresponds to an
estimated KL divergence, we estimate the corresponding entropy (of the forward trajectory) and use
it as a normalizing denominator telling us how much we depart from reversibility in nats relative to
the number of nats of entropy. To justify this, consider that the minimal code length required to code
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Figure 6: The proposed modeling framework trained on 2-d swiss roll data. This algorithm was
trained on 2D swiss roll for 30 annealing steps using annealing schedule increasing temperator by
1.1 each time. We have shown every 5th sample (ordering is row wise, and within each row it is
column-wise.

Figure 7: The proposed modeling framework trained on circle data. This algorithm was trained on
circle for 30 annealing time steps using annealing schedule increasing temperature by factor 1.1 each
time. We have shown every 5th sample (ordering is row wise, and within each row it is column-wise.

samples from a distribution p is the entropy H (p). But suppose we evaluate those samples from p
using ¢ instead to code them. Then the code length is H(p) + D(p||q). So the fractional increase
in code length due to having the wrong distribution is D(p||q)/H (p), which is what we report here,
with p being the forward transition probability and ¢ the backward transition probability.

To compute this quantity, we took our best model (in terms of best lower bound) on MNIST, and ran
it for 1000 time steps i.e (7" = 1000), at a constant temperature.

We run the learned generative chain p for T time steps (after a burn in period
whose samples we ignore) getting s9 — S — S2 — ---sp and computing
logp(sp — 81 — 82 — -+~ s7)/p(sT — -+ = $2 — s1) both under the same generative chain, di-
vided by 7' to get the per-step average.

On the same set of runs, we compute 1/7T xlog p(sg — $1 — s2 — - - - $7) under the same generative
chain. This is an estimate of the entropy per unit time of the chain. This is repeated multiple times to
average over many runs and reduce the variance of the estimator.
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Figure 8: VW sample chain (vertically, going down) starting from pure noise. Model trained using
K = 30 steps to walk away and samples are generated using 30 steps of annealing. The figure shows
every 3rd sample of the chain in each column.

The obtained ratio (nats/nats) is 3.6%, which seems fairly low but also suggests that the trained model
is not perfectly reversible.

9 Some Minor Points

e In all the image experiments, we observed that by having different batchnorm papemeters
for different steps, actually improves the result considerably. Having different batchnorm
parameters was also necessery for making it work on mixture on gaussian. The authors were
not able to make it work on MoG without different parameters. One possible way, could be
to let optimizer know that we are on different step by giving the temperature information to
the optimizer too.

e We observed better results while updating the parameters in online-mode, as compared to
batch mode. (i.e instead of accumulating gradients across different steps, we update the
parameters in an online fashion)
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Figure 9: VW sample chain. Each coloumn above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.

10 Inception Scores on CIFAR

We computed the inception scores using 50,000 samples generated by our model. We compared the
inception scores with (Salimans et al.,[2016)) as the baseline model.
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Figure 10: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
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Figure 11: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps temperature = 1.

Operation Kernel | Strides | Feature Maps | Normalization | Non Linearity
Convolution 5x5 2 64 Batchnorm Relu
Convolution 5x5 2 128 Batchnorm Relu
Convolution 5x5 2 256 Batchnorm Relu

Fully Connected - - - Batchnorm Relu
Fully Connected - - - Batchnorm Relu
Fully Connected - - - Batchnorm Relu
Fully Connected - - - Batchnorm Relu
Fully Connected - - - Batchnorm Relu
Strided Convolution 5x5 2 128 Batchnorm Relu
Strided Convolution 5x5 2 64 Batchnorm Relu
Strided Convolution 5x5 2 3 No None

Table 4: Hyperparameters for SVHN experiments, for each layer of the encoder-decoder (each row of
the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and variance
of each pixel. We use reconstruction error as per-step loss function.

11

Hidden Units

4096 * 1024
1024 * 1024
1024 * 1024
1024 * 1024
1024 * 4096
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Figure 12: VW sample chain. Each column above corresponds to one sampling chain.

shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good

samples.

Model Inception Score
Real Data 11.24
Salimans (semi-supervised) 8.09
Salimans (unsupervised) 4.36
Salimans (supervised training without minibatch features) 3.87
VW(20 steps) 3.72
VW(30 steps) 4.39 +0.2

Table 5: Inception scores on CIFAR

12
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Figure 13: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.
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Figure 14: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.
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Figure 15: Samples from two VW models (left and right) which have a higher lower bound than the
one whose samples are shown in Figure 5 (and comparable but slightly better importance sampling
estimators of the log-likelihood): yet, the generated samples are clearly not as good, suggesting
that either the bound is sometimes not tight enough or that the log-likelihood is not always a clear
indicator of sample quality.
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