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Abstract

We propose a novel method to directly learn a stochastic transition operator whose
repeated application provides generated samples. Traditional undirected graphical
models approach this problem indirectly by learning a Markov chain model whose
stationary distribution obeys detailed balance with respect to a parameterized energy
function. The energy function is then modified so the model and data distributions
match, with no guarantee on the number of steps required for the Markov chain to
converge. Moreover, the detailed balance condition is highly restrictive: energy
based models corresponding to neural networks must have symmetric weights,
unlike biological neural circuits. In contrast, we develop a method for directly
learning arbitrarily parameterized transition operators capable of expressing non-
equilibrium stationary distributions that violate detailed balance, thereby enabling
us to learn more biologically plausible asymmetric neural networks and more gen-
eral non-energy based dynamical systems. The proposed training objective, which
we derive via principled variational methods, encourages the transition operator to
"walk back" (prefer to revert its steps) in multi-step trajectories that start at data-
points, as quickly as possible back to the original data points. We present a series
of experimental results illustrating the soundness of the proposed approach, Varia-
tional Walkback (VW), on the MNIST, CIFAR-10, SVHN and CelebA datasets,
demonstrating superior samples compared to earlier attempts to learn a transition
operator. We also show that although each rapid training trajectory is limited to a
finite but variable number of steps, our transition operator continues to generate
good samples well past the length of such trajectories, thereby demonstrating the
match of its non-equilibrium stationary distribution to the data distribution. Source
Code: http://github.com/anirudh9119/walkback_nips17

1 Introduction
A fundamental goal of unsupervised learning involves training generative models that can understand
sensory data and employ this understanding to generate, or sample new data and make new inferences.
In machine learning, the vast majority of probabilistic generative models that can learn complex proba-
bility distributions over data fall into one of two classes: (1) directed graphical models, corresponding
to a finite time feedforward generative process (e.g. variants of the Helmholtz machine (Dayan
et al., 1995) like the Variational Auto-Encoder (VAE) (Kingma and Welling, 2013; Rezende et al.,
2014)), or (2) energy function based undirected graphical models, corresponding to sampling from a
stochastic process whose equilibrium stationary distribution obeys detailed balance with respect to the
energy function (e.g. various Boltzmann machines (Salakhutdinov and Hinton, 2009)). This detailed
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balance condition is highly restrictive: for example, energy-based undirected models corresponding
to neural networks require symmetric weight matrices and very specific computations which may not
match well with what biological neurons or analog hardware could compute.

In contrast, biological neural circuits are capable of powerful generative dynamics enabling us to
model the world and imagine new futures. Cortical computation is highly recurrent and therefore its
generative dynamics cannot simply map to the purely feed-forward, finite time generative process of
a directed model. Moreover, the recurrent connectivity of biological circuits is not symmetric, and so
their generative dynamics cannot correspond to sampling from an energy-based undirected model.

Thus, the asymmetric biological neural circuits of our brain instantiate a type of stochastic dynamics
arising from the repeated application of a transition operator∗ whose stationary distribution over
neural activity patterns is a non-equilibrium distribution that does not obey detailed balance with
respect to any energy function. Despite these fundamental properties of brain dynamics, machine
learning approaches to training generative models currently lack effective methods to model complex
data distributions through the repeated application a transition operator, that is not indirectly specified
through an energy function, but rather is directly parameterized in ways that are inconsistent with the
existence of any energy function. Indeed the lack of such methods constitutes a glaring gap in the
pantheon of machine learning methods for training probabilistic generative models.

The fundamental goal of this paper is to provide a step to filling such a gap by proposing a novel
method to learn such directly parameterized transition operators, thereby providing an empirical
method to control the stationary distributions of non-equilibrium stochastic processes that do not
obey detailed balance, and match these distributions to data. The basic idea underlying our training
approach is to start from a training example, and iteratively apply the transition operator while
gradually increasing the amount of noise being injected (i.e., temperature). This heating process
yields a trajectory that starts from the data manifold and walks away from the data due to the heating
and to the mismatch between the model and the data distribution. Similarly to the update of a
denoising autoencoder, we then modify the parameters of the transition operator so as to make the
reverse of this heated trajectory more likely under a reverse cooling schedule. This encourages the
transition operator to generate stochastic trajectories that evolve towards the data distribution, by
learning to walk back the heated trajectories starting at data points. This walkback idea had been
introduced for generative stochastic networks (GSNs) and denoising autoencoders (Bengio et al.,
2013b) as a heuristic, and without temperature annealing. Here, we derive the specific objective
function for learning the parameters through a principled variational lower bound, hence we call our
training method variational walkback (VW). Despite the fact that the training procedure involves
walking back a set of trajectories that last a finite, but variable number of time-steps, we find
empirically that this yields a transition operator that continues to generate sensible samples for many
more time-steps than are used to train, demonstrating that our finite time training procedure can sculpt
the non-equilibrium stationary distribution of the transition operator to match the data distribution.

We show how VW emerges naturally from a variational derivation, with the need for annealing
arising out of the objective of making the variational bound as tight as possible. We then describe
experimental results illustrating the soundness of the proposed approach on the MNIST, CIFAR-10,
SVHN and CelebA datasets. Intriguingly, we find that our finite time VW training process involves
modifications of variational methods for training directed graphical models, while our potentially
asymptotically infinite generative sampling process corresponds to non-equilibrium generalizations
of energy based undirected models. Thus VW goes beyond the two disparate model classes of
undirected and directed graphical models, while simultaneously incorporating good ideas from each.

2 The Variational Walkback Training Process
Our goal is to learn a stochastic transition operator pT (s′|s) such that its repeated application yields
samples from the data manifold. Here T reflects an underlying temperature, which we will modify
during the training process. The transition operator is further specified by other parameters which
must be learned from data. When K steps are chosen to generate a sample, the generative process
has joint probability p(sK0 ) = p(sK)

∏K
t=1 pTt(st−1|st), where Tt is the temperature at step t. We

first give an intuitive description of our learning algorithm before deriving it via variational methods
in the next section. The basic idea, as illustrated in Fig. 1 and Algorithm 1 is to follow a walkback

∗A transition operator maps the previous-state distribution to a next-state distribution, and is implemented by
a stochastic transformation which from the previous state of a Markov chain generates the next state
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Figure 1: Variational WalkBack framework. The generative process is represented in the blue arrows
with the sequence of pTt(st−1|st) transitions. The destructive forward process starts at a datapoint
(from qT0

(s0)) and gradually heats it through applications of qTt(st|st−1). Larger temperatures on
the right correspond to a flatter distribution, so the whole destructive forward process maps the data
distribution to a Gaussian and the creation process operates in reverse.

strategy similar to that introduced in Alain and Bengio (2014). In particular, imagine a destructive
process qTt+1

(st+1|st) (red arrows in Fig. 1), which starts from a data point s0 = x, and evolves it
stochastically to obtain a trajectory s0, . . . , sK ≡ sK0 , i.e., q(sK0 ) = q(s0)

∏K
t=1 qTt(st|st−1), where

q(s0) is the data distribution. Note that the p and q chains will share the same parameters for the
transition operator (one going backwards and one forward) but they start from different priors for
their first step: q(s0) is the data distribution while p(s0) is a flat factorized prior (e.g. Gaussian).
The training procedure trains the transition operator pT to make reverse transitions of the destructive
process more likely. For this reason we index time so the destructive process operates forward in time,
while the reverse generative process operates backwards in time, with the data distribution occurring
at t = 0. In particular, we need only train the transition operator to reverse time by 1-step at each step,
making it unnecessary to solve a deep credit assignment problem by performing backpropagation
through time across multiple walk-back steps. Overall, the destructive process generates trajectories
that walk away from the data manifold, and the transition operator pT learns to walkback these
trajectories to sculpt the stationary distribution of pT at T = 1 to match the data distribution.

Because we choose qT to have the same parameters as pT , they have the same transition operator but
not the same joint over the whole sequence because of differing initial distributions for each trajectory.
We also choose to increase temperature with time in the destructive process, following a temperature
schedule T1 ≤ · · · ≤ TK . Thus the forward destructive (reverse generative) process corresponds to a
heating (cooling) protocol. This training procedure is similar in spirit to DAE’s (Vincent et al., 2008)
or NET (Sohl-Dickstein et al., 2015) but with one major difference: the destructive process in these
works corresponds to the addition of random noise which knows nothing about the current generative
process during training. To understand why tying together destruction and creation may be a good
idea, consider the special case in which pT corresponds to a stochastic process whose stationary
distribution obeys detailed balance with respect to the energy function of an undirected graphical
model. Learning any such model involves two fundamental goals: the model must place probability
mass (i.e. lower the energy function) where the data is located, and remove probability mass (i.e.
raise the energy function) elsewhere. Probability modes where there is no data are known as spurious
modes, and a fundamental goal of learning is to hunt down these spurious modes and remove them.
Making the destructive process identical to the transition operator to be learned is motivated by the
notion that the destructive process should then efficiently explore the spurious modes of the current
transition operator. The walkback training will then destroy these modes. In contrast, in DAE’s and
NET’s, since the destructive process corresponds to the addition of unstructured noise that knows
nothing about the generative process, it is not clear that such an agnostic destructive process will
efficiently seek out the spurious modes of the reverse, generative process.

We chose the annealing schedule empirically to minimize training time. The generative process
starts by sampling a state sK from a broad Gaussian p∗(sK), whose variance is initially equal to
the total data variance σ2

max (but can be later adapted to match the final samples from the inference
trajectories). Then we sample from pTmax(sK−1|sK), where Tmax is a high enough temperature
so that the resultant injected noise can move the state across the whole domain of the data. The
injected noise used to simulate the effects of finite temperature has variance linearly proportional to
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temperature. Thus if σ2 is the equivalent noise injected by the transition operator pT at T = 1, we
choose Tmax =

σ2
max

σ2 to achieve the goal of the first sample sK−1 being able to move across the entire
range of the data distribution. Then we successively cool the temperature as we sample “previous”
states st−1 according to pT (st−1|st), with T reduced by a factor of 2 at each step, followed by n
steps at temperature 1. This cooling protocol requires the number of steps to be

K = log2 Tmax + n, (1)

in order to go from T = Tmax to T = 1 in K steps. We choose K from a random distribution.
Thus the training procedure trains pT to rapidly transition from a simple Gaussian distribution to
the data distribution in a finite but variable number of steps. Ideally, this training procedure should
then indirectly create a transition operator pT at T = 1 whose repeated iteration samples the data
distribution with a relatively rapid mixing time. Interestingly, this intuitive learning algorithm for a
recurrent dynamical system, formalized in Algorithm 1, can be derived in a principled manner from
variational methods that are usually applied to directed graphical models, as we see next.

Algorithm 1 VariationalWalkback(θ)
Train a generative model associated with a transition operator pT (s|s′) at temperature T (temperature
1 for sampling from the actual model), parameterized by θ. This transition operator injects noise of
variance Tσ2 at each step, where σ2 is the noise level at temperature 1.

Require: Transition operator pT (s|s′) from which one can both sample and compute the gradient
of log pT (s|s′) with respect to parameters θ, given s and s′.

Require: Precomputed σ2
max, initially data variance (or squared diameter).

Require: N1 > 1 the number of initial temperature-1 steps of q trajectory (or ending a p trajectory).
repeat

Set p∗ to be a Gaussian with mean and variance of the data.
Tmax ← σ2

max

σ2

Sample n as a uniform integer between 0 and N1

K ← ceil(log2 Tmax) + n
Sample x ∼ data (or equivalently sample a minibatch to parallelize computation and process
each element of the minibatch independently)
Let s0 = (x) and initial temperature T = 1, initialize L = 0
for t = 1 to K do

Sample st ∼ pT (s|st−1)
Increment L ← L+ log pT (st−1|st)
Update parameters with log likelihood gradient ∂ log pT (st−1|st)

∂θ
If t > n, increase temperature with T ← 2T

end for
Increment L ← L+ log p∗(sK)
Update mean and variance of p∗ to match the accumulated 1st and 2nd moment statistics of the
samples of sK

until convergence monitoring L on a validation set and doing early stopping =0

3 Variational Derivation of Walkback
The marginal probability of a data point s0 at the end of the K-step generative cooling process is

p(s0) =
∑
sK1

pT0
(s0|s1)

(
K∏
t=2

pTt(st−1|st)

)
p∗(sK) (2)

where sK1 = (s1, s2, . . . , sK) and v = s0 is a visible variable in our generative process, while the
cooling trajectory that lead to it can be thought of as a latent, hidden variable h = sK1 . Recall the
decomposition of the marginal log-likelihood via a variational lower bound,

ln p(v) ≡ ln
∑
h

p(v|h)p(h) =
∑
h

q(h|v) ln p(v, h)
q(h|v)︸ ︷︷ ︸

L

+DKL[q(h|v)||p(h|v)]. (3)
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Here L is the variational lower bound which motivates the proposed training procedure, and q(h|v) is
a variational approximation to p(h|v). Applying this decomposition to v = s0 and h = sK1 , we find

ln p(s0) =
∑
sk1

q(sk1 |s0) ln
p(s0|sk1)p(sk1)
q(sk1 |s0)

+DKL[q(s
k
1 |s0) || p(sk1 |s0)]. (4)

Similarly to the EM algorithm, we aim to approximately maximize the log-likelihood with a 2-step
procedure. Let θp be the parameters of the generative model p and θq be the parameters of the
approximate inference procedure q. Before seeing the next example we have θq = θp. Then in the
first step we update θp towards maximizing the variational bound L, for example by a stochastic
gradient descent step. In the second step, we update θq by setting θq ← θp, with the objective to
reduce the KL term in the above decomposition. See Sec. 3.1 below regarding conditions for the
tightness of the bound, which may not be perfect, yielding a possibly biased gradient when we force
the constraint θp = θq. We continue iterating this procedure, with training examples s0. We can
obtain an unbiased Monte-Carlo estimator of L as follows from a single trajectory:

L(s0) ≈
K∑
t=1

ln
pTt(st−1|st)
qTt(st|st−1)

+ ln p∗(sK) (5)

with respect to pθ, where s0 is sampled from the data distribution qT0(s
0), and the single sequence sK1

is sampled from the heating process q(sK1 |s0). We are making the reverse of heated trajectories more
likely under the cooling process, leading to Algorithm 1. Such variational bounds have been used
successfully in many learning algorithms in the past, such as the VAE (Kingma and Welling, 2013),
except that they use an explicitly different set of parameters for p and q. Some VAE variants (Sønderby
et al., 2016; Kingma et al., 2016) however mix the p-parameters implicitly in forming q, by using the
likelihood gradient to iteratively form the approximate posterior.

3.1 Tightness of the variational lower bound
As seen in (4), the gap between L(s0) and ln p(s0) is controlled by DKL[q(s

k
1 |s0)||p(sk1 |s0)], and is

therefore tight when the distribution of the heated trajectory, starting from a point s0, matches the
posterior distribution of the cooled trajectory ending at s0. Explicitly, this KL divergence is given by

DKL =
∑
sk1

q(sk1 |s0) ln
p(s0)

p∗(sK)

K∏
t=1

qTt(st|st−1)
pTt(st−1|st)

. (6)

As the heating process q unfolds forward in time, while the cooling process p unfolds backwards in
time, we introduce the time reversal of the transition operator pT , denoted by pRT , as follows. Under
repeated application of the transition operator pT , state s settles into a stationary distribution πT (s)
at temperature T . The probability of observing a transition st → st−1 under pT in its stationary state
is then pT (st−1|st)πT (st). The time-reversal pRT is the transition operator that makes the reverse
transition equally likely for all state pairs, and therefore obeys

PT (st−1|st)πT (st) = PRT (st|st−1)πT (st−1) (7)

for all pairs of states st−1 and st. It is well known that pRT is a valid stochastic transition operator and
has the same stationary distribution πT (s) as pT . Furthermore, the process pT obeys detailed balance
if and only if it is invariant under time-reversal, so that pT = pRT .

To better understand the KL divergence in (6), at each temperature Tt, we use relation (7) to replace
the cooling process PTt which occurs backwards in time with its time-reversal, unfolding forward in
time, at the expense of introducing ratios of stationary probabilities. We also exploit the fact that q
and p are the same transition operator. With these substitutions in (6), we find

DKL =
∑
sk1

q(sk1 |s0) ln
K∏
t=1

pTt(st|st−1)
pRTt(st|st−1)

+
∑
sk1

q(sk1 |s0) ln
p(s0)

p∗(sK)

K∏
t=1

πTt(st)

πTt(st−1)
. (8)

The first term in (8) is simply the KL divergence between the distribution over heated trajectories, and
the time reversal of the cooled trajectories. Since the heating (q) and cooling (p) processes are tied,
this KL divergence is 0 if and only if pTt = pRTt for all t. This time-reversal invariance requirement
for vanishing KL divergence is equivalent to the transition operator pT obeying detailed balance at all
temperatures.
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Now intuitively, the second term can be made small in the limit where K is large and the temperature
sequence is annealed slowly. To see why, note we can write the ratio of probabilities in this term as,

p(s0)

πT1
(s0)

πT1(s1)

πT2
(s1)
· · ·

πTK−1
(sK−1)

πTK−1
(sK)

πTK (sK)

p∗(sK)
. (9)

which is similar in shape (but arising in a different context) to the product of probability ratios
computed for annealed importance sampling (Neal, 2001) and reverse annealed importance sam-
pling (Burda et al., 2014). Here it is manifest that, under slow incremental annealing schedules, we
are comparing probabilities of the same state under slightly different distributions, so all ratios are
close to 1. For example, under many steps, with slow annealing, the generative process approximately
reaches its stationary distribution, p(s0) ≈ πT1

(s0).

This slow annealing to go from p∗(sK) to p(s0) corresponds to the quasistatic limit in statistical
physics, where the work required to perform the transformation is equal to the free energy difference
between states. To go faster, one must perform excess work, above and beyond the free energy differ-
ence, and this excess work is dissipated as heat into the surrounding environment. By writing the dis-
tributions in terms of energies and free energies: πTt(st) ∝ e−E(st)/Tt , p∗(sK) = e−[EK(sK)−FK ],
and p(s0) = e−[E0(s0)−F0], one can see that the second term in the KL divergence is closely related
to average heat dissipation in a finite time heating process (see e.g. (Crooks, 2000)).

This intriguing connection between the size of the gap in a variational lower bound, and the excess
heat dissipation in a finite time heating process opens the door to exploiting a wealth of work in
statistical physics for finding optimal thermodynamic paths that minimize heat dissipation (Schmiedl
and Seifert, 2007; Sivak and Crooks, 2012; Gingrich et al., 2016), which may provide new ideas
to improve variational inference. In summary, tightness of the variational bound can be achieved
if: (1) The transition operator of p approximately obeys detailed balance, and (2) the temperature
annealing is done slowly over many steps. And intriguingly, the magnitude of the looseness of the
bound is related to two physical quantities: (1) the degree of irreversiblity of the transition operator p,
as measured by the KL divergence between p and its time reversal pR, and (2) the excess physical
work, or equivalently, excess heat dissipated, in performing the heating trajectory.

To check, post-hoc, potential looseness of the variational lower bound, we can measure the degree of
irreversibility of pT by estimating the KL divergence DKL(pT (s

′|s)πT (s) || pT (s|s′)πT (s′)), which
is 0 if and only if pT obeys detailed balance and is therefore time-reversal invariant. This quantity
can be estimated by 1

K

∑K
t=1 ln

pT (st+1|st)
pT (st|st+1)

, where sK1 is a long sequence sampled by repeatedly
applying transition operator pT from a draw s1 ∼ πT . If this quantity is strongly positive (negative)
then forward transitions are more (less) likely than reverse transitions, and the process pT is not
time-reversal invariant. This estimated KL divergence can be normalized by the corresponding
entropy to get a relative value (with 3.6% measured on a trained model, as detailed in Appendix).

3.2 Estimating log likelihood via importance sampling
We can derive an importance sampling estimate of the negative log-likelihood by the following
procedure. For each training example x, we sample a large number of destructive paths (as in
Algorithm 1). We then use the following formulation to estimate the log-likelihood log p(x) via

logEx∼pD,qT0 (x)qT1 (s1|s0(x,))(
∏K
t=2 qTt (st|st−1))

pT0(s0 = x|s1)
(∏K

t=2 pTt(st−1|st)
)
p∗(sK)

qT0(x)qT1(s1|s0 = x)
(∏K

t=2 qTt(st|st−1)
)


(10)

3.3 VW transition operators and their convergence

The VW approach allows considerable freedom in choosing transition operators, obviating the need
for specifying them indirectly through an energy function. Here we consider Bernoulli and isotropic
Gaussian transition operators for binary and real-valued data respectively. The form of the stochastic
state update imitates a discretized version of the Langevin differential equation. The Bernoulli
transition operator computes the element-wise probability as ρ = sigmoid(

(1−α)∗st−1+α∗Fρ(st−1)
Tt

).
The Gaussian operator computes a conditional mean and standard deviation via µ = (1−α) ∗ st−1 +
α ∗ Fµ(st−1) and σ = Tt log(1 + eFσ(st−1)). Here the F functions can be arbitrary parametrized
functions, such as a neural net and Tt is the temperature at time step t.
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A natural question is when will the finite time VW training process learn a transition operator whose
stationary distribution matches the data distribution, so that repeated sampling far beyond the training
time continues to yield data samples. To partially address this, we prove the following theorem:

Proposition 1. If p has enough capacity, training data and training time, with slow enough annealing
and a small departure from reversibility so p can match q, then at convergence of VW training, the
transition operator pT at T = 1 has the data generating distribution as its stationary distribution.

A proof can be found in the Appendix, but the essential intuition is that if the finite time generative
process converges to the data distribution at multiple different VW walkback time-steps, then it
remains on the data distribution for all future time at T = 1. We cannot always guarantee the
preconditions of this theorem but we find experimentally that its essential outcome holds in practice.

4 Related Work
A variety of learning algorithms can be cast in the framework of Fig. 1. For example, for directed
graphical models like VAEs (Kingma and Welling, 2013; Rezende et al., 2014), DBNs (Hinton et al.,
2006), and Helmholtz machines in general, q corresponds to a recognition model, transforming data
to a latent space, while p corresponds to a generative model that goes from latent to visible data in
a finite number of steps. None of these directed models are designed to learn transition operators
that can be iterated ad infinitum, as we do. Moreover, learning such models involves a complex,
deep credit assignment problem, limiting the number of unobserved latent layers that can be used to
generate data. Similar issues of limited trainable depth in a finite time feedforward generative process
apply to Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), which also further
eschew the goal of specifically assigning probabilities to data points. Our method circumvents this
deep credit assignment problem by providing training targets at each time-step; in essence each past
time-step of the heated trajectory constitutes a training target for the future output of the generative
operator pT , thereby obviating the need for backpropagation across multiple steps. Similarly, unlike
VW, Generative Stochastic Networks (GSN) (Bengio et al., 2014) and the DRAW (Gregor et al.,
2015) also require training iterative operators by backpropagating across multiple computational
steps.

VW is similar in spirit to DAE (Bengio et al., 2013b), and NET approaches (Sohl-Dickstein et al.,
2015) but it retains two crucial differences. First, in each of these frameworks, q corresponds to
a very simple destruction process in which unstructured Gaussian noise is injected into the data.
This agnostic destruction process has no knowledge of underlying generative process p that is to
be learned, and therefore cannot be expected to efficiently explore spurious modes, or regions of
space, unoccupied by data, to which p assigns high probability. VW has the advantage of using a
high-temperature version of the model p itself as part of the destructive process, and so should be
better than random noise injection at finding these spurious modes. A second crucial difference is
that VW ties weights of the transition operator across time-steps, thereby enabling us to learn a bona
fide transition operator than can be iterated well beyond the training time, unlike DAEs and NET.
There’s also another related recent approach to learning a transition operator with a denoising cost,
developed in parallel, called Infusion training (Bordes et al., 2017), which tries to reconstruct the
target data in the chain, instead of the previous step in the destructive chain.

5 Experiments
VW is evaluated on four datasets: MNIST, CIFAR10 (Krizhevsky and Hinton, 2009), SVHN (Netzer
et al., 2011) and CelebA (Liu et al., 2015). The MNIST, SVHN and CIFAR10 datasets were used
as is except for uniform noise added to MNIST and CIFAR10, as per Theis et al. (2016), and the
aligned and cropped version of CelebA was scaled from 218 x 178 pixels to 78 x 64 pixels and
center-cropped at 64 x 64 pixels (Liu et al., 2015). We used the Adam optimizer (Kingma and Ba,
2014) and the Theano framework (Al-Rfou et al., 2016). More details are in Appendix and code for
training and generation is at http://github.com/anirudh9119/walkback_nips17.

Table 1 compares with published NET results on CIFAR.

Image Generation. Figure 3, 5, 6, 7, 8 (see supplementary section) show VW samples on each of
the datasets. For MNIST, real-valued views of the data are modeled. Image Inpainting. We clamped
the bottom part of CelebA test images (for each step during sampling), and ran it through the model.
Figure 1 (see Supplementary section) shows the generated conditional samples.
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Model bits/dim ≤
NET (Sohl-Dickstein et al., 2015) 5.40

VW(20 steps) 5.20
Deep VAE < 4.54

VW(30 steps) 4.40
DRAW (Gregor et al., 2015) < 4.13

ResNet VAE with IAF (Kingma et al., 2016) 3.11
Table 1: Comparisons on CIFAR10, test set average number of bits/data dimension(lower is better)

6 Discussion

6.1 Summary of results

Our main advance involves using variational inference to learn recurrent transition operators that
can rapidly approach the data distribution and then be iterated much longer than the training time
while still remaining on the data manifold. Our innovations enabling us to achieve this involved: (a)
tying weights across time, (b) tying the destruction and generation process together to efficiently
destroy spurious modes, (c) using the past of the destructive process to train the future of the creation
process, thereby circumventing issues with deep credit assignment (like NET), (d) introducing an
aggressive temperature annealing schedule to rapidly approach the data distribution (e.g. NET takes
1000 steps while VWB only takes 30 steps to do so), and (e) introducing variable trajectory lengths
during training to encourage the generator to stay on the data manifold for times longer than the
training sequence length.

Indeed, it is often difficult to sample from recurrent neural networks for many more time steps than
the duration of their training sequences, especially non-symmetric networks that could exhibit chaotic
activity. Transition operators learned by VW can be stably sampled for exceedingly long times; for
example, in experiments (see supplementary section) we trained our model on CelebA for 30 steps,
while at test time we sampled for 100000 time-steps. Overall, our method of learning a transition
operator outperforms previous attempts at learning transition operators (i.e. VAE, GSN and NET)
using a local learning rule.

Overall, we introduced a new approach to learning non-energy-based transition operators which
inherits advantages from several previous generative models, including a training objective that
requires rapidly generating the data in a finite number of steps (as in directed models), re-using the
same parameters for each step (as in undirected models), directly parametrizing the generator (as in
GANs and DAEs), and using the model itself to quickly find its own spurious modes (the walk-back
idea). We also anchor the algorithm in a variational bound and show how its analysis suggests to use
the same transition operator for the destruction or inference process, and the creation or generation
process, and to use a cooling schedule during generation, and a reverse heating schedule during
inference.

6.2 New bridges between variational inference and non-equilibrium statistical physics

We connected the variational gap to physical notions like reversibility and heat dissipation. This novel
bridge between variational inference and concepts like excess heat dissipation in non-equilbrium
statistical physics, could potentially open the door to improving variational inference by exploiting a
wealth of work in statistical physics. For example, physical methods for finding optimal thermody-
namic paths that minimize heat dissipation (Schmiedl and Seifert, 2007; Sivak and Crooks, 2012;
Gingrich et al., 2016), could potentially be exploited to tighten lowerbounds in variational inference.
Moreover, motivated by the relation between the variational gap and reversibility, we verified empiri-
cally that the model converges towards an approximately reversible chain (see Appendix) making the
variational bound tighter.

6.3 Neural weight asymmetry

A fundamental aspect of our approach is that we can train stochastic processes that need not exactly
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obey detailed balance, yielding access to a larger and potentially more powerful space of models. In
particular, this enables us to relax the weight symmetry constraint of undirected graphical models
corresponding to neural networks, yielding a more brain like iterative computation characteristic
of asymmetric biological neural circuits. Our approach thus avoids the biologically implausible
requirement of weight transport (Lillicrap et al., 2014) which arises as a consequence of imposing
weight symmetry as a hard constraint. With VW, this hard constraint is removed, although the
training procedure itself may converge towards more symmetry. Such approach towards symmetry is
consistent with both empirical observations (Vincent et al., 2010) and theoretical analysis (Arora et al.,
2015) of auto-encoders, for which symmetric weights are associated with minimizing reconstruction
error.

6.4 A connection to the neurobiology of dreams
The learning rule underlying VW, when applied to an asymmetric stochastic neural network, yields a
speculative, but intriguing connection to the neurobiology of dreams. As discussed in Bengio et al.
(2015), spike-timing dependent plasticity (STDP), a plasticity rule found in the brain (Markram
and Sakmann, 1995), corresponds to increasing the probability of configurations towards which the
network intrinsically likes to go (i.e., remembering observed configurations), while reverse-STDP
corresponds to forgetting or unlearning the states towards which the network goes (which potentially
may occur during sleep).

In the VW update applied to a neural network, the resultant learning rule does indeed strengthen
synapses for which a presynaptic neuron is active before a postsynaptic neuron in the generative
cooling process (STDP), and it weakens synapses in which a postsynaptic neuron is active before a
presynaptic neuron in the heated destructive process (reverse STDP). If, as suggested, the neurobio-
logical function of sleep involves re-organizing memories and in particular unlearning spurious modes
through reverse-STDP, then the heating destructive process may map to sleep states, in which the
brain is hunting down and destroying spurious modes. In contrast, the cooling generative dynamics
of VW may map to awake states in which STDP reinforces neural trajectories moving towards
observed sensory data. Under this mapping, the relative incoherence of dreams compared to reality
is qualitatively consistent with the heated destructive dynamics of VW, compared to the cooled
transition operator in place during awake states.

6.5 Future work
Many questions remain open in terms of analyzing and extending VW. Of particular interest is the
incorporation of latent layers. The state at each step would now include both visible x and latent
h components. Essentially the same procedure can be run, except for the chain initialization, with
s0 = (x,h0) where h0 a sample from the posterior distribution of h given x.

Another interesting direction is to replace the log-likelihood objective at each step by a GAN-like
objective, thereby avoiding the need to inject noise independently on each of the pixels, during
each transition step, and allowing latent variable sampling to inject the required high-level decisions
associated with the transition. Based on the earlier results from (Bengio et al., 2013a), sampling in
the latent space rather than in the pixel space should allow for better generative models and even
better mixing between modes (Bengio et al., 2013a).

Overall, our work takes a step to filling a relatively open niche in the machine learning literature on
directly training non-energy-based iterative stochastic operators, and we hope that the many possible
extensions of this approach could lead to a rich new class of more powerful brain-like machine
learning models.
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