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Abstract

We propose a DC proximal Newton algorithm for solving nonconvex regularized
sparse learning problems in high dimensions. Our proposed algorithm integrates
the proximal newton algorithm with multi-stage convex relaxation based on the
difference of convex (DC) programming, and enjoys both strong computational and
statistical guarantees. Specifically, by leveraging a sophisticated characterization
of sparse modeling structures (i.e., local restricted strong convexity and Hessian
smoothness), we prove that within each stage of convex relaxation, our proposed
algorithm achieves (local) quadratic convergence, and eventually obtains a sparse
approximate local optimum with optimal statistical properties after only a few
convex relaxations. Numerical experiments are provided to support our theory.

1 Introduction
We consider a high dimensional regression or classification problem: Given n independent observa-
tions {xi, yi}n

i=1

⇢ Rd ⇥R sampled from a joint distribution D(X, Y ), we are interested in learning
the conditional distribution P(Y |X) from the data. A popular modeling approach is the Generalized
Linear Model (GLM) [20], which assumes

P (Y |X; ✓⇤
) / exp

✓
Y X>✓⇤ �  (X>✓⇤

)

c(�)

◆
,

where c(�) is a scaling parameter, and  is the cumulant function. A natural approach to estimate
✓⇤ is the Maximum Likelihood Estimation (MLE) [25], which essentially minimizes the negative
log-likelihood of the data given parameters. However, MLE often performs poorly in parameter
estimation in high dimensions due to the curse of dimensionality [6].

To address this issue, machine learning researchers and statisticians follow Occam’s razor principle,
and propose sparse modeling approaches [3, 26, 30, 32]. These sparse modeling approaches assume
that ✓⇤ is a sparse vector with only s⇤ nonzero entries, where s⇤ < n ⌧ d. This implies that
many variables in X are essentially irrelevant to modeling, which is very natural to many real world
applications such as genomics and medical imaging [7, 21]. Many empirical results have corroborated
the success of sparse modeling in high dimensions. Specifically, many sparse modeling approaches
obtain a sparse estimator of ✓⇤ by solving the following regularized optimization problem,

✓ = argmin

✓2Rd

L(✓) + R�tgt(✓), (1)

where L : Rd ! R is the convex negative log-likelihood (or pseudo-likelihood) function, R�tgt :

Rd ! R is a sparsity-inducing decomposable regularizer, i.e., R�tgt(✓) =

Pd
j=1

r�tgt(✓j) with
r�tgt : R ! R, and �

tgt

> 0 is the regularization parameter. Many existing sparse modeling
approaches can be cast as special examples of (1), such as sparse linear regression [30], sparse logistic
regression [32], and sparse Poisson regression [26].
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Given a convex regularizer, e.g., R
tgt

(✓) = �
tgt

||✓||
1

[30], we can obtain global optima in polynomial
time and characterize their statistical properties. However, convex regularizers incur large estimation
bias. To address this issue, several nonconvex regularizers are proposed, including the minimax
concave penalty (MCP, [39]), smooth clipped absolute deviation (SCAD, [8]), and capped `

1

-
regularization [40]. The obtained estimator (e.g., hypothetically global optima to (1)) can achieve
faster statistical rates of convergence than their convex counterparts [9, 16, 22, 34].

Despite of these superior statistical guarantees, nonconvex regularizers raise greater computational
challenge than convex regularizers in high dimensions. Popular iterative algorithms for convex
optimization, such as proximal gradient descent [2, 23] and coordinate descent [17, 29], no longer
have strong global convergence guarantees for nonconvex optimization. Therefore, establishing
statistical properties of the estimators obtained by these algorithms becomes very challenging, which
explains why existing theoretical studies on computational and statistical guarantees for nonconvex
regularized sparse modeling approaches are so limited until recent rise of a new area named “statistical
optimization”. Specifically, machine learning researchers start to incorporate certain structures of
sparse modeling (e.g. restricted strong convexity, large regularization effect) into the algorithmic
design and convergence analysis for optimization. This further motivates a few recent progresses:
[16] propose proximal gradient algorithms for a family of nonconvex regularized estimators with a
linear convergence to an approximate local optimum with suboptimal statistical guarantees; [34, 43]
further propose homotopy proximal gradient and coordinate gradient descent algorithms with a linear
convergence to a local optimum and optimal statistical guarantees; [9, 41] propose a multistage
convex relaxation-based (also known as Difference of Convex (DC) Programming) proximal gradient
algorithm, which can guarantee an approximate local optimum with optimal statistical properties.
Their computational analysis further shows that within each stage of the convex relaxation, the
proximal gradient algorithm achieves a (local) linear convergence to a unique sparse global optimum
for the relaxed convex subproblem.

The aforementioned approaches only consider first order algorithms, such as proximal gradient
descent and proximal coordinate gradient descent. The second order algorithms with theoretical
guarantees are still largely missing for high dimensional nonconvex regularized sparse modeling
approaches, but this does not suppress the enthusiasm of applying heuristic second order algorithms
to real world problems. Some evidences have already corroborated their superior computational
performance over first order algorithms (e.g. glmnet [10]). This further motivates our attempt
towards understanding the second order algorithms in high dimensions.

In this paper, we study a multistage convex relaxation-based proximal Newton algorithm for noncon-
vex regularized sparse learning. This algorithm is not only highly efficient in practice, but also enjoys
strong computational and statistical guarantees in theory. Specifically, by leveraging a sophisticated
characterization of local restricted strong convexity and Hessian smoothness, we prove that within
each stage of convex relaxation, our proposed algorithm maintains the solution sparsity, and achieves
a (local) quadratic convergence, which is a significant improvement over (local) linear convergence
of proximal gradient algorithm in [9] (See more details in later sections). This eventually allows us to
obtain an approximate local optimum with optimal statistical properties after only a few relaxations.
Numerical experiments are provided to support our theory. To the best of our knowledge, this is the
first of second order based approaches for high dimensional sparse learning using convex/nonconvex
regularizers with strong statistical and computational guarantees.

Notations: Given a vector v 2 Rd, we denote the p-norm as ||v||p = (

Pd
j=1

|vj |p)1/p for
a real p > 0 and the number of nonzero entries as ||v||

0

=

P
j 1(vj 6= 0) and v\j =

(v
1

, . . . , vj�1

, vj+1

, . . . , vd)
> 2 Rd�1 as the subvector with the j-th entry removed. Given an

index set A ✓ {1, ..., d}, A? = {j | j 2 {1, ..., d}, j /2 A} is the complementary set to A. We use
vA to denote a subvector of v indexed by A. Given a matrix A 2 Rd⇥d, we use A⇤j (Ak⇤) to denote
the j-th column (k-th row) and ⇤

max

(A) (⇤
min

(A)) as the largest (smallest) eigenvalue of A. We
define ||A||2

F

=

P
j ||A⇤j ||2

2

and ||A||
2

=

p
⇤

max

(A>A). We denote A\i\j as the submatrix of A
with the i-th row and the j-th column removed, A\ij (Ai\j) as the j-th column (i-th row) of A with
its i-th (j-th) entry removed, and AAA as a submatrix of A with both row and column indexed by
A. If A is a PSD matrix, we define ||v||A =

p
v>Av as the induced seminorm for vector v. We use

conventional notation O(·), ⌦(·),⇥(·) to denote the limiting behavior, ignoring constant, and OP (·)
to denote the limiting behavior in probability. C

1

, C
2

, . . . are denoted as generic positive constants.
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2 DC Proximal Newton Algorithm

Throughout the rest of the paper, we assume: (1) L(✓) is nonstrongly convex and twice continuously
differentiable, e.g., the negative log-likelihood function of the generalized linear model (GLM);
(2) L(✓) takes an additive form, i.e., L(✓) =

1

n

Pn
i=1

`i(✓), where each `i(✓) is associated with an
observation (xi, yi) for i = 1, ..., n. Take GLM as an example, we have `i(✓) =  (x>

i ✓) � yix
>
i ✓,

where  is the cumulant function.

For nonconvex regularization, we use the capped `
1

regularizer [40] defined as

R�tgt(✓) =

dX

j=1

r
tgt

(✓j) = �
tgt

dX

j=1

min{|✓j |,��tgt},

where � > 0 is an additional tuning parameter. Our algorithm and theory can also be extended to the
SCAD and MCP regularizers in a straightforward manner [8, 39]. As shown in Figure 1, r�tgt(✓j)

can be decomposed as the difference of two convex functions [5], i.e.,

= �

θj θj θj

Figure 1: The capped `1 regularizer is the difference of two con-
vex functions. This allows us to relax the nonconvex regularizer
based the concave duality.

r�(✓j) = �|✓j ||{z}
convex

� max{�|✓j | � ��2, 0}
| {z }

convex

.

This motivates us to apply the difference
of convex (DC) programming approach
to solve the nonconvex problem. We then
introduce the DC proximal Newton algo-
rithm, which contains three components:
the multistage convex relaxation, warm
initialization, and proximal Newton algo-
rithm.

(I) The multistage convex relaxation is essentially a sequential optimization framework [40]. At
the (K + 1)-th stage, we have the output solution from the previous stage b✓{K}. For notational
simplicity, we define a regularization vector as �{K+1}

= (�
{K+1}
1

, ...,�
{K+1}
d )

>, where �{K+1}
j =

�
tgt

· 1(|b✓{K}
j |  ��

tgt

) for all j = 1, . . . , d. Let � be the Hadamard (entrywise) product. We solve
a convex relaxation of (1) at ✓ =

b✓{K} as follows,

✓
{K+1}

= argmin

✓2Rd

F�{K+1}(✓), where F�{K+1}(✓) = L(✓) + ||�{K+1} � ✓||
1

, (2)

where ||�{K+1} � ✓||
1

=

Pd
j=1

�
{K+1}
j |✓j |. One can verify that ||�{K+1} � ✓||

1

is essentially
a convex relaxation of R�tgt(✓) at ✓ =

b✓{K} based on the concave duality in DC programming.

We emphasis that ✓
{K}

denotes the unique sparse global optimum for (2) (The uniqueness will be
elaborated in later sections), and b✓{K} denotes the output solution for (2) when we terminate the
iteration at the K-th convex relaxation stage. The stopping criterion will be explained later.

(II) The warm initialization is the first stage of DC programming, where we solve the `
1

regularized
counterpart of (1),

✓
{1}

= argmin

✓2Rd

L(✓) + �
tgt

||✓||
1

. (3)

This is an intuitive choice for sparse statistical recovery, since the `
1

regularized estimator can give
us a good initialization, which is sufficiently close to ✓⇤. Note that this is equivalent to (2) with
�

{1}
j = �

tgt

for all j = 1, . . . , d, which can be viewed as the convex relaxation of (1) at b✓{0}
= 0

for the first stage.

(III) The proximal Newton algorithm proposed in [12] is then applied to solve the convex sub-
problem (2) at each stage, including the warm initialization (3). For notational simplicity, we omit
the stage index {K} for all intermediate updates of ✓, and only use (t) as the iteration index within
the K-th stage for all K � 1. Specifically, at the K-th stage, given ✓(t) at the t-th iteration of the
proximal Newton algorithm, we consider a quadratic approximation of (2) at ✓(t) as follows,

Q(✓; ✓(t),�{K}
) = L(✓(t)) + (✓ � ✓(t))>rL(✓(t)) +

1

2

||✓ � ✓(t)||2r2L(✓(t)) + ||�{K} � ✓||
1

, (4)
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where ||✓ � ✓(t)||2r2L(✓(t))
= (✓ � ✓(t))>r2L(✓(t))(✓ � ✓(t)). We then take ✓(t+

1
2 )

=

argmin✓ Q(✓; ✓(t),�{K}
). Since L(✓) =

1

n

Pn
i=1

`i(✓) takes an additive form, we can avoid
directly computing the d by d Hessian matrix in (4). Alternatively, in order to reduce the memory
usage when d is large, we rewrite (4) as a regularized weighted least square problem as follows

Q(✓; ✓(t)) =

1

n

nX

i=1

wi(zi � x>
i ✓)

2

+ ||�{K} � ✓||
1

+ constant, (5)

where wi’s and zi’s are some easy to compute constants depending on ✓(t), `i(✓(t))’s, xi’s, and yi’s.
Remark 1. Existing literature has shown that (5) can be efficiently solved by coordinate descent
algorithms in conjunction with the active set strategy [43]. See more details in [10] and Appendix B.

For the first stage (i.e., warm initialization), we require an additional backtracking line search
procedure to guarantee the descent of the objective value [12]. Specifically, we denote

�✓(t) = ✓(t+
1
2 ) � ✓(t).

Then we start from ⌘t = 1 and use backtracking line search to find the optimal ⌘t 2 (0, 1] such that
the Armijo condition [1] holds. Specifically, given a constant µ 2 (0.9, 1), we update ⌘t = µq from
q = 0 and find the smallest integer q such that

F�{1}(✓(t) + ⌘t�✓
(t)

)  F�{1}(✓(t)) + ↵⌘t�t,

where ↵ 2 (0, 1

2

) is a fixed constant and

�t = rL
⇣
✓(t)
⌘>

· �✓(t) + ||�{1} �
⇣
✓(t) + �✓(t)

⌘
||
1

� ||�{1} � ✓(t)||
1

.

We then set ✓(t+1) as ✓(t+1)

= ✓(t) + ⌘t�✓
(t). We terminate the iterations when the following

approximate KKT condition holds:

!�{1}

⇣
✓(t)
⌘

:= min

⇠2@||✓(t)||1
||rL(✓(t)) + �{1} � ⇠||1  ",

where " is a predefined precision parameter. Then we set the output solution as b✓{1}
= ✓(t). Note that

b✓{1} is then used as the initial solution for the second stage of convex relaxation (2). The proximal
Newton algorithm with backtracking line search is summarized in Algorithm 2 in Appendix.

Such a backtracking line search procedure is not necessary at K-th stage for all K � 2. In other
words, we simply take ⌘t = 1 and ✓(t+1)

= ✓(t+
1
2 ) for all t � 0 when K � 2. This leads to more

efficient updates for the proximal Newton algorithm from the second stage of convex relaxation (2).
We summarize our proposed DC proximal Newton algorithm in Algorithm 1 in Appendix.

3 Computational and Statistical Theories

Before we present our theoretical results, we first introduce some preliminaries, including important
definitions and assumptions. We define the largest and smallest s-sparse eigenvalues as follows.
Definition 2. We define the largest and smallest s-sparse eigenvalues of r2L(✓) as

⇢+s = sup

kvk0s

v>r2L(✓)v

v>v
and ⇢�

s = inf

kvk0s

v>r2L(✓)v

v>v

for any positive integer s. We define s =

⇢+s
⇢�s

as the s-sparse condition number.

The sparse eigenvalue (SE) conditions are widely studied in high dimensional sparse modeling prob-
lems, and are closely related to restricted strong convexity/smoothness properties and restricted eigen-
value properties [22, 27, 33, 44]. For notational convenience, given a parameter ✓2 Rd and a real con-
stant R > 0, we define a neighborhood of ✓ with radius R as B(✓, R) :=

�
� 2 Rd | ||�� ✓||

2

 R
 

.

Our first assumption is for the sparse eigenvalues of the Hessian matrix over a sparse domain.
Assumption 1. Given ✓ 2 B(✓⇤, R) for a generic constant R, there exists a generic constant C

0

such
that r2L(✓) satisfies SE with parameters 0 < ⇢�

s⇤
+2es < ⇢+s⇤

+2es < +1, where es � C
0

2s⇤
+2es s⇤

and s⇤
+2es =

⇢+
s⇤+2es

⇢�
s⇤+2es

.
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Assumption 1 requires that L(✓) has finite largest and positive smallest sparse eigenvalues, given ✓ is
sufficiently sparse and close to ✓⇤. Analogous conditions are widely used in high dimensional analysis
[13, 14, 34, 35, 43], such as the restricted strong convexity/smoothness of L(✓) (RSC/RSS, [6]). Given
any ✓, ✓0 2 Rd, the RSC/RSS parameter can be defined as �(✓0, ✓) := L(✓0

)�L(✓)�rL(✓)>
(✓0�✓).

For notational simplicity, we define S = {j | ✓⇤
j 6= 0} and S? = {j | ✓⇤

j = 0}. The following
proposition connects the SE property to the RSC/RSS property.
Proposition 3. Given ✓, ✓0 2 B(✓⇤, R) with ||✓S? ||

0

 es and ||✓0
S?

||
0

 es, L(✓) satisfies
1

2

⇢�
s⇤

+2esk✓0 � ✓k2
2

 �(✓0, ✓)  1

2

⇢+s⇤
+2esk✓0 � ✓k2

2

.

The proof of Proposition 3 is provided in [6], and therefore is omitted. Proposition 3 implies that
L(✓) is essentially strongly convex, but only over a sparse domain (See Figure 2).

The second assumption requires r2L(✓) to be smooth over the sparse domain.
Assumption 2 (Local Restricted Hessian Smoothness). Recall that es is defined in Assumption 1.
There exist generic constants Ls⇤

+2es and R such that for any ✓, ✓0 2 B(✓⇤, R) with ||✓S? ||
0

 es
and ||✓0

S?
||
0

 es, we have supv2⌦, ||v||=1

v>
(r2L(✓0

) � r2L(✓))v  Ls⇤
+2es||✓ � ✓0||2

2

, where
⌦ = {v | supp(v) ✓ (supp(✓) [ supp(✓0

))}.

Assumption 2 guarantees that r2L(✓) is Lipschitz continuous within a neighborhood of ✓⇤ over a
sparse domain. The local restricted Hessian sm-
oothness is parallel to the local Hessian smooth-
ness for analyzing the proximal Newton method
in low dimensions [12].

In our analysis, we set the radius R as R :=

⇢�
s⇤+2es

2Ls⇤+2es
, where 2R =

⇢�
s⇤+2es

Ls⇤+2es
is the radius of the

region centered at the unique global minimizer
of (2) for quadratic convergence of the proximal
Newton algorithm. This is parallel to the radius
in low dimensions [12], except that we restrict
the parameters over the sparse domain.

Restricted Strongly Convex

Nonstrongly Convex

Figure 2: An illustrative two dimensional example of
the restricted strong convexity. L(✓) is not strongly
convex. But if we restrict ✓ to be sparse (Black Curve),
L(✓) behaves like a strongly convex function.

The third assumption requires the choice of �
tgt

to be appropriate.
Assumption 3. Given the true modeling parameter ✓⇤, there exists a generic constant C

1

such

that �
tgt

= C
1

q
log d

n � 4||rL(✓⇤
)||1. Moreover, for a large enough n, we have

p
s⇤�

tgt


C

2

R⇢�
s⇤

+2es.

Assumption 3 guarantees that the regularization is sufficiently large to eliminate irrelevant coordinates
such that the obtained solution is sufficiently sparse [4, 22]. In addition, �

tgt

can not be too
large, which guarantees that the estimator is close enough to the true model parameter. The above
assumptions are deterministic. We will verify them under GLM in the statistical analysis.

Our last assumption is on the predefined precision parameter " as follows.
Assumption 4. For each stage of solving the convex relaxation subproblems (2) for all K � 1, there
exists a generic constant C

3

such that " satisfies " =

C3p
n

 �tgt

8

.

Assumption 4 guarantees that the output solution b✓{K} at each stage for all K � 1 has a sufficient
precision, which is critical for our convergence analysis of multistage convex relaxation.

3.1 Computational Theory

We first characterize the convergence for the first stage of our proposed DC proximal Newton
algorithm, i.e., the warm initialization for solving (3).
Theorem 4 (Warm Initialization, K = 1). Suppose that Assumptions 1 ⇠ 4 hold. After sufficiently
many iterations T < 1, the following results hold for all t � T :

||✓(t) � ✓⇤||
2

 R and F�{1}(✓(t))  F�{1}(✓⇤
) +

15�2
tgt

s⇤

4⇢�
s⇤

+2es
,
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which further guarantee

⌘t = 1, ||✓(t)S?
||
0

 es and ||✓(t+1) � ✓
{1}||

2

 Ls⇤
+2es

2⇢�
s⇤

+2es
||✓(t) � ✓

{1}||2
2

,

where ✓
{1}

is the unique sparse global minimizer of (3) satisfying ||✓{1}
S?

||
0

 es and !�{1}(✓
{1}

) = 0.
Moreover, we need at most

T + log log

 
3⇢+s⇤

+2es
"

!

iterations to terminate the proximal Newton algorithm for the warm initialization (3), where the
output solution b✓{1} satisfies

||b✓{1}
S?

||
0

 es, !�{1}(b✓{1}
)  ", and ||b✓{1} � ✓⇤||

2

 18�
tgt

p
s⇤

⇢�
s⇤

+2es
.

The proof of Theorem 4 is provided in Appendix C.1. Theorem 4 implies: (I) The objective value is
sufficiently small after finite T iterations of the proximal Newton algorithm, which further guarantees
sparse solutions and good computational performance in all follow-up iterations. (II) The solution
enters the ball B(✓⇤, R) after finite T iterations. Combined with the sparsity of the solution, it further
guarantees that the solution enters the region of quadratic convergence. Thus the backtracking line
search stops immediately and output ⌘t = 1 for all t � T . (III) The total number of iterations is at
most O(T + log log

1

" ) to achieve the approximate KKT condition !�{1}(✓(t))  ", which serves as
the stopping criterion of the warm initialization (3).

Given these good properties of the output solution b✓{1} obtained from the warm initialization, we can
further show that our proposed DC proximal Newton algorithm for all follow-up stages (i.e., K � 2)
achieves better computational performance than the first stage. This is characterized by the following
theorem. For notational simplicity, we omit the iteration index {K} for the intermediate updates
within each stage for the multistage convex relaxation.
Theorem 5 (Stage K, K � 2). Suppose Assumptions 1 ⇠ 4 hold. Then for all iterations t = 1, 2, ...
within each stage K � 2, we have

||✓(t)S?
||
0

 es and ||✓(t) � ✓⇤||
2

 R,

which further guarantee

⌘t = 1, ||✓(t+1) � ✓
{K}||

2

 Ls⇤
+2es

2⇢�
s⇤

+2es
||✓(t) � ✓

{K}||2
2

, and F�{K}(✓(t+1)

) < F�{K}(✓(t)),

where ✓
{K}

is the unique sparse global minimizer of (2) at the K-th stage satisfying ||✓{K}
S?

||
0

 es
and !�{K}(✓

{K}
) = 0. Moreover, we need at most

log log

 
3⇢+s⇤

+2es
"

!
.

iterations to terminate the proximal Newton algorithm for the K-th stage of convex relaxation (2),
where the output solution b✓{K} satisfies ||b✓{K}

S?
||
0

 es, !�{K}(b✓{K}
)  ", and

||b✓{K} � ✓⇤||
2

 C
2

0

@krL(✓⇤
)Sk

2

+ �
tgt

sX

j2S
1(|✓⇤

j |  ��
tgt

)

2

+ "
p

s⇤

1

A

+ C
3

0.7K�1||b✓{1} � ✓⇤||
2

,

for some generic constants C
2

and C
3

.

The proof of Theorem 5 is provided in Appendix C.2. A geometric interpretation for the computational
theory of local quadratic convergence for our proposed algorithm is provided in Figure 3. From the
second stage of convex relaxation (2), i.e., K � 2, Theorem 5 implies: (I) Within each stage, the al-
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.

.

Region of Quadratic Convergence

Output Solution for the 2nd Stage

Output Solution for the Last Stage

Neighborhood of �� : B(��,R)

Initial Solution for Warm Initialization

Output Solution for Warm Initialization

��{0}

��{1}

��{2}

��{�K}

��

Figure 3: A geometric interpretation of local quadratic con-
vergence: the warm initialization enters the region of quadratic
convergence (orange region) after finite iterations and the
follow-up stages remain in the region of quadratic conver-
gence. The final estimator b✓{ eK} has a better estimation error
than the estimator b✓{1} obtained from the convex warm ini-
tialization.

gorithm maintains a sparse solution
throughout all iterations t � 1. The spar-
sity further guarantees that the SE property
and the restrictive Hessian smoothness hold,
which are necessary conditions for the fast
convergence of the proximal Newton algo-
rithm. (II) The solution is maintained in
the region B(✓⇤, R) for all t � 1. Com-
bined with the sparsity of the solution, we
have that the solution enters the region of
quadratic convergence. This guarantees that
we only need to set the step size ⌘t = 1 and
the objective value is monotonely decreas-
ing without the sophisticated backtracking
line search procedure. Thus, the proximal
Newton algorithm enjoys the same fast con-
vergence as in low dimensional optimiza-
tion problems [12].

(III) With the quadratic convergence rate, the number of iterations is at most O(log log

1

" ) to attain
the approximate KKT condition !�{K}(✓(t))  ", which is the stopping criteria at each stage.

3.2 Statistical Theory
Recall that our computational theory relies on deterministic assumptions (Assumptions 1 ⇠ 3).
However, these assumptions involve data, which are sampled from certain statistical distribution.
Therefore, we need to verify that these assumptions hold with high probability under mild data
generation process of (i.e., GLM) in high dimensions in the following lemma.
Lemma 6. Suppose that xi’s are i.i.d. sampled from a zero-mean distribution with covariance matrix
Cov(xi) = ⌃ such that 1 > c

max

� ⇤

max

(⌃) � ⇤

min

(⌃) � cmin > 0, and for any v 2 Rd,
v>xi is sub-Gaussian with variance at most a||v||2

2

, where c
max

, c
min

, and a are generic constants.
Moreover, for some constant M > 0, at least one of the following two conditions holds: (I) The
Hessian of the cumulant function  is uniformly bounded: || 00||1  M , or (II) The covariates are
bounded ||xi||1  1, and E[max|u|1

[ 00
(x>✓⇤

) + u]

p
]  M for some p > 2. Then Assumption 1

⇠ 3 hold with high probability.

The proof of Lemma 6 is provided in Appendix F. Given that these assumptions hold with high
probability, we know that the proximal Newton algorithm attains quadratic rate convergence within
each stage of convex relaxation with high probability. Then we establish the statistical rate of
convergence for the obtained estimator in parameter estimation.
Theorem 7. Suppose the observations are generated from GLM satisfying the condition in Lemma 6
for large enough n such that n � C

4

s⇤
log d and � = C

5

/c
min

is a constant defined in Section 2 for
generic constants C

4

and C
5

, then with high probability, the output solution b✓{K} satisfies

||b✓{K} � ✓⇤||
2

 C
6

 r
s⇤

n
+

r
s0

log d

n

!
+ C

7

0.7K

 r
s⇤

log d

n

!

for generic constants C
6

and C
7

, where s0
=

P
j2S 1(|✓⇤

j |  ��
tgt

)).

Theorem 7 is a direct result combining Theorem 5 and the analysis in [40]. As can be seen, s0

is essentially the number of nonzero ✓j’s with smaller magnitudes than ��
tgt

, which are often
considered as “weak” signals. Theorem 7 essentially implies that by exploiting the multi-stage convex
relaxation framework, our proposed DC proximal Newton algorithm gradually reduces the estimation
bias for “strong” signals, and eventually obtains an estimator with better statistical properties than
the `

1

-regularized estimator. Specifically, let eK be the smallest integer such that after eK stages of

convex relaxation we have C
7

0.7
eK
✓q

s⇤
log d
n

◆
 C

6

max

⇢q
s⇤

n ,
q

s0
log d
n

�
, which is equivalent

to requiring eK = O(log log d). This implies the total number of the proximal Newton updates being
at most O �T + log log

1

" · (1 + log log d)

�
. In addition, the obtained estimator attains the optimal
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statistical properties in parameter estimation:

||b✓{ eK} � ✓⇤||
2

 OP

✓q
s⇤

n +

q
s0

log d
n

◆
v.s. ||b✓{1} � ✓⇤||

2

 OP

✓q
s⇤

log d
n

◆
. (6)

Recall that b✓{1} is obtained by the warm initialization (3). As illustrated in Figure 3, this implies
the statistical rate in (6) for ||b✓{ eK} � ✓⇤||

2

obtained from the multistage convex relaxation for the
nonconvex regularized problem (1) is a significant improvement over ||b✓{1} � ✓⇤||

2

obtained from
the convex problem (3). Especially when s0 is small, i.e., most of nonzero ✓j’s are strong signals, our

result approaches the oracle bound3 OP

⇣q
s⇤

n

⌘
[8] as illustrated in Figure 4.

4 Experiments
We compare our DC Proximal Newton (DC+PN) algo-
rithm with two competing algorithms for solving the
nonconvex regularized sparse logistic regression prob-
lem. They are accelerated proximal gradient algorithm
(APG) implemented in the SPArse Modeling Software
(SPAMS, coded in C++ [18]), and accelerated coordinate
descent (ACD) algorithm implemented in R package
gcdnet (coded in Fortran, [36]). We further optimize
the active set strategy in gcdnet to boost its computa-
tional performance. To integrate these two algorithms
with the multistage convex relaxation framework, we
revise their source code.
To further boost the computational efficiency at each
stage of the convex relaxation, we apply the pathwise
optimization [10] for all algorithms in practice. Specifi-
cally, at each stage, we use a geometrically decreas-
ing sequence of regularization parameters {�

[m]

=

↵m�
[0]

}M
m=1

, where �
[0]

is the smallest value such that
the corresponding solution is zero, ↵ 2 (0, 1) is a shrin-

OP

 r
s⇤

n
+

r
s0

log d

n

!

Slow Bound: Convex OP

��
s�logd

n

�

Oracle Bound: OP

��
s�
n

�

Fast Bound: Nonconvex

Es
ti

m
at

io
n

Er
ro

r
�� �
{� K
} �

�
� � 2

Percentage of Strong Signals s��s�
s�

Figure 4: An illustration of the statistical rates
of convergence in parameter estimation. Our
obtained estimator has an error bound between
the oracle bound and the slow bound from the
convex problem in general. When the percentage
of strong signals increases, i.e., s0 decreases,
then our result approaches the oracle bound.

kage parameter and �
tgt

= �
[M ]

. For each �
[m]

, we apply the corresponding algorithm (DC+PN,
DC+APG, and DC+ACD) to solve the nonconvex regularized problem (1). Moreover, we initialize
the solution for a new regularization parameter �

[m+1]

using the output solution obtained with �
[m]

.
Such a pathwise optimization scheme has achieved tremendous success in practice [10, 15, 42]. We
refer [43] for detailed discussion of pathwise optimization.

Our comparison contains 3 datasets: “madelon” (n = 2000, d = 500, [11]), “gisette” (n = 2000,d =

5000, [11]), and three simulated datasets: “sim_1k” (d=1000), “sim_5k” (d=5000), and “sim_10k”
(d=10000) with the sample size n = 1000 for all three datasets. We set �

tgt

= 0.25

p
log d/n and

� = 0.2 for all settings here. We generate each row of the design matrix X independently from a
d-dimensional normal distribution N (0, ⌃), where ⌃jk = 0.5|j�k| for j, k = 1, ..., d. We generate
y ⇠ Bernoulli(1/[1 + exp(�X✓⇤

)]), where ✓⇤ has all 0 entries except randomly selected 20 entries.
These nonzero entries are independently sampled from Uniform(0, 1). The stopping criteria for all
algorithms are tuned such that they attain similar optimization errors.

All three algorithms are compared in wall clock time. Our DC+PN algorithm is implemented in
C with double precisions and called from R by a wrapper. All experiments are performed on a
computer with 2.6GHz Intel Core i7 and 16GB RAM. For each algorithm and dataset, we repeat
the algorithm 10 times and report the average value and standard deviation of the wall clock time in
Table 1. As can be seen, our DC+PN algorithm significantly outperforms the competing algorithms.
We remark that for increasing d, the superiority of DC+PN over DC+ACD becomes less significant
as the Newton method is more sensitive to ill conditioned problems. This can be mitigated by using a
denser sequence of {�

[m]

} along the solutions path.

We then illustrate the quadratic convergence of our DC+PN algorithm within each stage of the
convex relaxation using the “sim” dataset. Specifically, we plot the gap towards the optimal objective

3The oracle bound assumes that we know which variables are relevant in advance. It is not a realistic bound,
but only for comparison purpose.
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F�{K}(✓
{K}

) of the K-th stage versus the wall clock time in Figure 5. We see that our proposed DC
proximal Newton algorithm achieves quadratic convergence, which is consistent with our theory.

Table 1: Quantitive timing comparisons for the nonconvex regularized sparse logistic regression. The average
values and the standard deviations (in parenthesis) of the timing performance (in seconds) over 10 random trials
are presented.

madelon gisette sim_1k sim_5k sim_10k

DC+PN 1.51(±0.01)s 5.35(±0.11)s 1.07(±0.02)s 4.53(±0.06)s 8.82(±0.04)s
obj value: 0.52 obj value: 0.01 obj value: 0.01 obj value: 0.01 obj value: 0.01

DC+ACD 5.83(±0.03)s 18.92(±2.25)s 9.46(±0.09) s 16.20(±0.24) s 19.1(±0.56) s
obj value: 0.52 obj value: 0.01 obj value: 0.01 obj value: 0.01 obj value: 0.01

DC+APG 1.60(±0.03)s 207(±2.25)s 17.8(±1.23) s 111(±1.28) s 222(±5.79) s
obj value: 0.52 obj value: 0.01 obj value: 0.01 obj value: 0.01 obj value: 0.01

(a) Simulated Data (b) Gissete Data
Figure 5: Timing comparisons in wall clock time. Our proposed DC proximal Newton algorithm demonstrates
superior quadratic convergence and significantly outperforms the DC proximal gradient algorithm.

5 Discussions
We provide further discussions on the superior performance of our DC proximal Newton. There exist
two major drawbacks of existing multi-stage convex relaxation based first order algorithms:
(I) The first order algorithms have significant computational overhead in each iteration. For example,
for GLM, computing gradients requires frequently evaluating the cumulant function and its derivatives.
This often involves extensive non-arithmetic operations such as log(·) and exp(·) functions, which
naturally appear in the cumulant function and its derivates, are computationally expensive. To the best
of our knowledge, even if we use some efficient numerical methods for calculating exp(·) in [28, 19],
the computation still need at least 10 � 30 times more CPU cycles than basic arithmetic operations,
e.g., multiplications. Our proposed DC Proximal Newton algorithm cannot avoid calculating the
cumulant function and its derivatives, when computing quadratic approximations. The computation,
however, is much less intense, since the convergence is quadratic.
(II) The first order algorithms are computationally expensive with the step size selection. Although
for certain GLM, e.g., sparse logistic regression, we can choose the step size parameter as ⌘ =

4⇤

�1

max

(

1

n

Pn
i=1

xix
>
i ), such a step size often leads to poor empirical performance. In contrast, as

our theoretical analysis and experiments suggest, the proposed DC proximal Newton algorithm needs
very few line search steps, which saves much computational effort.

Some recent works on proximal Newton or inexact proximal Newton also demonstrate local quadratic
convergence guarantees [37, 38]. However, the conditions there are much more stringent than the
SE property in terms of the dependence on the problem dimensions. Specifically, their quadratic
convergence can only be guaranteed in a much smaller neighborhood. For example, the constant
nullspace strong convexity in [37], which plays the rule as the smallest sparse eigenvalue ⇢�

s⇤
+2es

in our analysis, is as small as 1

d . Note that ⇢�
s⇤

+2es can be (almost) independent of d in our case
[6]. Therefore, instead of a constant radius as in our analysis, they can only guarantee the quadratic
convergence in a region with radius O � 1d

�
, which is very small in high dimensions. A similar issue

exists in [38] that the region of quadratic convergence is too small.
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