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Abstract

Self-paced learning and hard example mining re-weight training instances to im-
prove learning accuracy. This paper presents two improved alternatives based on
lightweight estimates of sample uncertainty in stochastic gradient descent (SGD):
the variance in predicted probability of the correct class across iterations of mini-
batch SGD, and the proximity of the correct class probability to the decision
threshold. Extensive experimental results on six datasets show that our methods re-
liably improve accuracy in various network architectures, including additional gains
on top of other popular training techniques, such as residual learning, momentum,
ADAM, batch normalization, dropout, and distillation.

1 Introduction

Learning easier material before harder material is often beneficial to human learning. Inspired by
this observation, curriculum learning [5] has shown that learning from easier instances first can also
improve neural network training. When it is not known a priori which samples are easy, examples
with lower loss on the current model can be inferred to be easier and can be used in early training.
This strategy has been referred to as self-paced learning [25]. By decreasing the weight of difficult
examples in the loss function, the model may become more robust to outliers [33], and this method
has proven useful in several applications, especially with noisy labels [36].

Nevertheless, selecting easier examples for training often slows down the training process because
easier samples usually contribute smaller gradients, and the current model has already learned how to
make correct predictions on these samples. On the other hand, and somewhat ironically, the opposite
strategy (i.e., sampling harder instances more often) has been shown to accelerate (mini-batch)
stochastic gradient descent (SGD) in some cases, where the difficulty of an example can be defined by
its loss [18, 29, 44] or be proportional to the magnitude of its gradient [51, 1, 12, 13]. This strategy is
sometimes referred to as hard example mining [44].

In the literature, we can see that these two opposing strategies work well in different situations.
Preferring easier examples may be effective when either machines or humans try to solve a challenging
task containing more label noise or outliers. On the other hand, focusing on harder samples may
accelerate and stabilize SGD in cleaner data by minimizing the variance of gradients [1, 12]. However,
we often do not know how noisy our training dataset is. Motivated by this practical need, this paper
explores new methods of re-weighting training examples that are effective in both scenarios.

Intuitively, if a model has already predicted some examples correctly with high confidence, those
samples may be too easy to contain useful information for improving that model further. Similarly,
if some examples are always predicted incorrectly over many iterations of training, these examples
may just be too difficult/noisy and may degrade the model. This suggests that we should somehow
prefer uncertain samples that are predicted incorrectly sometimes during training and correctly at
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Figure 1: The proposed methods emphasize uncertain samples based on previous prediction history.

other times, as illustrated in Figure 1. This preference is consistent with common variance reduction
strategies in active learning [43].

Previous studies suggest that finding informative unlabeled samples to label is related to selecting
already-labeled samples to optimize the model parameters [14]. As reported in the previous stud-
ies [42, 6], models can sometimes achieve lower generalization error after being trained with only
a subset of actively selected training data. In other words, focusing on informative samples can be
beneficial even when all labels are available.

We propose two lightweight methods that actively emphasize uncertain samples to improve mini-
batch SGD for classification. One method measures the variance of prediction probabilities, while the
other one estimates the closeness between the prediction probabilities and the decision threshold. For
logistic regression, both methods can be proven to reduce the uncertainty in the model parameters
under reasonable approximations.

We present extensive experiments on CIFAR 10, CIFAR 100, MNIST (image classification), Question
Type (sentence classification), CoNLL 2003, and OntoNote 5.0 (Named entity Recognition), as well
as on different architectures, including multiple class logistic regression, fully-connected networks,
convolutional neural networks (CNNs) [26], and residual networks [16]. The results show that
active bias makes neural networks more robust without prior knowledge of noise, and reduces the
generalization error by 1% –18% even on training sets having few (if any) annotation errors.

2 Related work

As (deep) neural networks become more widespread, many methods have recently been proposed to
improve SGD training. When using (mini-batch) SGD, the randomness of the gradient sometimes
slows down the optimization, so one common approach is to use the gradient computed in previous
iterations to stabilize the process. Examples include momentum [38], stochastic variance reduced
gradient (SVRG) [21], and proximal stochastic variance reduced gradient (Prox-SVRG) [49]. Other
work proposes variants of semi-stochastic algorithms to approximate the exact gradient direction and
reduce the gradient variance [47, 34]. More recently, supervised optimization methods like learning
by learning [3] also show great potential in this problem.

In addition to the high variance of the gradient, another issue with SGD is the difficulty of tuning the
learning rate. Like Quasi-Newton methods, several methods adaptively adjust learning rates based on
local curvature [2, 40], while ADAGRAD [11] applies different learning rates to different dimensions.
ADAM [23] combines several of these techniques and is widely used in practice.

More recently, some studies accelerate SGD by weighting each class differently [13] or weighting
each sample differently as we do [18, 51, 29, 12, 1, 44], and their experiments suggest that the methods
are often compatible with other techniques such as Prox-SVRG, ADAGRAD, or ADAM [29, 13].
Notice that Gao et al. [12] discuss the idea of selecting uncertain examples for SGD based on active
learning, but their proposed methods choose each sample according to the magnitude of its gradient
as in ISSGD [1], which actually prefers more difficult examples.

The aforementioned methods focus on accelerating the optimization of a fixed loss function given a
fixed model. Many of these methods adopt importance sampling. That is, if the method prefers to
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select harder examples, the learning rate corresponding to those examples will be lower. This makes
gradient estimation unbiased [18, 51, 1, 12, 13], which guarantees convergence [51, 13].

On the other hand, to make models more robust to outliers, some approaches inject bias into the
loss function in order to emphasize easier examples [37, 48, 27, 35]. Some variants of the strategy
gradually increase the loss of hard examples [32], as in self-paced learning [25]. To alleviate the local
minimum problem during training, other techniques that smooth the loss function have been proposed
recently [8, 15]. Nevertheless, to our knowledge, it remains an unsolved challenge to balance the
easy and difficult training examples to facilitate training while remaining robust to outliers.

3 Methods

In this section, we first discuss the baseline methods against which we shall compare and introduce
some notations which we are going to use later on. We then present our two active bias methods
based on prediction variance and closeness to the decision threshold.

3.1 Baselines

Due to its simplicity and generally good performance, the most widely used version of SGD samples
each training instance uniformly. This basic strategy has two variants. The first samples with
replacement. Let D = (xi, yi)i indicate the training dataset. The probability of selecting each sample
is equal (i.e., Ps(i|D) = 1

|D| ), so we call it SGD Uniform (SGD-Uni). The second samples without
replacement. Let Se be the set of samples we have already used in the current epoch. Then, the
sampling probability Ps(i|Se,D) would become ( 1

|D|−|Se| )1i/∈Se
, where 1 is an indicator function.

This version scans through all of the examples in each epoch, so we call it SGD-Scan.

We propose a simple baseline which selects harder examples with higher probability, as done by
Loshchilov and Hutter [29]. Specifically, we let Ps(i|H,Se,D) ∝ 1 − p̄Ht−1

i
(yi|xi) + εD, where

Ht−1
i is the history of prediction probability which stores all p(yi|xi) when xi is selected to train

the network before the current iteration t, H =
⋃

iH
t−1
i , p̄Ht−1

i
(yi|xi) is the average probability

of classifying sample i into its correct class yi over all the stored p(yi|xi) in Ht−1
i , and εD is a

smoothness constant. Notice that by only considering p(yi|xi) in Ht−1
i , we won’t need to perform

extra forward passes. We refer to this simple baseline as SGD Sampled by Difficulty (SGD-SD).

In practice, SGD-Scan often works better than SGD-Uni because it ensures that the model sees all of
the training examples in each epoch. To emphasize difficult examples while applying SGD-Scan,
we weight each sample differently in the loss function. That is, the loss function is modified as
L =

∑
i vi · lossi(W ) + λR(W ), where W are the parameters in the model, lossi(W ) is the

prediction loss, and λR(W ) is the regularization term of the model. The weight of the ith sample vi
can be set as 1

ND
(1− p̄Ht−1

i
(yi|xi) + εD), where ND is a normalization constant making the average

of vi equal to 1. We want to keep the average of the vi fixed so that we do not change the global
learning rate. We denote this method SGD Weighted by Difficulty (SGD-WD).

Models usually cannot fit outliers well, so SGD-SD and SGD-WD would not be robust to noise. To
make a model unbiased, importance sampling can be used. That is, we can let Ps(i|H,Se,D) ∝
1 − p̄Ht−1

i
(yi|xi) + εD and vi = ND(1 − p̄Ht−1

i
(yi|xi) + εD)−1, which is similar to an approach

used by Hinton [18]. We refer to this as SGD Importance-Sampled by Difficulty (SGD-ISD).

In addition, we propose two simple baselines that emphasize easy examples, as in self-paced
learning. Based on the same naming convention, SGD Sampled by Easiness (SGD-SE) denotes
that Ps(i|H,Se,D) ∝ p̄Ht−1

i
(yi|xi) + εE , while SGD Weighted by Easiness (SGD-WE) sets

vi = 1
NE

(p̄Ht−1
i

(yi|xi) + εE), where NE normalizes the vi’s to have unit mean.

3.2 Prediction Variance

In the active learning setting, the prediction variance can be used to measure the uncertainty of each
sample for either a regression or classification problem [41]. In order to gain more information at
each SGD iteration, we choose samples with high prediction variances.
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Since the prediction variances are estimated on the fly, we would like to balance exploration and
exploitation. Adopting the optimism in face of uncertainty heuristics of bandit problems [7], we draw
the next sample based on the estimated prediction variance plus its confidence interval. Specifically,
for SGD Sampled by Prediction Variance (SGD-SPV), we let

Ps(i|H,Se,D) ∝ ŝtd
conf
i (H) + εV ,where ŝtd

conf
i (H) =

√
v̂ar(p

Ht−1
i

(yi|xi)) +
v̂ar(p

Ht−1
i

(yi|xi))2

|Ht−1
i | − 1

,

(1)

v̂ar
(
pHt−1

i
(yi|xi)

)
is the prediction variance estimated by history Ht−1

i , and |Ht−1
i | is the number

of stored prediction probabilities. Assuming pHt−1
i

(yi|xi) is normally distributed under the uncer-
tainty of model parameters w, the variance of prediction variance estimation can be estimated by

2 · v̂ar
(
pHt−1

i
(yi|xi)

)2
(|Ht−1

i |− 1)−1. As we did in the baselines, adding the smoothness constant
εV prevents the low variance instances from never being selected again. Similarly, another variant of

the method sets vi = 1
NV

(ŝtd
conf
i (H) + εV ), where NV normalizes vi like other weighted methods;

we call this SGD Weighted by Prediction Variance (SGD-WPV).

As in SGD-WD, SGD-WE or self-paced learning [4], we train an unbiased model for several burn-
in epochs at the beginning so as to judge the sampling uncertainty reasonably and stably. Other
implementation details will be described in the first section of the supplementary material.

Using a low learning rate, model parameters w would be close to a good local minimum after
sufficient burn-in epochs, and thus the posterior distribution of w can be locally approximated
by a Gaussian distribution. Furthermore, the prediction distribution p(yi|xi,w) is often locally
smooth with respect to the model parameters w (i.e., small changes of model parameters only induce
small changes in the prediction distribution), so a Gaussian tends to approximate the distribution of
pHt−1

i
(yi|xi) well in practice.

Example: logistic regression

Given a Gaussian prior Pr(W = w) = N (w|0, s0I) on the parameters, consider the probabilistic
interpretation of logistic regression:

− log(Pr(Y,W = w|X)) = −
∑
i

log(p(yi|xi,w))− c

s0
||w||2, (2)

where p(yi|xi,w) = 1
1+exp(−yiwTxi)

, and yi ∈ {1,−1}.

Since the posterior distribution of W is log-concave [39], we can use Pr(W = w|Y,X) ≈
N (w|wN, SN ), where wN is maximum a posteriori (MAP) estimation, and

S−1
N = 5w 5w − log(Pr(Y,W |X)) =

∑
i

p(yi|xi) (1− p(yi|xi))xixi
T +

2c

s0
I. (3)

Then, we further approximate p(yi|xi,W ) using the first order Taylor expansion p(yi|xi,W ) ≈
p(yi|xi,w) + gi(w)T (W −w), where gi(w) = p(yi|xi,w) (1− p(yi|xi,w))xi. We can compute
the prediction variance [41] with respect to the uncertainty of W

V ar(p(yi|xi,W )) ≈ gi(w)TSNgi(w). (4)

These approximations tell us several things. First, V ar(p(yi|xi,W )) is proportional to
p(yi|xi,w)2(1 − p(yi|xi,w))2, so the prediction variance is larger when the sample i is closer
to the boundary. Second, when we have more sample points close to the boundary, the variance of
the parameters SN is lower. That is, when we emphasize samples with high prediction variances,
the uncertainty of parameters tends to be reduced, akin to the variance reduction strategy in active
learning [30]. Third, with a Gaussian assumption on the posterior distribution Pr(W = w|Y,X) and
the Taylor expansion, the distribution of p(yi|xi,W ) in logistic regression becomes Gaussian, which
justifies our previous assumption of pHt−1

i
(yi|xi) for the confidence estimation of the prediction

variance. Notice that there are other methods that can measure the prediction uncertainty, such as the
mutual information between labels and parameters [19], but we found that the prediction variance
works better in our experiments.
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Figure 2: A toy example which compares different methods in a two-class logistic regression model.
To visualize the optimization path for the classifier parameters (the red paths in (c), (e), and (g)) in
two dimensions, we fix the weight corresponding to the x-axis to 0.5 and only show the weight for
y-axis w[1] and bias term b. The ith sample size in (f) and (h) is proportional to vi. The toy example
shows that SGD-WPV can train a more accurate model in a noisy dataset.

Figure 2 illustrates a toy example. Given the same learning rate, we can see that the normal SGD in
Figure 2c and 2d will have higher uncertainty when there are many outliers, and emphasizing difficult
examples in Figure 2e and 2f makes it worse. On the other hand, the samples near the boundaries
would have higher prediction variances (i.e., larger circles or crosses in Figure 2h) and thus higher
impact on the loss function in SGD-WPV.

After burn-in epochs, w becomes close to a local minimum using SGD. Then, the parameters
estimated in each iteration can be viewed, approximately, as samples drawn from the posterior
distribution of the parameters Pr(W = w|Y,X) [31]. Therefore, after running SGD long enough,
v̂ar

(
pHt−1

i
(yi|xi)

)
can be used to approximate V ar (p(yi|xi,W )). Notice that if we directly apply

bias at the beginning without running burn-in epochs, incorrect examples might be emphasized,
which is also known as the local minimum problem in active learning [14]. For instance, in Figure 2,
if burn-in epochs are not applied and the initial w is a vertical line on the left, the outliers close to the
initial boundary would be emphasized, which slows down the convergence speed.

In this simple example, we can also see that the gradient magnitude is proportional to the difficulty
because−5w log(p(yi|xi,w)) = (1− p(yi|xi,w))xi. This is why we believe the SGD acceleration
methods based on gradient magnitude [1, 13] can be categorized as variants of preferring difficult
examples, and thus more vulnerable to outliers (like the samples on the left or right in Figure 2).

3.3 Threshold Closeness

Motivated by the previous analysis, we propose a simpler and more direct approach to select samples
whose correct class probability is close to the decision threshold. SGD Sampled by Threshold
Closeness (SGD-STC) makes Ps(i|H,Se,D) ∝ p̄Ht−1

i
(yi|xi)

(
1− p̄Ht−1

i
(yi|xi)

)
+ εT , where

p̄Ht−1
i

(yi|xi) is the average probability of classifying sample i into its correct class yi over all the

stored p(yi|xi) inHt−1
i . When there are multiple classes, this measures the closeness of the threshold

for distinguishing the correct class out of the union of the rest of the classes (i.e., one-versus-rest).
The method is similar to an approximation of the optimal allocation in stratified sampling proposed
by Druck and McCallum [10].

Similarly, SGD Weighted by Threshold Closeness (SGD-WTC) chooses the weight of ith sample vi =
1

NT
p̄Ht−1

i
(yi|xi)(1−p̄Ht−1

i
(yi|xi))+εT , whereNT = 1

|D|
∑

j p̄Ht−1
j

(yj |xj)(1−p̄Ht−1
j

(yj |xj))+εT .
The weighting can be viewed as combining the SGD-WD and SGD-WE by multiplying their weights
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Table 1: Model architectures. Dropouts and L2 reg (regularization) are only applied to the fully-
connected (FC) layer(s).

Dataset # Conv Filter Filter # Pooling # BN # FC Dropout L2
layers size number layers layers layers keep probs reg

MNIST 2 5x5 32, 64 2 0 2 0.5 0.0005
CIFAR 10 0 N/A N/A 0 0 1 1 0.01

CIFAR 100 26 or 3X3 16, 32, 64 0 13 or 1 1 062 31
Question Type 1 (2,3,4)x1 64 1 0 1 0.5 0.01
CoNLL 2003 3 3x1 100 0 0 1 0.5, 0.75 0.001OntoNote 5.0

MNIST 0 N/A N/A 0 0 2 1 0

Table 2: Optimization hyper-parameters and experiment settings

Dataset Optimizer Batch Learning Learning # Epochs # Burn-in # Trialssize rate rate decay epochs
MNIST Momentum 64 0.01 0.95 80 2 20

CIFAR 10 SGD 100 1e-6 0.5 (per 5 epochs) 30 10 30

CIFAR 100 Momentum 128 0.1 0.1 (at 80, 100, 150 90 or 20120 epochs) 50
Question Type ADAM 64 0.001 1 250 50 100
CoNLL 2003 ADAM 128 0.0005 1 200 30 10OntoNote 5.0

MNIST SGD 128 0.1 1 60 20 10

together. Although other uncertainty estimates such as entropy are widely used in active learning and
can also be viewed as a measure of boundary closeness, we found the proposed formula works better
in our experiments.

When using logistic regression, after injecting the bias vi into the loss function, approximating the
prediction probability based on previous history, removing the regularization and smoothness constant
(i.e., p(yi|xi,w) ≈ p̄Ht−1

i
(yi|xi), 1/s0 = 0, and εT = 0), we can show that∑

i

V ar(p(yi|xi,W )) ≈
∑
i

gi(w)TSNgi(w) ≈ NT · dim(w), (5)

where dim(w) is the dimension of parameters w. This will ensure that the average prediction variance
drops linearly as the number of training instance increases. The derivation could be seen in the
supplementary materials.

4 Experiments

We test our methods on six different datasets. The results show that the active bias techniques
constantly outperform the standard uniform sampling (i.e., SGD-Uni and SGD-Scan) in the deep
models as well as the shallow models. For each dataset, we use an existing, publicly available
implementation for the problem and emphasize samples using different methods. The architectures
and hyper-parameters are summarized in Table 1. All neural networks use softmax and cross-entropy
loss at the last layer. The optimization and experiment setups are listed in Table 2. As shown in the
second column of the table, SGD in CNNs and residual networks actually refers to momentum or
ADAM instead of vanilla SGD. All experiments use mini-batch.

Like most of the widely used neural network training techniques, the proposed techniques are not
applicable to every scenario. For all the datasets we tried, we found that the proposed methods are not
sensitive to the hyper-parameter setup except when applying a very complicated model to a relatively
smaller dataset. If a complicated model achieves 100% training accuracy within a few epochs, the
most uncertain examples would often be outliers, biasing the model towards overfitting.

To avoid this scenario, we modify the default hyper-parameters setup in the implementation of the text
classifiers in Section 4.3 and Section 4.4 to achieve similar performance using simplified models. For
all other models and datasets, we use the default hyper-parameters of the existing implementations,
which should favor the SGD-Uni or SGD-Scan methods, since the default hyper-parameters are
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Table 3: The average of the best testing error rates for different sampling methods and datasets (%).
The confidence intervals are standard errors. LR means logistic regression.

Datasets Model SGD-Uni SGD-SD SGD-ISD SGD-SE SGD-SPV SGD-STC
MNIST CNN 0.55±0.01 0.52±0.01 0.57±0.01 0.54±0.01 0.51 ±0.01 0.51±0.01

Noisy MNIST CNN 0.83±0.01 1.00±0.01 0.84±0.01 0.69 ±0.01 0.64±0.01 0.63±0.01
CIFAR 10 LR 62.49±0.06 63.14±0.06 62.48±0.07 60.87±0.06 60.66±0.06 61.00±0.06

QT CNN 17.70±0.07 17.61±0.07 17.66±0.08 17.92±0.08 17.49±0.08 17.55±0.08

Table 4: The average of the best testing error rates and their standard errors for different weighting
methods (%). For CoNLL 2003 and OntoNote 5.0, the values are 1-(F1 score). CNN, LR, RN 27,
RN 63 and FC mean convolutional neural network, logistic regression, residual networks with 27
layers, residual network with 63 layers, and fully-connected network, respectively.

Datasets Model SGD-Scan SGD-WD SGD-WE SGD-WPV SGD-WTC
MNIST CNN 0.54±0.01 0.48±0.01 0.56±0.01 0.48±0.01 0.48±0.01

Noisy MNIST CNN 0.81±0.01 0.92±0.01 0.72±0.01 0.61±0.02 0.63±0.01
CIFAR 10 LR 62.48±0.06 63.10±0.06 60.88±0.06 60.61±0.06 61.02±0.06

CIFAR 100 RN 27 34.04±0.06 34.55±0.06 33.65±0.07 33.69±0.07 33.64±0.07
CIFAR 100 RN 63 30.70±0.06 31.57±0.09 29.92±0.09 30.02±0.08 30.16±0.09

QT CNN 17.79±0.08 17.70±0.08 17.87±0.08 17.57±0.07 17.61±0.08
CoNLL 2003 CNN 11.62±0.04 11.50±0.05 11.73±0.04 11.24±0.06 11.18±0.03
OntoNote 5.0 CNN 17.80±0.05 17.65±0.06 18.40±0.05 17.82±0.03 17.51±0.05

MNIST FC 2.85±0.03 2.17±0.01 3.08±0.03 2.68±0.02 2.34±0.03
MNIST (distill) FC 2.27±0.01 2.13±0.02 2.35±0.01 2.18±0.02 2.07±0.02

optimized for these cases. To show the reliability of the proposed methods, we do not optimize the
hyper-parameters for the proposed methods or baselines.

Due to the randomness in all the SGD variants, we repeat experiments and list the number of trials
in Table 2. At the beginning of each trial, network weights are trained with uniform sampling
SGD until validation performance starts to saturate. After these burn-in epochs, we apply different
sampling/weighting methods and compare performance. The number of burn-in epochs is determined
by cross-validation, and the number of epochs in each trial is set large enough to let the testing error
of most methods converge. In Tables 3 and 4, we evaluate the testing performance of each method
after each epoch and report the best testing performance among epochs within each trial.

As previously discussed, there are various versions preferring easy or difficult examples. Some
of them require extra time to collect necessary statistics such as the gradient magnitude of each
sample [12, 1], change the network architecture [15, 44], or involve an annealing schedule like self-
paced learning [25, 32]. We tried self-paced learning on CIFAR 10 but found that performance usually
remains the same and is sometimes sensitive to the hyper-parameters of the annealing schedule. This
finding is consistent with the results from [4]. To simplify the comparison, we focus on testing the
effects of steady bias based on sample difficulty (e.g., compare with SGD-SE and SGD-SD) and do
not gradually change the preference during the training like self-paced learning.

It is not always easy to change the sampling procedure because of the model or implementation
constraints. For example, in sequence labeling tasks (CoNLL 2003 and OntoNote 5.0), the words in
the same sentence need to be trained together. Thus, we only compare methods which modify the
loss function (SGD-W*) with SGD-Scan for some models. For the other experiments, re-weighting
examples (SGD-W*) generally gives us better performance than changing the sampling distribution
(SGD-S*). It might be because we can better estimate the statistics of each sample.

4.1 MNIST

We apply our method to a CNN [26] for MNIST1 using one of the Tensorflow tutorials.2 The dataset
has high testing accuracy, so most of the examples are too easy for the model after a few epochs.
Selecting more difficult instances can accelerate learning or improve testing accuracy [18, 29, 13].
The results from SGD-SD and SGD-WD confirm this finding while selecting uncertain examples can
give us a similar or larger boost. Furthermore, we test the robustness of our methods by randomly

1http://yann.lecun.com/exdb/mnist/
2https://github.com/tensorflow/models/blob/master/tutorials/image/mnist
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reassigning the labels of 10% of the images, and the results indicate that the SGD-WPV improves the
performance of SGD-Scan even more while SGD-SD overfits the data seriously.

4.2 CIFAR 10 and CIFAR 100

We test a simple multi-class logistic regression3 on CIFAR 10 [24].4 Images are down-sampled
significantly to 32 × 32 × 3, so many examples are difficult, even for humans. SGD-SPV and
SGD-SE perform significantly better than SGD-Uni here, consistent with the idea that avoiding
difficult examples increases robustness to outliers.

For CIFAR 100 [24], we demonstrate that the proposed approaches can also work in very deep
residual networks [16].5 To show the method is not sensitive to the network depth and the number of
burn-in epochs, we present results from the network with 27 layers and 90 burn-in epochs as well
as the network with 63 layers and 50 burn-in epochs. Without changing architectures, emphasizing
uncertain or easy examples gains around 0.5% in both settings, which is significant considering the
fact that the much deeper network shows only 3% improvement here.

When training a neural network, gradually reducing the learning rate (i.e., the magnitude of gradients)
usually improves performance. When difficult examples are sampled less, the magnitude of gradients
would be reduced. Thus, some of the improvement of SGD-SPV and SGD-SE might come from
using a lower effective learning rate. Nevertheless, since we apply the aggressive learning rate decay
in the experiments of CIFAR 10 and CIFAR 100, we know that the improvements from SGD-SPV
and SGD-SE cannot be entirely explained by its lower effective learning rate.

4.3 Question Type

To investigate whether our methods are effective for smaller text datasets, we apply them to a sentence
classification dataset (i.e. Question Type (QT) [28]), which contains 1000 training examples and
500 testing examples.6 We use the CNN architecture proposed by Kim [22].7 Like many other NLP
tasks, the dataset is relatively small and this CNN classifier does not inject noise to inputs like the
implementation of residual networks in CIFAR 100, so this complicated model reaches 100% training
accuracy within a few epochs.

To address this, we reduced the model complexity by (i) decreasing the number of filters from 128 to
64, (ii) decreasing convolutional filter widths from 3,4,5 to 2,3,4, (iii) adding L2 regularization with
scale 0.01, (iv) performing PCA to reduce the dimension of pre-trained word embedding from 300 to
50 and fixing the word embedding during training. Then, the proposed active bias methods perform
better than other baselines in this smaller model.

4.4 Sequence Tagging Tasks

We also test our methods on Named Entity Recognition (NER) in CoNLL 2003 [46] and OntoNote
5.0 [20] datasets using the CNN from Strubell et al. [45].8 Similar to Question Type, the model is too
complex for our approaches. So we (i) only use 3 layers instead of 4 layers, (ii) reduce the number of
filters from 300 to 100, (iii) add 0.001 L2 regularization, (iv) make the 50 dimension word embedding
from Collobert et al. [9] non-trainable. The micro F1 of this smaller model only drops around 1%-2%
from the original big model. Table 4 shows that our methods achieve the lowest error rate (1-F1) in
both benchmarks.

4.5 Distillation

Although state-of-the-art neural networks in many applications memorize examples easily [50], much
simpler models can usually achieve similar performance like those in the previous two experiments.
In practice, such models are often preferable due to their low computation and memory requirements.

3https://cs231n.github.io/assignments2016/assignment2/
4https://www.cs.toronto.edu/~kriz/cifar.html
5https://github.com/tensorflow/models/tree/master/resnet
6http://cogcomp.org/Data/QA/QC/
7https://github.com/dennybritz/cnn-text-classification-tf
8https://github.com/iesl/dilated-cnn-ner
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We have shown that the proposed method can improve these smaller models as distillation did [17], so
it is natural to check whether our methods can work well with distillation. We use an implementation9

that distills a shallow CNN with 3 convolution layers to a 2 layer fully-connected network in MNIST.
The teacher network can achieve 0.8% testing error, and the temperature of softmax is set as 1.

Our approaches and baselines simply apply the sample dependent weights vi to the final loss function
(i.e., cross-entropy of the true labels plus cross-entropy of the prediction probability from the teacher
network). In MNIST, SGD-WTC and SGD-WD can achieve similar or better improvements compared
with adding distillation into SGD-Scan. Furthermore, the best performance comes from the distillation
plus SGD-WTC, which shows that active bias is compatible with distillation in this dataset.

5 Conclusion

Deep learning researchers often gain accuracy by employing training techniques such as momentum,
dropout, batch normalization, and distillation. This paper presents a new compatible sibling to these
methods, which we recommend for wide use. Our relatively simple and computationally lightweight
techniques emphasize the uncertain examples (i.e., SGD-*PV and SGD-*TC).

The experiments confirm that the proper bias can be beneficial to generalization performance. When
the task is relatively easy (both training and testing accuracy are high), preferring more difficult
examples works well. On the contrary, when the dataset is challenging or noisy (both training and
testing accuracy are low), emphasizing easier samples often lead to a better performance. In both
cases, the active bias techniques consistently lead to more accurate and robust neural networks as
long as the classifier does not memorize all the training samples easily (i.e., training accuracy is high
but testing accuracy is low).
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