Supplementary material

A Proofs

A.1 Proof of Proposition 1

Recall that
o (z) = arg ildm fy), where f(y)=2y) -y =
yeAd

At an optimal solution, we have the fixed point iteration [36, §4.2]

y" = Paa(y* = VI(y")). 2)

Seeing y* as a function of x, and Pxa and V f as functions of their inputs, we can apply the chain
rule to (2) to obtain

Jug (@) = Jp,, (¥ = VI(Y") (Jug (®) — Jfoys (). 3)
Applying the chain rule once again to V f(y*) = vVQ(y*) — «, we obtain
I foyr () = vJva(y”)Ju, (®) — 1
= vHa(y") Jng () — 1.
Plugging this into (3) and re-arranging, we obtain
(I+AB-1)) Ju, = A4,
where we defined the shorthands

iy = T (@), A= Jp, (' —VUy) +2) and B =yHoly").

A.2  Proof of Proposition 3

Proof outline. Let 2* = Pry(x) or Posc(x). We use the optimality conditions of Pry, respectively
Posc in order to express z* as an explicit function of . Then, obtaining the Jacobians of Pry(x)
and Posc () follows by application of the chain rule to the two expressions. We discuss the proof for
points where Pry and Pogc are differentiable; on the (zero-measure) set of nondifferentiable points
(i.e. where the group structure changes) we may take one of Clarke’s generalized gradients [11].

Jacobian of Pry.

Lemma 1 Let z* = Pry(x) € R? and G be the set of indices around i with the same value at the
optimum, as defined in §3.2. Then, we have

>jeqr Tj T Msa, — sp,)

= , 4
K (& @
where a; = min G}, b; = max G} are the boundaries of segment G, and
0 ifa =1, 0 ifb=d,
a; = . . d i . . .
S {mgn(zc*”l —zf) ifa>1 an 5: {mgn(z{ —zp ) b<d

To prove Lemma 1, we make use of the optimality conditions of the fused lasso proximity operator
[17, Equation 27], which state that z* satisfies

{0} ifi € {1,d},
25 —xj+ Mt; —tj41) =0, where ;€ {sign(z] —2f_))} ifz} # 2}, Vi € [d].
[—1,1] o.w.

®)
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The optimality conditions (5) form a system with unknowns 27, ¢; for j € [d]. To express z* as a
function of x, we shall now proceed to eliminate the unknowns ;.

Let us focus on a particular segment G}. For readability, we drop the segment index ¢ and use the
shorthands z := 2}, a := a;, and b := b;. By definition, a and b satisfy

zi=z Va<j<b, zo_q #zifa>1, 2y # 2ifb < d.

It immediately follows from the definition of ¢; in (5) that

L0 ifa=1, .. _ [0 ifh=d,
“ 7 \sign(z — z5_,) ifa>1 YT \sign(zt,, —2) ifb<d

In other words, the unknowns ¢, and ¢; are already uniquely determined. To emphasize that they are
known, we introduce s, := t, and sy := t1, leaving ¢; only unknown fora < j <b.

By rearranging the optimality conditions (5) we obtain the recursion
)\tj:l'j72+>\tj+1 Vagjgb

We start with the first equation in the segment (at j = a), and unroll the recursion until reaching the
stopping condition j = b.
ASq = Tq — 2+ Algy1
=Tq— 2+ Tap1 — 2+ -+ Tp— 2+ A5y
b
= Zxk—(b—a—i—l)z—i—)\sb
k=a

Rearranging the terms, we obtain the expression

_ ZZ:G Tk + A(sp — Sq)

i b—a+1

Applying this calculation to each segment in z* yields the desired result. ]

The proof of Proposition 3 follows by applying the chain rule to (4), noting that the groups G are
constant within a neighborhood of  (observation also used for OSCAR in [7]). Therefore, for Pry,

0zy 1 Oz \ Osp  0sa
(91']‘ N |G*| 3:17j aSCj 8Ij

il \kea:

Since s, and s, are either constant or sign functions w.r.t. x, their partial derivatives are 0, and thus

Ox; 0 0.W. '

Jacobian of Ppgc.

Lemma 2 ([47, Theorem 1], [49, Proposition 3]) Let z* = Posc(x) € R? and G be the set of

indices around i with the same value at the optimum: GY = {j € [d] : |2F| = |2}[}. Then, we have
2jear |7l
2! = sign(z;) max (Jegﬂ] —w;, 0|, (6)
i

U7+’Ul

where w; = A (d— ) coui={jeld 2] < |z}, vi=u+]|G}|.
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Lemma 2 is a simple reformulation of Theorem 1, part ii from [47]. With the same observation that
the induced groups do not change within a neighborhood of x, we may differentiate (6) to obtain

(o if 22 = 0,
0z _ ) sign(z;) Z 0|z Oz, 3 ow;
Ox; G| Oz Ox;  Ox,

0.W.
keG}

Noting that ‘9“” = 0, as wj is derived only from group indices and the term a‘m 925 oither vanishes
(when k # ]) or else equals sign(z;) with x; # 0, we substitute sign(z}) for blgn(zj) [47] to get
sign(zz
i v A <*Z i if j € G¥ and 2} # 0,
= G7 .
0 0.W.

0zF
89@

B Computational complexity and implementation details

B.1 Sparsemax

Computing the forward and backward pass of sparsemax is a compositional building block in
fusedmax, oscarmax, as well as in the general case; for this reason, we discuss it before the others.

Forward pass. The problem is exactly the Euclidean projection on the simplex, which can be
computed exactly in worst-case O(d log d) due to the required sort [31, 34, 15], or in expected O(d)
time using a pivot algorithm similar to median finding [15]. Our implementation is based on sorting.

Backward pass. From [31] we have that the result of a Jacobian-vector product Ji, v has the same
sparsity pattern as y*. If we denote the number of nonzero elements of & by nnz(x), we can see that
9 1in [31, eq. 14], and thus the Jacobian-vector product itself, can be computed in O(nnz(y*)).

B.2 Fusedmax

We implement fusedmax as the composition of the fused lasso proximal operator with sparsemax.

Forward pass. We need to solve the proximal operator of fused lasso. The algorithm we use is
O(d?) in the worst case, but has strong performance on realistic benchmarks, close to O(d) [13].

Backward pass. Due to the structure of the Jacobian and the locality of fused groups, Jacobian-vector
products Jip, v can be computed in O(d) using a simple algorithm that iterates over the output y*
and the vector v simultaneously, averaging the elements of v whose indices map to fused elements of
y*. Since only consecutive elements can be fused, this amounts to resetting to a new group as soon
as we encounter an index ¢ such that y} # y’_.

B.3 Oscarmax

We implement oscarmax as the composition of the OSCAR proximal operator with sparsemax.

Forward pass. The proximal operator of the OSCAR penalty can be computed in O(dlogd) as a
particular case of the ordered weighted ¢; (OWL) proximal operator, using an algorithm involving a
sort followed by isotonic regression [48].

Backward pass. The algorithm is similar in spirit to fusedmax, but because groups can reach across
non-adjacent indices, a single pass is not sufficient. With no other information other than y*, the
backward pass can be computed in O(d log d) using a stable sort followed by a linear-time pass for
finding groups. Further optimization is possible if group indices may be saved from the forward pass.

B.4 General case and sq-pnorm-max
Forward pass. For general II, we may use any projected gradient solver; we choose FISTA [4].

Each iteration requires a projection onto the simplex; in the case of sq-pnorm-max, this dominates
every iteration, leading to a complexity of O(td log d) where ¢ is the number of iterations performed.
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Backward pass. To compute Jacobian-vector products we solve the linear system from Proposition 1:
(I+A(B—-1)) (Ju,v) = Av. Thisis a d x d system, which at first sight suggests a complexity of
O(d?). However, we can use the structure of A to solve it more efficiently.

The matrix A is defined as A := Jp_,(y* — Vf(y*)). As a sparsemax Jacobian, A is row- and
column-sparse, and uniquely deﬁnedﬁ)y its sparsity pattern. By splitting the system into equations
corresponding to zero and nonzero rows of A, we obtain that the solution Ji1, v must have the same
sparsity pattern as the row-sparsity of A, therefore we only need to solve a subset of the system. From
the fixed-point iteration y* = Paa(y* — V f(y*)), we have that the row-sparsity of A is the same as
the sparsity of the forward pass solution y*. The backward pass complexity is thus O(nnz(y*)?3).

C Additional experimental results

C.1 Visualizing attention mappings in 3-d

fusedmax oscarmax sg-pnorm-max
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Figure 5: 3-d visualization of Il ([t1,t2,0])2 for several proposed and existing mappings Ilq.
sq-pnorm-max with p = 1.5 resembles sparsemax but with smoother transitions. The proposed
structured attention mechanisms, fusedmax and oscarmax, exhibit plateaus and ridges in areas where
weights become fused together. We set v = 1 and A = 0.2.

C.2 Textual entailment results

Experimental setup. We build upon the implementation from [31], which is a slight variation of the
attention model from [38], using GRUs instead of LSTMs. The GRUs encoding the premise and
hypothesis have separate parameters, but the hypothesis GRU is initialized with the last state of the
premise GRU. We use the same settings and methodology as [31]: we use fixed 300-dimensional
GloVe vectors, we train for 200 epochs using ADAM with learning rate 3 - 10—, we use a drop-out
probability of 0.1, and we choose an I, regularization coefficient from {0, 107%,3 - 10~%,1073}.
Experiments are performed on machines with 2 xXeon X5675 3.06GHz CPUs and 96GB RAM.

Dataset and preprocessing. We use the SNLI v1 dataset [8]. We apply the minimal preprocessing
from [31], skipping sentence pairs with missing labels and using the provided tokenization. This
results in a training set of 549,367 sentence pairs, a development set of 9,842 sentence pairs and a
test set of 9,824 sentence pairs. We report timing measurements in Table 3 and visualizations of the
produced attention weights in Figure 6.

C.3 Machine translation results

Experimental setup. Because our goal is to demonstrate that our attention mechanisms can be
drop-in replacements for existing ones, we focus on OpenNMT-py with default settings for all of our
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Figure 6: Attention weights on several examples also used in [38, 31]. The hypotheses considered are
“Two mimes sit in complete silence.” (top), “A boy is riding an animal.” (left), and “Two dogs swim
in the lake.” (right). All attention mechanisms result in correct classifications (top: contradiction;
left: entailment; right: contradiction). As can be seen, fusedmax prefers contiguous support segments
even when not all weights are tied.

sequence-to-sequence experiments. These defaults are: an unidirectional LSTM, 500 dimensions
for the word vectors and for the LSTM hidden representations, drop-out probability of 0.3, global
attention, and input-feeding [29]. Following the default, we train our models for 13 epochs with
stochastic gradient updates (batches of size 64 and initial learning rate of 1, halved every epoch
after the 8"). Weights (including word embeddings) are initialized uniformly over [—0.1,0.1], and
gradients are normalized to have norm 5 if their norm exceeds this value. For test scores and
visualizations, we use the model snapshot at the epoch with the highest validation set accuracy. All of
the experiments in this section are performed on machines equiped with Xeon ES CPUs and Nvidia
Tesla K80 GPUs.

Datasets. We employ training and test datasets from multiple sources.
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attention

time per epoch

softmax
sparsemax

fusedmax
oscarmax

1h 26m 40s + 51s
1h 24m 21s + 54s

1h 23m 58s & 50s
1h 23m 19s + 50s

Table 3: Timing results for training textual entailment on SNLI,
using the implementation and experimental setup from [31]. With
this C++ CPU implementation, fusedmax and oscarmax are as
fast as sparsemax, and all three sparse attention mechanisms are
slightly faster than softmax.

e BENCHMARK: Training, validation, and test data from the NMT-Benchmark project (http:
//scorer.nmt-benchmark.net/). All languages have ~1M training sentence pairs, and
equal validation and test sets of size 1K (French) and 2K (Italian, Dutch and Swedish).

e BENCHMARK™: Training and validation data as above, but testing on all available newstest
data. For Italian we use the 2009 data (~2.5K sentence pairs), and for French we concatenate
2009-2014 (~11K sentence pairs).

e WMTI16, WMT17: Translation tasks at the first and second ACL Conferences for Machine
Translation, available at http://www.statmt.org/wmt16/translation-task.html
and http://wuw.statmt.org/wmt17/translation-task.html. Training, validation,
and test sizes are, approximately, for Romanian 400K/2K/2K, for German 5.8M/6K/3K, for
Finnish 2.6M/2K/2K, for Latvian 4.5M/2K/2K, and for Turkish 207K/1K/3K.

We use the preprocessing scripts from Moses [25] for tokenization, and, where needed, SGML
parsing. We limit source and target vocabulary sizes to 50K lower-cased tokens and prune sentences
longer than 50 tokens at training time and 100 tokens at test time. We do not perform recasing.

We report BLEU scores in Table 4 and showcase the enhanced interpretability induced by our
proposed attention mechanisms in Figure 7. Timing measurements can be found in Table 5.

Table 4: Neural machine translation results: tokenized BLEU scores on test data.

BENCHMARK BENCHMARK™'T WMTI16 WMT17

fr it

nl sV fr it ro de fi v tr

from English
softmax 36.94 37.20
sparsemax 37.03 37.21
fusedmax 37.08 36.73
oscarmax 36.66 36.89
sq-pnorm-max 37.16 37.39

to English

softmax 36.79 39.95
sparsemax 36.91 40.13
fusedmax 36.64 39.64
oscarmax 36.90 40.05

sq-pnorm-max 36.84 40.23

36.12 3497 27.13 24.86 17.71 2232 14.54 11.02 11.95
36.12 35.09 2699 24.49 17.61 22.43 14.85 11.07 11.66

36.04 3430 26.89 24.47 17.19 2225 1428 11.27 11.32
3596 34.86 27.02 2476 17.26 22.42 14.02 11.19 11.63
36.21 34.63 27.25 2456 1780 — 1445 — 1158

40.06 3796 25.72 2537 17.86 25.82 15.11 13.60 11.78
40.25 38.09 2597 25.62 17.46 25.76 1495 13.59 12.04

39.87 37.83 25.72 25.41 18.29 2558 15.08 13.53 1191
40.17 38.12 26.13 25.65 17.89 25.69 1494 13.71 11.70
4048 38.12 25.72 2570 1744 — 1520 — 1193

attention time per epoch

softmax 2h
sparsemax 2h 18m

fusedmax 3h 5Sm
oscarmax 3h 25m
sg-pnorm-max 7h Sm

Table 5: Timing results for French-to-English translation using
OpenNMT-py (all standard errors are under 2 minutes). For sim-
plicity, all attention mechanisms, except softmax, are implemented
on the CPU, thus incurring memory copies in both directions. (The
rest of the pipeline runs on the GPU.) Even without special opti-
mization, sparsemax, fusedmax, and oscarmax are practical, taking
within 1.75x the training time of a softmax model on the GPU.
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Figure 7: Attention alignment examples for French-to-English translation, following the conventions of Figure 1. “@-@" denotes a hyphen not separated by spaces.
When oscarmax induces multiple clusters, we denote them using different bullets (e.g., o, A, B). Fusedmax often selects meaningful grammatical segments, such as

“est consacré,

£ 9

as well as determiner-noun constructions.
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Figure 7 (continued): Further translation examples from French to English.




C.4 Sentence summarization results

Experimental setup and data. We use the exact same experimental setup and preprocessing as for
machine translation, described in Appendix C.3. We use the preprocessed Gigaword sentence sum-
marization dataset, made available by the authors of [39] at https://github.com/harvardnlp/
sent-summary. Since, unlike [39], we do not perform any tuning on DUC-2003, we can report
results on this dataset, as well. We observe that the simple sequence-to-sequence model is able to
keep summaries short without any explicit constraints, informed only through training data statistics;
therefore, in this section, we also report results without output truncation at 75 bytes (Table 6). We
also provide precision and recall scores for ROUGE-L in Table 7. Finally, we provide attention weights
plots for all studied attention mechanisms and a number of validation set examples in Figure 8.

Table 6: Sentence summarization Fj scores for several ROUGE variations.

Truncated Not truncated
attention ROUGE-1 ROUGE-2 ROUGE-L ROUGE-W; o ROUGE-1 ROUGE-2 ROUGE-L ROUGE-W; o
DUC 2003
softmax 26.63 8.72 23.87 16.95 27.06 8.86 24.23 17.02
sparsemax 26.54 8.78 23.89 16.93 26.95 8.94 24.21 16.99
fusedmax 27.12 8.93 24.39 17.28 27.48 9.04 24.66 17.30
oscarmax 26.72 9.08 24.02 17.06 27.11 9.23 24.32 17.10
$q-pnorm-max 26.55 8.77 23.78 16.87 26.92 8.89 24.07 16.92
DUC 2004
softmax 27.16 9.48 24.47 17.14 27.25 9.52 24.55 17.20
sparsemax 27.69 9.55 24.96 17.44 27.77 9.61 25.02 17.48
fusedmax 28.42 9.96 25.55 17.78 28.43 9.96 25.55 17.79
oscarmax 27.84 9.46 25.14 17.55 27.88 9.47 25.17 17.57
Sg-pnorm-max 27.94 9.28 25.08 17.49 28.01 9.30 25.13 17.52
Gigaword
softmax 35.13 17.15 32.92 24.17 35.01 17.10 32.77 24.00
sparsemax 36.04 17.78 33.64 24.69 35.97 17.75 33.54 24.55
fusedmax 36.09 17.62 33.69 24.69 35.98 17.60 33.59 24.54
oscarmax 35.36 17.23 33.03 24.25 35.26 17.20 32.92 24.10
Sq-pnorm-max 35.94 17.75 33.66 24.71 35.86 17.73 33.54 24.55

Table 7: Sentence summarization: ROUGE-L precision, recall and F-scores.

attention

Truncated

Not truncated

P

R

F

P

R

£y

DUC 2003
softmax
sparsemax
fusedmax
oscarmax
$q-pnorm-max

DUC 2004
softmax
sparsemax
fusedmax
oscarmax
sq-pnorm-max

Gigaword
softmax
sparsemax
fusedmax
oscarmax
$q-pnorm-max

29.57
29.59
30.02
29.64
29.45

30.54
30.99
32.19
31.89
3142

36.43
37.32
37.44
36.40
37.12

20.67
20.58
21.11
20.78
20.50

21.00
21.57
21.80
21.46
21.55

31.67
32.18
32.15
31.78
32.37

23.87
23.89
24.39
24.02
23.78

24.47
24.96
25.55
25.14
25.08

32.92
33.64
33.69
33.03
33.66

30.40
30.37
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Figure 8: Summarization attention examples. The 1-d TV prior of fusedmax captures well the
intuition of aligning long input spans with single expressive words, as supported by ROUGE scores.
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les. Here, fusedmax recovers a longer but
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arguably better summary, identifying a separate but important part of the input sentence.

Figure 8 (continued)
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Figure 8 (continued): Summarization attention examples. Here, fusedmax and oscarmax produce a

considerably shorter summary.
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