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1 Background: GP-LMM connection and REML

1.1 GP-LMM connection

Recall a Linear Mixed Model is formulated as:

y = µ+ h+ ε where h ∼ N(0, τK) ε ∼ N(0, σ2I) (1)

Estimating (µ,h) by maximizing its joint likelihood:

p(y,h|µ, σ2, τ) ∝ p(y|h,µ, σ2)p(h|τ)

= exp(− 1

2σ2
||y − µ− h||2) exp(− 1

2τ
hTK−1h)

= exp
(
− 1

2σ2
||y − µ− h||2 − 1

2τ
hTK−1h

)
or equivalently, by minimizing the negative log likelihood:

−log p(y,h|µ, σ2, τ) =
1

2σ2
||y − µ− h||2 + 1

2τ
hTK−1h

∝ ||y − µ− h||2 + σ

τ
hTK−1h (2)

Fixing (σ2, τ), minimizer of above objective function is :

µ̂ = (1TV−11)−11TV−1y (3)

ĥ = KV−1(y − µ∗) (4)

where V = I+ τ
σ2K. Notice that if we set λ = τ

σ2 , the expression of ĥ becomes:

ĥ = K(K+ λI)−1(y − u∗),

which correspond exactly to the posterior predictive mean of h in Gaussian Process model.

1.2 REstricted Maximum Likelihood (REML) for variance parameters

Motivation: MLE variance estimators are biased in small sample

Given the (µ̂, ĥ) estimates in (3)-(4), it is tempting to estimate the variance parameters (τ, σ2) by
directly minimizing (2) while naively fixing (µ,h) to the estimated values (µ̂, ĥ). However, this
practice fail to acknowledge the fact that µ̂ is estimated from the data, and consequently produces
biased estimates for (τ, σ2). To see why this is the case, consider the simplified case where K = I
and σ2 is known and fixed, such that (1) corresponds to a linear regression model

y = µ+ ε where ε ∼ N(0, (σ2 + τ)I),

and τ is estimated by minimizing the corresponding negative log likelihood:

−log p(y|µ̂, σ2, τ) = n ∗ log(σ2 + τ) +
(y − µ̂)T (y − µ̂)

(σ2 + τ)
,

with solution

τ̂ =
(y − µ̂)T (y − µ̂)

n
− σ2,

The expectation of τ̂ is:

E(τ̂) =
1

n
E
(
(y − µ̂)T (y − µ̂)

)
− σ2 =

n− 1

n
(τ + σ2)− σ2 = τ − 1

n
(τ + σ2)

where we have used the fact that (y− µ̂)T (y− µ̂) ∼ (σ2 + τ) ∗ χ2
n−1. Here the degrees of freedom

of χ2 distribution is n− 1 instead of n as a result of the fact that µ̂ is estimated from the data.
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Consequently, when the sample size n is small and variance σ2 is large, we see that τ̂ is a biased
estimate of τ . Since also λ̂ = τ̂

σ2 (recall σ2 is known), we underestimate λ in finite sample, leading
to insufficient regularization in small sample sizes.

Estimating (τ, σ2) unbiasedly using REML

In order to tackle the above complications, Harville [4] introduced REML (REstricted Maximum
Likelihood or REsidual Maximum Likelihood) to eliminate the presence of (µ,h) from the likelihood,
such that we no longer need to plug in the estimated parameters (µ̂, ĥ) in place of the true parameters
when estimating (τ, σ2). Specifically, recall that under the LMM (1), y ∼ N(µ = µ ∗ 1,V) where
V = σ2I+ τK, and there always exists a matrix A satisfying A1 = 0 such that Ay ∼ N(Aµ =
0,AVAT ). Notice that the distribution of Ay ∼ N(0,A(σ2I + τK)AT ) no longer contains the
nuisance parameter µ. Therefore if we estimate (σ2, τ) by maximizing the REstricted likelihood
p(Ay):

−log p(Ay|σ2, τ) = |AVAT |+ yTA(AVAT )−1Ay (5)

instead of the naive likelihood p(y), we no longer need to plug in the estimated parameters µ̂ to the
loss function. Furthermore, [4] has shown that when ATA = I, (5) can be expressed as:

−logp(Ay|σ2, τ) = log|V|+ log|1TV−11|+ (y − µ)TV−1(y − µ),

giving rise to the expression of the REML likelihood for Linear Mixed Models.

2 Derivation for Null Distribution

In this section, we derive the null distribution for the test statistic:

T̂0 = τ̂ ∗ (y −Xβ̂)TV−10 ∂K0 V−10 (y −Xβ̂), (6)

where Vδ = τKδ + σ2I.

We first derive the first two moments of T̂0 under H0 : δ = 0. First derive the expectation:

E(T0) = E
(
τ̂ ∗ (y −Xβ̂)TV−10 ∂K0 V−10 (y −Xβ̂)

)
= τ̂ ∗ E

(
tr
(
(y −Xβ̂)TV−10 ∂K0 V−10 (y −Xβ̂)

))
= τ̂ ∗ E

(
tr
(
V−10 ∂K0 V−10 (y −Xβ̂)(y −Xβ̂)T

))
= τ̂ ∗ tr

(
V−10 ∂K0 V−10 E

(
(y −Xβ̂)(y −Xβ̂)T

))
= τ̂ ∗ tr

(
V−10 ∂K0 V−10 V0

)
= τ̂ ∗ tr

(
V−10 ∂K0

)
.

By maximum likelihood theory, the asymptotic variance of the score statistic for δ is the corresponding
submatrix of the inverse Fisher information matrix (Hessian of the model likehood). If denote
ω = [µ, σ, τ ] the model’s offset and variance component parameters, and θ = [ω, δ] the vector of all
model parameters, then the information matrix takes the following form:

I =

[
Iωω Iωδ
Iδω Iδδ

]
.

Under REML, the (i, j)th of I can be expressed as [8]

Iθiθj =
∂

∂θiθj
LMLE(θ) = tr

(
P0 (

∂

∂θi
V0) P0 (

∂

∂θj
V0)

)
where P0 = V−1 −V−1XT (XV−1XT )−1XV−1 is the "scaled projection matrix" under REML,
such that P0y = 1

σ2 (y −Xβ̂ − ĥ) under the correct model. Consequently, the variance of T0 is the
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submatrix of I−1 that corresponds to the parameter δ. Using the block matrix inversion formula, we
can express V ar(T0) as:

V ar(T0) = îδδ = Iδδ − ITδωI
−1
ωωIδω

where îδδ is commonly referred to as "efficient information" [7].

Consequently, the estimation equations for the method of moment estimator of (κ, ν) in the Satterth-
waite method can be expressed as:

κ ∗ ν = E(T ) = τ̂ ∗ tr
(
V−10 ∂K0

)
, 2 ∗ κ2 ∗ ν = V ar(T ) = îδδ

with solution:

κ̂ = îδδ/
[
τ̂ ∗ tr

(
V−10 ∂K0

)]
ν̂ =

[
τ̂ ∗ tr

(
V−10 ∂K0

)]2
/(2 ∗ Îδδ)

3 Derivation for Ensemble Kernel Matrix

Given the ensemble hat matrix Â in Section 4, we consider how to identify the ensemble kernel
matrix K̂ by solving:

K̂(K̂+ λI)−1 = Â.

Specifically, if denote (UA,UK) and ({δA,k}nk=1, {δK,k}nk=1) the eigenvector and eigenvalues of Â
and K̂, respectively, then the above system reduces to:

UAdiag
(
δA,k

)
UT
A = UKdiag

( δK,k
δK,k + λ

)
UT
K

and adopts closed form solution UK = UA and δK,k = λ
δA,k

1−δA,k
. Therefore the ensemble kernel

matrix K̂ is estimated as:

K̂ = λ ∗UAdiag
( δA,k
1− δA,k

)
UT
A.

Notice that we have left the "ensemble tunning parameter" λ unspecified. In practice, λ serves only
as a constant scaling factor for the kernel matrix K, whose exact value does not impact either the
prediction or the p-value calculation, since both procedures are scale invariant with respect to the
kernel matrix. We therefore trivially set λ = 1, leading to the final estimate for ensemble kernel
matrix:

K̂ = UAdiag
( δA,k
1− δA,k

)
UT
A.

4 Simulation Results

In this section we document the value of estimated P̂ (p < 0.05) from the simulation presented in
Section 6 (Simulation Experiment) of the paper. Recall that the simulation data is generated from
below mechanism:

yi = h1(xi,1) + h2(xi,2) + δ ∗ h12(xi,1,xi,2) + εi (7)

where hi’s are functions with unit norm sampled from the reproducing kernel Hilbert spaces (RKHSs)
generated by ktrue, and the data is then fitted using Gaussian process with kmodel.

Each table documents the P̂ (p < 0.05) resulted from fixing ktrue to a Matérn kernel with specific
value of smoothness parameter ν and complexity parameter σ, and then varying the strength of the
interaction δ ∈ [0, 1] and the model kernel kmodel.

Our general observations are:
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1. The value of test power increases as the value ktrue’s complexity parameter σ becomes
larger. This is possibly caused by the fact that the interaction becomes easier to detect as the
pure interaction function h12 ∈ H12 becomes more complex as in it varies more quickly.

2. Given the data-generation mechanism:
(a) Polynomial kernels (Linear and Quadratic kernels) exhibits underfit, and result in

inflated Type I error but also low power.
(b) Lower-order Matérn kernels (Matern 1/2 and 3/2) tend to exhibits overfit for smoother

ktrue’s, and result in deflated Type I error and diminished low power. This conclusion
cautions us against the approach of extending model complexity by naively relaxing
model’s smoothness (i.e. differentiability) constraint.

(c) Gaussian RBF Kernels in general can perform well, but only if the hyperparameter is
chosen carefully. Specifically, selecting the hyperparameter σ by maximizing model
likelihood does not perform well in small sample. On the other hand, the naive approach
of selecting σ by setting σ to population median performs surprisingly well.

(d) Neural Network kernels also work well in general. Their performance is also impacted
by the hyperparameters. However not as sensitive as Gaussian RBF.

Table 1: ktrue = Matérn 3/2, σ = 0.5

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.194 0.352 0.444 0.449 0.521 0 0.485 0.514 0.473

Quadratic 0.078 0.326 0.481 0.588 0.619 0.653 0.641 0.653 0.657
RBF_MLE 0.081 0.400 0.549 0.529 0.490 0.473 0.480 0.484 0.478

RBF_Median 0.038 0.199 0.453 0.645 0.695 0.790 0.782 0.877 0.889
Matern 1/2 0.020 0.137 0.296 0.469 0.539 0.545 0.555 0.573 0.604
Matern 3/2 0.047 0.251 0.471 0.596 0.674 0.764 0.783 0.844 0.872
Matern 5/2 0.035 0.243 0.458 0.612 0.688 0.775 0.833 0.863 0.896

NN 0.1 0.059 0.299 0.505 0.563 0.618 0.640 0.654 0.666 0.671
NN 1 0.047 0.266 0.504 0.565 0.655 0.685 0.732 0.772 0.805

NN 10 0.050 0.234 0.477 0.631 0.687 0.769 0.786 0.874 0.898
CVKE_RBF 0.044 0.222 0.441 0.607 0.682 0.740 0.792 0.860 0.893
CVKE_NN 0.041 0.190 0.405 0.524 0.622 0.711 0.758 0.826 0.844

Table 2: ktrue = Matérn 3/2, σ = 1

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.299 0.481 0.634 0.696 0.755 0.716 0.719 0.739 0.743

Quadratic 0.113 0.603 0.726 0.731 0.749 0.732 0.774 0.762 0.744
RBF_MLE 0.174 0.761 0.876 0.892 0.874 0.841 0.825 0.797 0.804

RBF_Median 0.045 0.556 0.825 0.893 0.919 0.948 0.950 0.961 0.961
Matern 1/2 0.015 0.272 0.609 0.748 0.794 0.818 0.854 0.873 0.877
Matern 3/2 0.044 0.574 0.808 0.896 0.914 0.935 0.936 0.949 0.933
Matern 5/2 0.040 0.606 0.807 0.873 0.854 0.874 0.904 0.908 0.886

NN 0.1 0.081 0.593 0.718 0.718 0.721 0.752 0.733 0.750 0.758
NN 1 0.058 0.608 0.752 0.761 0.775 0.755 0.771 0.759 0.787

NN 10 0.046 0.578 0.848 0.880 0.913 0.919 0.913 0.929 0.912
CVKE_RBF 0.041 0.578 0.811 0.881 0.912 0.938 0.951 0.965 0.949
CVKE_NN 0.032 0.541 0.738 0.854 0.911 0.927 0.939 0.948 0.947
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Table 3: ktrue = Matérn 3/2, σ = 1.5

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.299 0.457 0.655 0.701 0.755 0.772 0.792 0.785 0.810

Quadratic 0.123 0.619 0.756 0.829 0.806 0.788 0.815 0.812 0.830
RBF_MLE 0.239 0.822 0.916 0.932 0.928 0.912 0.895 0.882 0.861

RBF_Median 0.040 0.676 0.881 0.913 0.947 0.955 0.969 0.957 0.936
Matern 1/2 0.010 0.282 0.667 0.802 0.858 0.872 0.880 0.894 0.916
Matern 3/2 0.043 0.675 0.880 0.941 0.950 0.942 0.941 0.952 0.943
Matern 5/2 0.041 0.678 0.883 0.923 0.908 0.903 0.909 0.896 0.890

NN 0.1 0.073 0.671 0.785 0.801 0.788 0.817 0.797 0.822 0.806
NN 1 0.046 0.703 0.806 0.817 0.811 0.817 0.815 0.790 0.828

NN 10 0.031 0.702 0.881 0.933 0.919 0.922 0.910 0.911 0.915
CVKE_RBF 0.042 0.681 0.860 0.930 0.945 0.947 0.946 0.960 0.947
CVKE_NN 0.034 0.650 0.863 0.895 0.942 0.941 0.944 0.944 0.946

Table 4: ktrue = Matérn 5/2, σ = 0.5

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.174 0.351 0.507 0.539 0.533 0.559 0.552 0.579 0.553

Quadratic 0.055 0.107 0.186 0.253 0.284 0.359 0.394 0.508 0.563
RBF_MLE 0.061 0.137 0.174 0.209 0.270 0.361 0.357 0.411 0.468

RBF_Median 0.052 0.091 0.162 0.214 0.250 0.306 0.323 0.392 0.445
Matern 1/2 0.015 0.058 0.092 0.140 0.175 0.176 0.190 0.201 0.218
Matern 3/2 0.041 0.089 0.148 0.203 0.242 0.283 0.300 0.348 0.421
Matern 5/2 0.056 0.099 0.154 0.222 0.275 0.323 0.345 0.433 0.519

NN 0.1 0.059 0.111 0.178 0.235 0.277 0.332 0.365 0.480 0.498
NN 1 0.038 0.091 0.161 0.224 0.281 0.332 0.380 0.455 0.522

NN 10 0.039 0.113 0.165 0.213 0.271 0.304 0.339 0.418 0.476
CVKE_RBF 0.049 0.083 0.155 0.221 0.279 0.339 0.435 0.509 0.586
CVKE_NN 0.039 0.085 0.186 0.245 0.295 0.306 0.377 0.436 0.549

Table 5: ktrue = Matérn 5/2, σ = 1

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.229 0.396 0.471 0.517 0.515 0.523 0.528 0.531 0.518

Quadratic 0.071 0.333 0.517 0.654 0.703 0.801 0.793 0.825 0.869
RBF_MLE 0.077 0.313 0.489 0.558 0.574 0.621 0.616 0.619 0.544

RBF_Median 0.050 0.251 0.455 0.576 0.648 0.729 0.767 0.840 0.883
Matern 1/2 0.012 0.089 0.292 0.430 0.457 0.477 0.543 0.568 0.565
Matern 3/2 0.039 0.230 0.444 0.584 0.657 0.748 0.761 0.822 0.863
Matern 5/2 0.052 0.287 0.475 0.636 0.692 0.770 0.823 0.842 0.896

NN 0.1 0.059 0.303 0.531 0.626 0.691 0.780 0.799 0.847 0.867
NN 1 0.052 0.292 0.508 0.645 0.708 0.763 0.785 0.874 0.865

NN 10 0.043 0.299 0.493 0.624 0.693 0.785 0.787 0.860 0.869
CVKE_RBF 0.037 0.263 0.470 0.623 0.710 0.786 0.795 0.869 0.895
CVKE_NN 0.049 0.237 0.449 0.563 0.660 0.694 0.771 0.835 0.871
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Table 6: ktrue = Matérn 5/2, σ = 1.5

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.343 0.561 0.724 0.782 0.830 0.800 0.821 0.813 0.821

Quadratic 0.096 0.723 0.840 0.875 0.881 0.881 0.908 0.911 0.885
RBF_MLE 0.082 0.743 0.899 0.911 0.905 0.876 0.886 0.854 0.836

RBF_Median 0.038 0.684 0.858 0.935 0.952 0.954 0.956 0.961 0.962
Matern 1/2 0.016 0.360 0.663 0.802 0.846 0.883 0.879 0.896 0.896
Matern 3/2 0.034 0.698 0.853 0.925 0.944 0.952 0.941 0.968 0.971
Matern 5/2 0.046 0.733 0.877 0.921 0.930 0.939 0.954 0.942 0.949

NN 0.1 0.059 0.721 0.837 0.856 0.875 0.890 0.903 0.900 0.903
NN 1 0.039 0.700 0.870 0.897 0.865 0.899 0.904 0.917 0.916

NN 10 0.044 0.729 0.888 0.928 0.920 0.953 0.948 0.960 0.946
CVKE_RBF 0.031 0.708 0.887 0.928 0.940 0.947 0.948 0.960 0.957
CVKE_NN 0.032 0.671 0.859 0.925 0.935 0.949 0.946 0.954 0.966

Table 7: ktrue = Gaussian RBF, σ = 0.5

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.143 0.341 0.484 0.537 0.585 0.559 0.574 0.576 0.560

Quadratic 0.069 0.128 0.206 0.273 0.355 0.412 0.443 0.545 0.620
RBF_MLE 0.068 0.148 0.226 0.263 0.305 0.377 0.429 0.459 0.479

RBF_Median 0.045 0.100 0.181 0.245 0.318 0.343 0.354 0.473 0.533
Matern 1/2 0.029 0.059 0.113 0.167 0.198 0.199 0.245 0.251 0.254
Matern 3/2 0.045 0.092 0.171 0.247 0.286 0.320 0.361 0.458 0.472
Matern 5/2 0.046 0.124 0.181 0.271 0.319 0.403 0.427 0.495 0.561

NN 0.1 0.054 0.118 0.194 0.268 0.345 0.375 0.451 0.515 0.593
NN 1 0.055 0.118 0.194 0.287 0.322 0.379 0.402 0.513 0.574

NN 10 0.042 0.103 0.184 0.239 0.335 0.348 0.407 0.482 0.517
CVKE_RBF 0.041 0.103 0.215 0.323 0.315 0.414 0.486 0.601 0.679
CVKE_NN 0.044 0.117 0.157 0.301 0.330 0.411 0.477 0.538 0.616

Table 8: ktrue = Gaussian RBF, σ = 1

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.286 0.396 0.457 0.525 0.520 0.536 0.527 0.521 0.555

Quadratic 0.056 0.203 0.369 0.490 0.546 0.658 0.702 0.783 0.844
RBF_MLE 0.065 0.234 0.330 0.430 0.507 0.554 0.577 0.608 0.601

RBF_Median 0.046 0.161 0.297 0.421 0.502 0.570 0.587 0.693 0.772
Matern 1/2 0.016 0.068 0.183 0.247 0.273 0.320 0.361 0.394 0.424
Matern 3/2 0.042 0.198 0.307 0.433 0.504 0.558 0.588 0.670 0.764
Matern 5/2 0.043 0.184 0.340 0.458 0.510 0.607 0.655 0.720 0.789

NN 0.1 0.053 0.216 0.373 0.456 0.552 0.639 0.670 0.770 0.836
NN 1 0.045 0.185 0.354 0.481 0.545 0.647 0.678 0.788 0.808

NN 10 0.044 0.175 0.347 0.465 0.510 0.579 0.664 0.730 0.763
CVKE_RBF 0.043 0.193 0.346 0.452 0.533 0.633 0.690 0.801 0.870
CVKE_NN 0.043 0.162 0.318 0.467 0.552 0.671 0.696 0.772 0.834
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Table 9: ktrue = Gaussian RBF, σ = 1.5

kmodel/δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1
Linear 0.347 0.471 0.569 0.625 0.660 0.646 0.640 0.608 0.662

Quadratic 0.080 0.554 0.767 0.854 0.883 0.913 0.922 0.941 0.956
RBF_MLE 0.052 0.555 0.755 0.804 0.840 0.819 0.792 0.766 0.712

RBF_Median 0.046 0.481 0.719 0.795 0.882 0.902 0.914 0.950 0.946
Matern 1/2 0.014 0.218 0.482 0.591 0.673 0.704 0.765 0.756 0.782
Matern 3/2 0.036 0.494 0.686 0.825 0.862 0.903 0.920 0.943 0.939
Matern 5/2 0.047 0.543 0.755 0.829 0.869 0.903 0.925 0.946 0.955

NN 0.1 0.054 0.581 0.774 0.866 0.884 0.919 0.929 0.946 0.968
NN 1 0.037 0.553 0.750 0.834 0.891 0.923 0.926 0.947 0.969

NN 10 0.044 0.523 0.756 0.827 0.877 0.901 0.922 0.956 0.950
CVKE_RBF 0.034 0.554 0.741 0.855 0.877 0.921 0.946 0.961 0.979
CVKE_NN 0.043 0.534 0.749 0.855 0.877 0.936 0.939 0.950 0.954

5 Data Analysis: A Nutrition-Environment Interaction Study in Bangledash
Birth Cohort

5.1 Study Overview

The Bangladesh reproductive cohort study was initiated in 2008 to investigate the effects of prenatal
and early childhood exposure to arsenic (As), manganese (Mn), and lead (Pb) on early childhood
development. During 2008-2011, pregnant female participants (with gestational age < 16 weeks)
were recruited from two rural health clinics operated by the Dhaka Community Hospital Trust (DCH)
in the Sirajdikhan and Pabna Sadar upazilas of Bangladesh. During 2008-2013, data are collected at
five time points spanning the entire perinatal and early childhood period, including: initial clinic visit
(gestational age < 16 weeks, Visit 1); pre-delivery clinic visit (gestational age = 28 weeks, Visit 2),
time of delivery (Visit 3), post-delivery clinic visit (infant age less than 1 month, Visit 4), follow-up
visit (infant age between 20-40 weeks, Visit 5).

Covariates

The detailed data collection and measurement procedures have been documented in previous literature
[3, 5, 10]. Briefly, background information on parent’s demographic status, including age, education,
smoking history and socioeconomic status are collected through structured questionnaires at the two
during-pregnancy visits to the clinic (Visit 1-2). Information on infant’s biometric measurements,
including sex, birth weight, length, head circumference, birth order and gestational age, are recorded
at birth and extracted from medical records. Information on infant’s early childhood development,
including maternal and child’s medical history, quality of home environment (in terms of emotional,
social, and cognitive stimulation, measured by HOME instrument score [1], maternal depression
status (in Edinburgh Depression scale), maternal IQ (assessed using the Raven’s Progressive Indices
[9] are measured at during pregnancy visits (Visit 1-2), time of delivery (Visit 3), and the follow-up
visits (Visit 5), respectively.

Exposures and Outcome

Each infant’s exposure to multiple metals As, Mn and Pb (concentrations in Ml/g) during pregnancy
were measured using blood samples from infant’s umbilical cord venous blood collected at the time of
the birth. Mother’s total nutrition intake status during pregnancy are measured for 27 nutrients derived
from semi-quantitative Food Frequency Questionnaires (FFQs) specially adapted to Bangladeshi diet
[6] at both the pre- and post-delivery visits (Visit 2 and 4). This instrument measures the consumption
frequency (amount per week) of 42 food items during the 12-month period preceding delivery. The
nutrients measured are roughly grouped into 5 categories including macro-nutrients (5 nutrients:
protein, fat, carbohydrate, dietary fiber and ash), minerals (8 nutrients: calcium, iron, magnesium,
phosphorus, potassium, sodium, zinc and copper), vitamin and provitamin A (6 nutrients: vitamin
A, retinol, beta-carotene equivalents, alpha-carotene, beta-carotene, and cryptoxanthin), vitamin
B (5 nutrients: thiamin (B1), riboflavin (B2), niacin (B3), vitamin B6 and folate (B9)), and other
vitamins (3 nutrients: Vitamin C (i.e. L-ascorbic acid), Vitamin D, and Vitamin E). Finally, infant’s
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neurodevelopmental outcomes were assessed at 20–40 months of age (Visit 5) using a translated and
culturally-adapted version of the Bayley Scales of Infant and Toddler Development, Third Edition
(BSID-III) including five cognitive domains: cognitive, receptive language, expressive language, fine
motor and gross motor. A growing body of literature has identified nonlinear associations between
multiple metal exposures and neurodevelopment. For example, a cohort study at Mexico identified a
inverted “U” relationship between manganese exposure on child development, as well as a synergistic
interaction between lead and manganese [2]. Also in the Bangedash cohort, a recent study has
identified U-shaped effect of manganese, and potential synergism between arsenic and manganese
among the Pabna population [10]. Despite the field’s growing understanding of the neurotoxic effect
of prenatal exposure to metal mixture, the joint effect of all-category dietary nutrition intake on infant
development, as well as the interaction effect between multi-category nutrition intake and metal
mixture on infant development, remains open questions of great public health significance awaiting
careful investigation.

5.2 Nutrition-Environment Interaction Analysis

In the current study, our aim is to detect whether mother’s nutrient intake during pregnancy modifies
the effect of metal mixture exposures on children’s early stage neurodevelopment. We conduct a
group-based analysis to study the interaction between the As, Mn, Pb mixture and five major nutrient
groups: macro-nutrient, minerals, vitamin As, vitamin Bs and other vitamins. We examine the
modification effect of each nutrient group on both the marginal effect of each individual pollutant, as
well as the joint effect of entire metal mixture, while accounting for interaction among other covariate
sets. Specifically, recall the assumed model (1):

yi = xTi β + h(zi) + εi,

where xi is an 18× 1 vector of background covariates, including child’s sex, gestational age, delivery
type, birth order, child’s age at follow-up visit, maternal and paternal education, secondhand smoke
exposure, HOME instrument scores (5 variables: Emotion, Avoidance, Caregiving, Organization,
Provision, Stimulation), total energy intake during pregnancy(kcal), and child’s blood concentration
of As, Mn and Pb at the time of neurodevelopmental testing. zi is the 30 × 1 vector of during-
pregnancy exposure to 27 nutrients and 3 metal pollutants, corresponding the grouping structure zi =
{zmetal, znutr}, where znutr is further divided into znutr = {zmacro, zmineral, zvitA, zvitB, zvitO}.

5.2.1 Interaction Test in the presence of Nuisance Interactions

When testing for the interaction between metal mixture exposures and a specific nutrient group of
interest, care should be given to formulate h(zi) such that in addition to explicitly characterizing the
interaction of interest, h should also account for all nuisance interactions among other zi subgroups.
For example, when testing for the interaction between metal exposures and the macronutrients zmacro,
the interaction between metal exposures and the other non-macro nutrients (denoting as zother), as
well as the interaction between macro- and non-macro-nutrients, should also be included in the model.
To this end, following the tensor-product construction shown in Section 5, we adopt the follwing
orthogonal decomposition of h(z):

h(ztoxin, zmacro, zother) = h1(ztoxin) + h2(zmacro) + h3(zother)+

h13(ztoxin, zother) + h23(zmacro, zother) + h12(ztoxin, zmacro)+

h123(ztoxin, zmacro, zother)

Under such construction, the null hypothesis of no interaction between metal exposures and macronu-
trient group corresponds to h12 and h123 equaling zero, i.e.:

H0 : h = h1 + h2 + h3 + h13 + h23
Ha : h = h1 + h2 + h3 + h13 + h23 + h12 + h123,

and the corresponding garrote kernel for h ∈ H is kδ(z, z′) = k0(z, z
′) + δ ∗ ka(z, z′), where:

k0 = k1 + k2 + k3 + k13 + k23
ka = k12 + k123,

where k1(ztoxin, z′toxin), k2(zmacro, z
′
macro), k3(zother, z

′
other) are the reproducing kernels for the

main-effect space of metal mixture, macronutrients, and non-macronutrients, respectively, and
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similar to Section 5, we construct the higher-order interaction kernels as ∀(i, j), kij = ki ∗ kj and
k123 = k1 ∗ k2 ∗ k3. Consequently, denoting Ki as the kernel matrix corresponding to ki, the null
kernel matrix K0 and the derivative kernel matrix δK0 = Ka are

K0 = K1 +K2 +K3 +K1 ◦K2 +K2 ◦K3

δK0 = Ka = K1 ◦K2 +K1 ◦K2 ◦K3.

Following Algorithm 1, we first fit the Gaussian process model to data (y,X,Z) using REML

y = Xβ + h+ ε, where h ∼MVN(0, τK0), ε ∼MVN(0, σ2I),

thereby producing model estimates (β̂, τ̂ , σ̂2). Using the resulting estimates, we compute the score
test statistic:

T̂0 = τ̂ ∗ (y −Xβ̂)TV−10

[
∂K0

]
V−10 (y −Xβ̂)

where V0 = σ̂2I + τ̂K0, the Satterthwaite parameters of the null distribution (κ̂, ν̂), and also the
p-value p = P (χ2

ν̂ > T̂/κ̂) as described in Section 3.

5.2.2 Results

We conduct the interaction test described in Section 5.2.1 to formally test for the presence of
interaction between each nutrition group (as introduced in Section 5.1) and all possible combinations
of the metal mixture (As, Pb, Mn) on infant’s fine motor BSID-III score, which tests for infants’
coordination of small muscles, e.g. hand-eye coordination. As shown in Table 10, the analysis
yielded statistically significant evidence of interaction (p-value < 0.05) between arsenic (As) and all
micronutrient groups, and suggestive evidence (p-value < 0.1) for the interaction between maganese
(Mn) and non-B Vitamins (i.e. "Vitamin A" and "Vitamin, Other"). We also observed suggestive
evidence for the interaction between (As, Mn) mixture and all micronutrient groups.

Table 10: p− value for Nutrient - Environment Interaction Test

Toxin/Nutrient Macro Mineral Vitamin A Vitamin B Vitamin, Other
As 0.0859 0.0263 0.0072 0.0357 0.0046
Pb 0.7291 0.6678 0.2209 0.4331 0.6586
Mn 0.1829 0.5482 0.0761 0.2845 0.0227

As, Pb 0.3835 0.2460 0.0389 0.0271 0.0078
As, Mn 0.1354 0.0339 0.0015 0.0469 0.0020
Pb, Mn 0.5810 0.5945 0.0556 0.2745 0.5381

As, Pb, Mn 0.2131 0.1443 0.0689 0.1248 0.0052
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