
A Image generation results on MNIST

Figure 6: MNIST image generation. Top: fc, middle: conv, bottom: ae. Left: MMD, right: PMD.

Figure 7: Interpolation on the representation space using the convolutional generator. The first
column is the randomly selected points and the rest are the interpolation between them.

B Adversarial learning of distances

From Fig. 4 we can see that the images generated by PMD is more blurry than those generated by
generative adversarial networks (GANs) [16]. This is because the pixel-wise distance d(x, y) =
‖x− y‖1 is not a good distance between natural images. If we translate an image by one pixel, the
pixel-wise distance between the two images will be much greater than zero. But the two images have
identical semantic meanings, so the ideal distance between them should be close to zero.

Two recent works MMD GAN [29] and Cramer GAN [4] proposed to solve this problem by ad-
versarially learn the distance between images. Inspired by these works, we present PMD GAN,
which applies PMD for generative modeling with adversarially learned image distance. Following the
discussion in Sec. 4.2, we formulate the problem of deep generative modeling as minimizing the PMD
between a model distribution pX;θ(x) and a data distribution pY (y). We choose the image distance

d(x, y) =
√

‖F (x)− F (y)‖1 on the feature space defined by a feature extractor F . Following
MMD GAN, we also define a decoder D such that the reconstruction error between x and D(F (x))
is minimized, to approximately enforce F as a bijection. The overall objective is defined as

min
θ

max
F

{

min
M

1

N

N
∑

i=1

d(F (xi), F (yMi
))−

λ

N

N
∑

i=1

[

(xi −D(F (xi)))
2 + (yi −D(F (yi)))

2
]

}

,

where the feature extractor F wants to maximize the PMD while minimizing the reconstruction error,
and the generator pX;θ wants to minimize the PMD.

We test the proposed approach on the CIFAR10 dataset [25]. We implement our model in Tensor-
Flow [1] and make our implementation similar as the PyTorch implementation of MMD GAN. We
compare our model with MMD GAN, which uses a mixture of RBF kernels with the bandwidth
[1, 2, 4, 8, 16]. Both models uses a batch size of 64 and RMSProp [46] optimizer with 5 × 10−5

learning rate. We clip the weights in the range [−0.01, 0.01] following Wasserstein GAN [3]. The
auto encoder regularization parameter λ is set to 8. We run PMD GAN, MMD GAN and Wasserstein
GAN for 100 epochs, and the result are shown in Fig. 8. The results confirm that using adversarially
learned distance, PMD can generate sharp images.

12



(a) MMD (b) PMD

(c) WGAN

Figure 8: Image generation with adversarially learned distance. Inception score [42] are 4.50 for all
the three models.

µ1 µ2 log σ1 log σ2

Data (8.34, 14.4) (0, 6.05) diag(0, 0) diag(0, 0)
Learned (8.17, 14.3) (0.28, 6.30) diag(-5.38, -5.53) diag(-3.25, -4.16)

Table 2: Mean and logarithm of standard deviation of the Gaussian mixture experiment.

C Handling multimodal distributions

It is an interesting question that whether the particle based methods (PMD or MMD) can handle
distributions with more modes than the number of particles used. The answer is yes. We discuss a
particular Gaussian mixture generation example. In this task, we have an unknown data distribution,
which is a Gaussian mixture distribution with two mixing components N (µ1, σ

2
1) and N (µ2, σ

2
2).

We want to learn its parameters µ1, µ2, σ1 and σ2 by minimizing the distance between the model
distribution and the data distribution, using only one particle per gradient step. MMD can still
learn the distribution because it is unbiased [17]. Empirically, PMD can also estimate the mean
and variance, using a distance d(x, y) = − exp(−‖x− y‖1 /σ), where σ is a bandwidth. Table 2
shows the true model parameters and the parameters learned by PMD. Even with N = 1, PMD still
estimates the mean fairly well, despite underestimating the variance.

13


	Image generation results on MNIST
	Adversarial learning of distances
	Handling multimodal distributions

