Maximum Margin Interval Trees

Supplementary material

Alexandre Drouin, Toby Dylan Hocking, Francois Laviolette

Contents

1__Section 3 - Problem| 2
[1.1 The effect of the margin hyperparameter|. . . . . . . . .. .. ... ... ... 2

[2__Section 4 - Algorithm| 3
B1 Proof Temma Tl . . . o v v oo vt 3
2.2 Proof: Optimality of the dynamic programming algorithm| . . . . . . . . . .. 4
2.3 Proof: Number of pointer moves for the linear hinge loss| . . . . . . .. .. .. 5
2.4 Pseudocode and Implementation details| . . . . . ... .. ... ... ... 7
2.5 What if the breakpoints are not all different?| . . . . . . . .. ... ... ... 8

B Section 5 - Results| 9
3.1 Protocol: Generating simulated data sets| . . . . .. ... ... ... ..... 9
[3.2  Protocol: Converting regression data sets to interval regression| . . . . . . . . 9
B3 Additional result: Benchmark results on more dafasetsl . . .. ... ... .. 10
3.4 Additional result: Selected hyperparameter values for MMI'T| . . . .. . ... 12
8.5 Software versions . . . . . . . .. 14

Note to the reader: equations and figures that are unique to the supplementary material are prefixed with

”S.%, e.g., Equation (S.1). All other references refer to the main paper.



1 Section 3 - Problem

1.1 The effect of the margin hyperparameter

The margin (¢) hyperparameter of Maximum Margin Interval Trees has a regularizing effect,
which help prevents overfitting. This can be observed in Figure [S.I] where the training and
testing set mean squared errors are shown as a function of the margin. It can be observed
that there exists a value of this hyperparameter for which the testing set error reaches a
minimum, while the training set error slightly increases.

Intuitively, the margin makes the model more robust to noise by enforcing that its predictions
must be at a certain distance of the training set interval limits, which are possibly noisy. This
effect, combined with those of other regularization hyperparameters, such as the maximum
depth of the decision tree and the minimum number of examples required for a leaf to be
partitioned, make for the full regularization of our algorithm. The complex trade-off between
these hyperparameters will be further studied in future work.
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Figure S.1: Training and testing set mean squared errors for various margin sizes on the
H3K36me3 AM immune FPOP changepoint detection data set.



2 Section 4 - Algorithm

2.1 Proof: Lemma 1

Lemma 1. For any i € {1,...,t}, we have that pi41(p) = pei(p) + fii(n), where
fri(p) = sk €[sk (1t — yx) + €] for some k € {1,...,t} such that yy — ske = by ;.

Proof. As described in Equation (9), the function pieces p;; and p; ;41 are separated by
the breakpoint b; ;. Since we assume that each of the hinge losses has a unique breakpoint
y; — sj€, ¥j € {1,...,t}, we have that b, ; corresponds to the transition between a zero and
non-zero state (or the converse) for a single hinge loss in the sum P;. Denote this function
de(sk(t — yx) +€), where k € {1,...,t}. We have that b;; = yr — sie.

Moreover, it follows from Equation (10) that:

t

pei(p) = Zé[sj(,u —yj)+el I[(sj=—1Abi1 <y;+e€) V(s =1Ay; —e<by;)] (S.1)
j=1

and

t

privi(p) = lsi(p—y;)+el I[(s; = —1Abe; <y;+e)V(s; = 1Ay;—€ <byit1)]. (S2)
=1

There are two cases to consider: s = —1 and s, = 1. If s, = —1, we have that p ;41 (1) —
pri(p) = —Lsk(p — yr) + €] = sk sk (@ — yx) + €], since I[b ;-1 < yr + € = by ;] = 1, but
Ibei <yp +e=10ii] =0. If s, = 1, we have that pr i1 (i) — pei(p) = {se(p —yx) + €] =
sk Llsk(p — yr) + €], since I[yy — e < by =yr — €] =0, but Iyy —e=1by; <byit1] =1

Hence, we have shown that p;;11(1) — pei(p) = sk €[se(p — yi) + €] and thus pg11(p) =
pri(p) + s Lsk(e — yx) + €] for k € {1,...,t} such that yx — spe = by ;.
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2.2 Proof: Optimality of the dynamic programming algorithm

Theorem 1. At any time step (t) of the dynamic programming algorithm, we have that:

min P, = min M, ,
peER t<M) ,LLE(bt,Jt—hbt,Jt] t(u)

where P, and the by ; are defined at Equation (9), J; is defined at Equation (14), and M, is
defined at Equation (15).

Proof. Let t be the current time step of the dynamic programming algorithm, i.e., the number
of hinge losses in the sum P;(p). It follows from Equations (9) and (14) that the piece p; j,
contains a global minimum of P;(u). Hence, we have that

min P, = min P, = min . S.3
minPip) = owin RGO = om0 (53)

Moreover, it follows from a recursive application of Lemma 1 that, if j; < J;, we have

Ji—1 Ji—1
prj, (1) + Z fri(w) = prj,+1(n) + Z fri(p) =+ =peg, (1) (S.4)
— i=je+1

and, similarly, if j, > J;, we have p; s, (1) = pej, (1) — Zz;}i fri(p).

Hence, by Equation (15), we have that M;(u) = py, s, (1) and thus, by Equation (S.3), we
have that

min M = min P;(u). S.5
e (bt g, —1,bt,7,] t(M> LER t(ﬂ) ( )

Therefore, the solution returned by the dynamic programming algorithm always corresponds
to a global minimum of the sum of hinge losses P;. O



2.3 Proof: Number of pointer moves for the linear hinge loss

Theorem 2. Assuming that all hinge losses are linear, i.e., that ¢(x) = x, the insertion of a
new hinge loss ¢e(s¢(p — yi) + €) in the dynamic programming algorithm leads to a pointer ji
that is at most at distance one of the optimal minimum pointer J; defined at Equation (14).

Proof. First, observe that, according to Equation , we have that the gradient of any
function piece p;; with respect to p € R is constant and given by:

t
Vpei(p) = Zsj I(sj = =1Abi1 <yj+e)V(s;=1Ay; —e<b,). (S.6)
j=1

This corresponds to the difference between the number of upper and lower interval limits for
which the hinge loss takes a non-zero value on the segment p € (by;—1,b;;]. Hence, since
s; € {—1,+1}, we have that the gradient of any function piece is a constant function whose
value is an integer.

Moreover, it follows from Equation (S.6)) and the fact that b;; < b; ;-1 that:

th,z(:u’) < th,i+1(N)7 VIU/ € RaZ € {1a 7t} (87)

Indeed, going from b;; to b; 41, any function with sign s; = —1 can only stop contributing
negatively to the sum. Conversely, any function with sign s; = 1 can only start contributing
positively to the sum. Hence, we have that Vp: (1) < Vpyiv1(p), but since each by
corresponds to a change in the total function P;, we have that Vp, ;(u) = Vpy i41(p) is not
possible and thus, Vp; (1) < Vpyit1(p).

In addition, since P; is a piecewise linear function, it is not differentiable at its breakpoints
(bt,;). However, the subdifferential of P, at any b, ; is bounded by the gradient of the function
piece on its left (p;;) and the one on its right (p;;4+1), which are constant. Hence, we have
the following subdifferential at any b ;:

0P (bei) = [Vpei(1), Ve iv1(p)]- (S.8)

Also, note that, if there exists a 1 € (by;—1, b ;] such that P,(p) = min,, Pi(y'), we have
that:
0 € OP(bri) = [Vpei(p), Ve iv1(1)]- (8.9)

Hence, by the definition of the minimum pointer J;, given at Equation (14), we have that
0 € OP,(by,4,) and thus Vp, s, (1) < 0. Moreover, we have that Vp; j,4+1(p) > 1, since J,
points to the greatest breakpoint that has zero in its subdifferential and since the Vp, ; (1)
are constant functions with integer values.

Now, we must consider two cases: the one where the inserted hinge loss has sign s; = —1
and the one where it has sign s; = 1.

e Case sy = 1: In this case, the pointer either remains unchanged or moves to the left.
The latter situtation only occurs when, after inserting the new hinge loss, we have
0 & OP;(by,j,), which is only possible if y; — e < bi_1.5, , = by j,.



Observe that, according to Equation (S.6)), the insertion of a new hinge loss with s; = 1
can only increase the gradient of any segment by 1. Hence, if y; — € < b ;,, we have
that Vpy j, (1) = Vpi—1,5, . (1) + 1.

If the insertion results in Vp, ;, (1) < 0, no pointer moves are required. However,
if we have Vp, j, (1) = 1, we have that 0 & 90P;(bsj,) = [Vpej, (1), Ve ji+1(p)] =
(1, VDt j,+1(p)]. Thus, there are no values in p € (bt j,—1,b;,] that are minimizers
of P,(p) and the pointer must be moved left. It follows from Equation that
Vpi,j,—1() < 1 and thus Vp, j,—1(n) < 0. Hence, we have that 0 € P, (b j,—1) =
[Vpej,—1(1t), Ve 5, ()]. Thus, by moving the pointer to the left once, ie. J; = j — 1,
we have that J; is the largest value such that p; j, contains a minimum of P;(u) for p €
(bt,7,—1,bt,7,], 1-e., 0 € OP(by,s,) = [Vpe,s, (1) Ve g, +1(0)] = [Vejo—1 (1), Vipe, 5. ()]

Case sy = —1: In this case, the pointer either remains unchanged or moves to the
right. The proof for this case is similar and left as an exercise to the reader.

O



2.4 Pseudocode and Implementation details

We propose to store each linear/quadratic function f(u) = ap? + by + ¢ in terms of its
three coefficients a, b, c € R, where a = 0 for linear functions. Function sums can therefore
be implemented in constant O(1) time, by simply adding their coefficients (e.g., line (8] of
Algorithm . Note that, in Algorithm [1} B[.J].breakpoint is the breakpoint at the pointer
J, i.e., by s in the notation of Equation (9).

We propose to store the set of breakpoints B; using the map container of the C++ Standard
Template Library (B in Algorithm . It guarantees that the insertion of a breakpoint,
described at Equation (12), takes O(logt) time (line [6). The pointers j; and J; can be
implemented using a map::iterator (J in Algorithm [If). Thus, the update rule given by
Equation (13) happens automatically when the new breakpoint is inserted — the variable .J
is J¢_1 before the insert, and it becomes j; after the insert.

The update rules for J; and M; (Equations (14) and (15)) are implemented in the while
loop on lines of Algorithm |1} Each iteration of the while loop is a constant O(1) time
operation. The MinInInterval sub-routine exploits the convexity of the cost function, and
returns TRUE if a global minimum occurs on the function piece M, i.e. p; ; in the notation
of Equation (9), whose limits are B[J — 1].breakpoint (i.e., b; j_1) and B[J].breakpoint (i.e.,
by,7). If no minimum occurs on this piece, the pointer J must be moved. If M is increasing
within the interval limits, the pointer should be moved left (line . Otherwise, it should be

moved right (line [T1]).

Once the pointer has been moved to the interval that contains the minimum, the Minimize
sub-routine returns an optimal prediction p; and cost P;* (line in constant O(1) time.

An open-source implementation of Algorithm [1]is available at https://git.io/mmit.

Algorithm 1 Dynamic programming algorithm for computing minimum total hinge loss.

1: Input: limits y € R™, signs s € {—1,1}, margin € € R.
2: Initialize: B < map{}, J « B.end(), M « Coefs(0)
3: for data points t from 1 to n:

4: f < Coefs[stl(st(p — yi) + €)]

5. by — s4€

6:  B.insert(b, f)

7. if 0 < s;(B[J].breakpoint — ;) + €:

8: M «+ M + Coefs[l(s¢(u — yi) + €)]

9:  while !MinInInterval(M, B, J):

10 if Increasing(M): J < J — 1; M < M — BJ[J].function
11: else: M < M + B[J].function; J < J + 1

12: pf, P < Minimize(M, B, J)
13: Output: pu* € R™, P* € R"”



https://git.io/mmit

2.5 What if the breakpoints are not all different?

In the paper, we assumed that all the hinge losses in the sum of Equation (8) had distinct
breakpoints (see Section 4.1). That is, we assumed that there were no interval limits with
the exact same type (upper or lower limit) and value. This is not a very strong assumption,
since the interval limits are real numbers (double precision on computers). However, it allows
to simplify the presentation of the algorithm.

In fact, considering that some breakpoints could be equal leads to a total function P;
(Equation (9)) with more pieces (p; ;) than breakpoints (b; ;). Consequently, this complicates
the expressions of Equations (9 - 10) and Lemma 1. For example, in the statement of Lemma
1, the difference between p; ;11 and p;; would no longer be a single f; ;, but a sum of such
values.

Nevertheless, note that the implementation provided with this work handles the case where
some breakpoints are equal and the assumption is limited to the theoretical work.



3 Section 5 - Results

3.1 Protocol: Generating simulated data sets

Each of the simulated data set contains 200 learning examples, each represented by a vector
of 20 features (x; € R?°) and a target interval (y; = [y;, 7] € R2). The feature vectors were

generated by uniform random sampling in the range [67 10]. Then, the target intervals were
generated by applying some function f : R — R to the first feature of each example (i.e.,
x;o for the i** example), which we refer to as the signal feature. Specifically, ten values
were sampled from a normal distribution N (f(z;0),0.3). The smallest value was used as the
interval’s lower limit (y;) and the maximum one as the interval’s upper limit (7;). Then,
a small vertical shift was added by sampling a value from A (0,0.2) and adding it to both
interval bounds. Finally, with probability 20%, one of the interval bounds was removed to

simulate open interval. This therefore generates left, right and interval-censored data.

3.2 Protocol: Converting regression data sets to interval regression

Let S = {(x,9;)}",, with x; € RP and y; € R, be a real-valued regression data set.

def

Moreover, let S" = {(x;,y:)}", with x; € R? and y; = [y;, 7] € @2, be its corresponding
interval regression data set. The target intervals in S’ are generated by randomly sampling
from normal distributions centered on the target values in S. Specifically, in this work, for
any y;, 10 values were sampled from a normal distribution A (y;, %) The smallest value
was used as the interval’s lower limit (y;) and the maximum one as the interval’s upper limit
(7). Then, a small vertical shift was added by sampling a value from N(0, #:) and adding
it to both interval bounds. Finally, with probability 10%, one of the interval bounds was
removed to simulate open interval. The resulting data set S’ thus contains left, right and

interval-censored data, which is derived from the true data in S.



3.3 Additional result: Benchmark results on more data sets

Figure [S-2 shows a comparison of the learning algorithms, including our MMITs, on a wide
variety of real and simulated data sets. The real data sets were taken from the work of Hocking
et al.| (2013)), Rigaill et al.|(2013]), and from a repository maintained by the Connectionist
Artificial Intelligence Laboratory (https://github.com/renatopp/arff-datasets). The
latter repository includes many data sets from the UCI repository (Lichman| 2013)). The
simulated data sets are the three used in the paper. Note that the neuroblastoma changepoint
detection data set used in the paper corresponds to neuroblastomaProcessed in Figure [S:2]
and that the histone one corresponds to H3K27ac-H3K4me3 TDHAM BP_ FPOP.

(See next page)
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Data set

neuroblastomaProcessed 3418=n 117=p
stock 950=n 9=p

H3K27ac-H3K4me3_TDHAM_BP_FPOP 935=n 26=p

H3K4me3_TDH_other FPOP 875=n 27=p

H3K27ac-H3K4me3 TDHAM_BP_joint 831=n 26=p

H3K4me3_PGP_immune_PDPA 808=n 44=p
H3K4me3_TDH_immune_PDPA 724=n 44=p
strike 625=n 23=p
sensory 576=n 36=p
housing (2) 506=n 14=p
housing 506=n 14=p
H3K36me3_AM_immune_PDPA 482=n 43
H3K36me3_AM_immune_FPOP 420=n 28
autompg (2) 392=n 25=p
autompg 392=n 25=p
H3K4me3_TDH_immune FPOP 378=n 28=p
medulloblastoma.tdh 366=n 255=p
neuroblastoma.bac 324=n 252=p
H3K4me3_XJ_immune PDPA 318=n 45=p
cleveland 299=n 26=p
cholesterol 299=n 26=p
H3K4me3_TDH_other_PDPA 290=n 44=p
breasttumor 286=n 40=p
pbc 276=n 29=p
meta 264=n 54=p
bodyfat 252=n 14=p
machine.cpu 209=n 6=p
cpu 209=n 36=p
simulated.sin 200=n 20=p
simulated.linear 200=n 20=p
simulated.abs 200=n 20=p
pwlinear 200=n 10=p
pharynx 195=n 218=p
wisconsin 194=n 32=p
lowbwt 189=n 23=p
triazines 186=n 60=p
servo (2) 167=n 19=p
servo 167=n 19=p
autoprice (2) 159=n 20=p
autoErlce 159=n 15=p
autonhorse 159=n 59=p
fishcatch 158=n 15=p
neuroblastoma.dr.tdh 155=n 259=p
veteran 137=n 13=p
fruitfly 125=n 8=p
H3K4me3_TDH_immune_joint 117=n p
cloud 108=n 10
echomonths 106=n 13

=p
=p

baskball 96=n 4=p
H3K36me3_TDH_immune_PDPA 84=n 45=p
H3K36me3_TDH_immune_FPOP 84=n 28=p

auto93 82=n 62
pyrim 74=n 27
H3K4me3_TDH_other_joint 66=n 32=p
mbagrade 61=n 3=p

pollution 60=n 15=p

elusage 55=n 13=p

vineyard 52=n 3=p

sleep 51=n 7=p
lymphoma.mkatayama 41=n 258=p
H3K36me3_TDH_other_FPOP 40=n 30=p
H3K36me3_TDH_other PDPA 32=n 48=p

neuroblastoma.chiba.tdh 29=n 258=p

lymphoma.tdh 23=n 258=p
H3K36me3_TDH_immune_joint 18=n 33=p
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Figure S.2: Mean-squared error (and standard deviation) for the 5 cross-validation folds.
The data sets are sorted by decreasing number of examples.
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Selected hyperparameter values for MMIT

.
.

3.4 Additional result

For each of the five cross-validation folds, the best hyperparameter values were chosen based

on the training data, by performing 10-fold cross-validation over a grid of possible values.
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3.5 Software versions
To ensure the reproducibility of our results, we list the versions of the software that was used
to compare our algorithm to other methods:
1. Maximum margin interval trees:
e mmit v1.1.1 (Python package)
2. Transformation trees:
o trft v0.2-1 (R package)
e partykit v1.2-0 (R package)
3. Interval-CART:
e sklearn v0.18.1 (Python package)
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