Supplementary material

Derivation for Lemma I,El] As, i <r) < 2v/Bio?, we can say that
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Derivation for A7, and Br in Lemma 3 From Equation
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For the first term,
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For the second term,
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From Lemma 2 after T' > Ty we know Org, <0, WE have
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where vr = N Agna‘x;;‘ TI(yA : fa) assuming y = f+¢, where é ~ N'(0,02/2). Since v grows sublin-
exe, =

early with 7', especially for SE kernel v ~ O((logT)?*, it is easy to show that limr_, o %BT — 0.
Hence lim7—,o R — 0.
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